1
|
Ekmejian AA, Carpenter HJ, Ciofani JL, Gray BHM, Allahwala UK, Ward M, Escaned J, Psaltis PJ, Bhindi R. Advances in the Computational Assessment of Disturbed Coronary Flow and Wall Shear Stress: A Contemporary Review. J Am Heart Assoc 2024; 13:e037129. [PMID: 39291505 DOI: 10.1161/jaha.124.037129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Coronary artery blood flow is influenced by various factors including vessel geometry, hemodynamic conditions, timing in the cardiac cycle, and rheological conditions. Multiple patterns of disturbed coronary flow may occur when blood flow separates from the laminar plane, associated with inefficient blood transit, and pathological processes modulated by the vascular endothelium in response to abnormal wall shear stress. Current simulation techniques, including computational fluid dynamics and fluid-structure interaction, can provide substantial detail on disturbed coronary flow and have advanced the contemporary understanding of the natural history of coronary disease. However, the clinical application of these techniques has been limited to hemodynamic assessment of coronary disease severity, with the potential to refine the assessment and management of coronary disease. Improved computational efficiency and large clinical trials are required to provide an incremental clinical benefit of these techniques beyond existing tools. This contemporary review is a clinically relevant overview of the disturbed coronary flow and its associated pathological consequences. The contemporary methods to assess disturbed flow are reviewed, including clinical applications of these techniques. Current limitations and future opportunities in the field are also discussed.
Collapse
Affiliation(s)
- Avedis Assadour Ekmejian
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| | - Harry James Carpenter
- Vascular Research Centre Lifelong Health Theme, South Australia Health and Medical Research Institute Adelaide Australia
| | - Jonathan Laurence Ciofani
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| | | | - Usaid Khalil Allahwala
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| | - Michael Ward
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| | - Javier Escaned
- Department of Cardiology Hospital Universitario Clinico San Carlos Madrid Spain
| | - Peter James Psaltis
- Vascular Research Centre Lifelong Health Theme, South Australia Health and Medical Research Institute Adelaide Australia
- Adelaide Medical School The University of Adelaide Adelaide Australia
- Department of Cardiology Central Adelaide Local Health Network Adelaide Australia
| | - Ravinay Bhindi
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| |
Collapse
|
2
|
Zhang M, Gharleghi R, Shen C, Beier S. A new understanding of coronary curvature and haemodynamic impact on the course of plaque onset and progression. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241267. [PMID: 39309260 PMCID: PMC11416812 DOI: 10.1098/rsos.241267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024]
Abstract
The strong link between atherosclerosis and luminal biomechanical stresses is well established. Yet, this understanding has not translated into preventative coronary diagnostic imaging, particularly due to the under-explored role of coronary anatomy and haemodynamics in plaque onset, which we aim to address with this work. The left coronary trees of 20 non-stenosed (%diameter stenosis [%DS] = 0), 12 moderately (0 < %DS < 70) and 7 severely (%DS ≥ 70) stenosed cases were dissected into bifurcating and non-bifurcating segments for whole-tree and segment-specific comparisons, correlating nine three-dimensional coronary anatomical features, topological shear variation index (TSVI) and luminal areas subject to low time-average endothelial shear stress (%LowTAESS), high oscillatory shear index (%HighOSI) and high relative residence time (%HighRRT). We found that TSVI is the only metric consistently differing between non-stenosed and stenosed cases across the whole tree, bifurcating and non-bifurcating segments (p < 0.002, AUC = 0.876), whereas average curvature and %HighOSI differed only for the whole trees (p < 0.024) and non-bifurcating segments (p < 0.027), with AUC > 0.711. Coronary trees with moderate or severe stenoses differed only in %LowTAESS (p = 0.009) and %HighRRT (p = 0.012). This suggests TSVI, curvature and %HighOSI are potential factors driving plaque onset, with greater predictive performance than the previously recognized %LowTAESS and %HighRRT, which appears to play a role in plaque progression.
Collapse
Affiliation(s)
- Mingzi Zhang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales2052, Australia
| | - Ramtin Gharleghi
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales2052, Australia
| | - Chi Shen
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales2052, Australia
| | - Susann Beier
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales2052, Australia
| |
Collapse
|
3
|
Candreva A, Buongiorno AL, Matter MA, Rizzini ML, Giacobbe F, Ravetti E, Giannino G, Carmagnola L, Gilhofer T, Gallo D, Chiastra C, Stähli BE, Iannaccone M, Morbiducci U, Porto I, De Ferrari GM, D'Ascenzo F. Impact of endothelial shear stress on coronary atherosclerotic plaque progression and composition: A meta-analysis and systematic review. Int J Cardiol 2024; 407:132061. [PMID: 38641263 DOI: 10.1016/j.ijcard.2024.132061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND AND AIMS Intracoronary pressure gradients and translesional flow patterns have been correlated with coronary plaque progression and lesion destabilization. In this study, we aimed to determine the relationship between endothelial shear stress and plaque progression and to evaluate the effect of shear forces on coronary plaque features. METHODS A systematic review was conducted in medical on-line databases. Selected were studies including human participants who underwent coronary anatomy assessment with computational fluid dynamics (CFD)-based wall shear stress (WSS) calculation at baseline with anatomical evaluation at follow-up. A total of six studies were included for data extraction and analysis. RESULTS The meta-analysis encompassed 31'385 arterial segments from 136 patients. Lower translesional WSS values were significantly associated with a reduction in lumen area (mean difference -0.88, 95% CI -1.13 to -0.62), an increase in plaque burden (mean difference 4.32, 95% CI 1.65 to 6.99), and an increase in necrotic core area (mean difference 0.02, 95% CI 0.02 to 0.03) at follow-up imaging. Elevated WSS values were associated with an increase in lumen area (mean difference 0.78, 95% CI 0.34 to 1.21) and a reduction in both fibrofatty (mean difference -0.02, 95% CI -0.03 to -0.01) and fibrous plaque areas (mean difference -0.03, 95% CI -0.03 to -0.03). CONCLUSION This meta-analysis shows that WSS parameters were related to vulnerable plaque features at follow-up. These results emphasize the impact of endothelial shear forces on coronary plaque growth and composition. Future studies are warranted to evaluate the role of WSS in guiding clinical decision-making.
Collapse
Affiliation(s)
- Alessandro Candreva
- Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland; PoliTo(BIO) Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Antonia Luisa Buongiorno
- Department of Cardiology, Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Michael Adrian Matter
- Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Maurizio Lodi Rizzini
- PoliTo(BIO) Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Federico Giacobbe
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, Turin, Italy; Department of Medical Sciences, University of Turin, Turin, Italy
| | - Emanuele Ravetti
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, Turin, Italy; Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giuseppe Giannino
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, Turin, Italy; Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ludovica Carmagnola
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, Turin, Italy; Department of Medical Sciences, University of Turin, Turin, Italy
| | - Thomas Gilhofer
- Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Diego Gallo
- PoliTo(BIO) Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Claudio Chiastra
- PoliTo(BIO) Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Barbara E Stähli
- Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Mario Iannaccone
- Division of Cardiology, San Giovanni Bosco Hospital, ASL Città di Torino, Turin, Italy
| | - Umberto Morbiducci
- PoliTo(BIO) Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Italo Porto
- Department of Cardiology, Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, Turin, Italy; Department of Medical Sciences, University of Turin, Turin, Italy
| | - Fabrizio D'Ascenzo
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, Turin, Italy; Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
4
|
Zhao C, Lv R, Maehara A, Wang L, Gao Z, Xu Y, Guo X, Zhu Y, Huang M, Zhang X, Zhu J, Yu B, Jia H, Mintz GS, Tang D. Plaque Ruptures Are Related to High Plaque Stress and Strain Conditions: Direct Verification by Using In Vivo OCT Rupture Data and FSI Models. Arterioscler Thromb Vasc Biol 2024; 44:1617-1627. [PMID: 38721707 PMCID: PMC11208065 DOI: 10.1161/atvbaha.124.320764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/24/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND While it has been hypothesized that high plaque stress and strain may be related to plaque rupture, its direct verification using in vivo coronary plaque rupture data and full 3-dimensional fluid-structure interaction models is lacking in the current literature due to difficulty in obtaining in vivo plaque rupture imaging data from patients with acute coronary syndrome. This case-control study aims to use high-resolution optical coherence tomography-verified in vivo plaque rupture data and 3-dimensional fluid-structure interaction models to seek direct evidence for the high plaque stress/strain hypothesis. METHODS In vivo coronary plaque optical coherence tomography data (5 ruptured plaques, 5 no-rupture plaques) were acquired from patients using a protocol approved by the local institutional review board with informed consent obtained. The ruptured caps were reconstructed to their prerupture morphology using neighboring plaque cap and vessel geometries. Optical coherence tomography-based 3-dimensional fluid-structure interaction models were constructed to obtain plaque stress, strain, and flow shear stress data for comparative analysis. The rank-sum test in the nonparametric test was used for statistical analysis. RESULTS Our results showed that the average maximum cap stress and strain values of ruptured plaques were 142% (457.70 versus 189.22 kPa; P=0.0278) and 48% (0.2267 versus 0.1527 kPa; P=0.0476) higher than that for no-rupture plaques, respectively. The mean values of maximum flow shear stresses for ruptured and no-rupture plaques were 145.02 dyn/cm2 and 81.92 dyn/cm2 (P=0.1111), respectively. However, the flow shear stress difference was not statistically significant. CONCLUSIONS This preliminary case-control study showed that the ruptured plaque group had higher mean maximum stress and strain values. Due to our small study size, larger scale studies are needed to further validate our findings.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
| | - Rui Lv
- Department of Cardiac Surgery, Shandong Second Provincial General Hospital, Jinan, China (R.L.)
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China (R.L., L.W., Y.Z., M.H., D.T.)
| | - Akiko Maehara
- The Cardiovascular Research Foundation, Columbia University, New York, NY (A.M., G.S.M.)
| | - Liang Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China (R.L., L.W., Y.Z., M.H., D.T.)
| | - Zhanqun Gao
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
| | - Yishuo Xu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
| | - Xiaoya Guo
- School of Science, Nanjing University of Posts and Telecommunications, China (X.G.)
| | - Yanwen Zhu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China (R.L., L.W., Y.Z., M.H., D.T.)
| | - Mengde Huang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China (R.L., L.W., Y.Z., M.H., D.T.)
| | - Xiaoguo Zhang
- Department of Cardiology, Zhongda Hospital, Southeast University, China (X.Z., J.Z.)
| | - Jian Zhu
- Department of Cardiology, Zhongda Hospital, Southeast University, China (X.Z., J.Z.)
| | - Bo Yu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
| | - Haibo Jia
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China (C.Z., Z.G., Y.X., B.Y., H.J.)
| | - Gary S. Mintz
- The Cardiovascular Research Foundation, Columbia University, New York, NY (A.M., G.S.M.)
| | - Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China (R.L., L.W., Y.Z., M.H., D.T.)
- Mathematical Sciences Department, Worcester Polytechnic Institute, MA (D.T.)
| |
Collapse
|
5
|
Fandaros M, Kwok C, Wolf Z, Labropoulos N, Yin W. Patient-Specific Numerical Simulations of Coronary Artery Hemodynamics and Biomechanics: A Pathway to Clinical Use. Cardiovasc Eng Technol 2024:10.1007/s13239-024-00731-4. [PMID: 38710896 DOI: 10.1007/s13239-024-00731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Numerical models that simulate the behaviors of the coronary arteries have been greatly improved by the addition of fluid-structure interaction (FSI) methods. Although computationally demanding, FSI models account for the movement of the arterial wall and more adequately describe the biomechanical conditions at and within the arterial wall. This offers greater physiological relevance over Computational Fluid Dynamics (CFD) models, which assume the walls do not move or deform. Numerical simulations of patient-specific cases have been greatly bolstered by the use of imaging modalities such as Computed Tomography Angiography (CTA), Magnetic Resonance Imaging (MRI), Optical Coherence Tomography (OCT), and Intravascular Ultrasound (IVUS) to reconstruct accurate 2D and 3D representations of artery geometries. The goal of this study was to conduct a comprehensive review on CFD and FSI models on coronary arteries, and evaluate their translational potential. METHODS This paper reviewed recent work on patient-specific numerical simulations of coronary arteries that describe the biomechanical conditions associated with atherosclerosis using CFD and FSI models. Imaging modality for geometry collection and clinical applications were also discussed. RESULTS Numerical models using CFD and FSI approaches are commonly used to study biomechanics within the vasculature. At high temporal and spatial resolution (compared to most cardiac imaging modalities), these numerical models can generate large amount of biomechanics data. CONCLUSIONS Physiologically relevant FSI models can more accurately describe atherosclerosis pathogenesis, and help to translate biomechanical assessment to clinical evaluation.
Collapse
Affiliation(s)
- Marina Fandaros
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, 11794, Stony Brook, NY, USA
| | - Chloe Kwok
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, 11794, Stony Brook, NY, USA
| | - Zachary Wolf
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, 11794, Stony Brook, NY, USA
| | - Nicos Labropoulos
- Department of Surgery, Stony Brook Medicine, 11794, Stony Brook, NY, USA
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, 11794, Stony Brook, NY, USA.
| |
Collapse
|
6
|
Gu SZ, Ahmed ME, Huang Y, Hakim D, Maynard C, Cefalo NV, Coskun AU, Costopoulos C, Maehara A, Stone GW, Stone PH, Bennett MR. Comprehensive biomechanical and anatomical atherosclerotic plaque metrics predict major adverse cardiovascular events: A new tool for clinical decision making. Atherosclerosis 2024; 390:117449. [PMID: 38262275 PMCID: PMC10939719 DOI: 10.1016/j.atherosclerosis.2024.117449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND AND AIMS Anatomical imaging alone of coronary atherosclerotic plaques is insufficient to identify risk of future adverse events and guide management of non-culprit lesions. Low endothelial shear stress (ESS) and high plaque structural stress (PSS) are associated with events, but individually their predictive value is insufficient for risk prediction. We determined whether combining multiple complementary, biomechanical and anatomical plaque characteristics improves outcome prediction sufficiently to inform clinical decision-making. METHODS We examined baseline ESS, ESS gradient (ESSG), PSS, and PSS heterogeneity index (HI), and plaque burden in 22 lesions that developed subsequent events and 64 control lesions that remained quiescent from the PROSPECT study. RESULTS 86 fibroatheromas were analysed from 67 patients. Lesions with events showed higher PSS HI (0.32 vs. 0.24, p<0.001), lower local ESS (0.56Pa vs. 0.91Pa, p = 0.007), and higher ESSG (3.82 Pa/mm vs. 1.96 Pa/mm, p = 0.007), while high PSS HI (hazard ratio [HR] 3.9, p = 0.006), high ESSG (HR 3.4, p = 0.007) and plaque burden>70 % (HR 2.6, p = 0.02) were independent outcome predictors in multivariate analysis. Combining low ESS, high ESSG, and high PSS HI gave both high positive predictive value (80 %), which increased further combined with plaque burden>70 %, and negative predictive value (81.6 %). Low ESS, high ESSG, and high PSS HI co-localised spatially within 1 mm in lesions with events, and importantly, this cluster was distant from the minimum lumen area site. CONCLUSIONS Combining complementary biomechanical and anatomical metrics significantly improves risk-stratification of individual coronary lesions. If confirmed from larger prospective studies, our results may inform targeted revascularisation vs. conservative management strategies.
Collapse
Affiliation(s)
- Sophie Z Gu
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Mona E Ahmed
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Molecular Medicine and Surgery, Karolinska Institutet Karolinska University Hospital Solna, 171 76, Stockholm, Sweden
| | - Yuan Huang
- Centre for Mathematical and Statistical Analysis of Multimodal Imaging, University of Cambridge, Cambridge, UK; Department of Radiology, University of Cambridge, Cambridge, UK
| | - Diaa Hakim
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles Maynard
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Nicholas V Cefalo
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ahmet U Coskun
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | | | - Akiko Maehara
- Cardiovascular Research Foundation, New York City, New York, USA
| | - Gregg W Stone
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Peter H Stone
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Martin R Bennett
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Wang Y, Huang H, Weng H, Jia C, Liao B, Long Y, Yu F, Nie Y. Talin mechanotransduction in disease. Int J Biochem Cell Biol 2024; 166:106490. [PMID: 37914021 DOI: 10.1016/j.biocel.2023.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Talin protein (Talin 1/2) is a mechanosensitive cytoskeleton protein. The unique structure of the Talin plays a vital role in transmitting mechanical forces. Talin proteins connect the extracellular matrix to the cytoskeleton by linking to integrins and actin, thereby mediating the conversion of mechanical signals into biochemical signals and influencing disease progression as potential diagnostic indicators, therapeutic targets, and prognostic indicators of various diseases. Most studies in recent years have confirmed that mechanical forces also have a crucial role in the development of disease, and Talin has been found to play a role in several diseases. Still, more studies need to be done on how Talin is involved in mechanical signaling in disease. This review focuses on the mechanical signaling of Talin in disease, aiming to summarize the mechanisms by which Talin plays a role in disease and to provide references for further studies.
Collapse
Affiliation(s)
- Yingzi Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Haozhong Huang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Huimin Weng
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Chunsen Jia
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Fengxu Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China
| | - Yongmei Nie
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China.
| |
Collapse
|
8
|
Liu Y, Li S, Tian X, Leung TW, Liu L, Liebeskind DS, Leng X. Cerebral haemodynamics in symptomatic intracranial atherosclerotic disease: a narrative review of the assessment methods and clinical implications. Stroke Vasc Neurol 2023; 8:521-530. [PMID: 37094991 PMCID: PMC10800270 DOI: 10.1136/svn-2023-002333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
Intracranial atherosclerotic disease (ICAD) is a common cause of ischaemic stroke and transient ischaemic attack (TIA) with a high recurrence rate. It is often referred to as intracranial atherosclerotic stenosis (ICAS), when the plaque has caused significant narrowing of the vessel lumen. The lesion is usually considered 'symptomatic ICAD/ICAS' (sICAD/sICAS) when it has caused an ischaemic stroke or TIA. The severity of luminal stenosis has long been established as a prognostic factor for stroke relapse in sICAS. Yet, accumulating studies have also reported the important roles of plaque vulnerability, cerebral haemodynamics, collateral circulation, cerebral autoregulation and other factors in altering the stroke risks across patients with sICAS. In this review article, we focus on cerebral haemodynamics in sICAS. We reviewed imaging modalities/methods in assessing cerebral haemodynamics, the haemodynamic metrics provided by these methods and application of these methods in research and clinical practice. More importantly, we reviewed the significance of these haemodynamic features in governing the risk of stroke recurrence in sICAS. We also discussed other clinical implications of these haemodynamic features in sICAS, such as the associations with collateral recruitment and evolution of the lesion under medical treatment, and indications for more individualised blood pressure management for secondary stroke prevention. We then put forward some knowledge gaps and future directions on these topics.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Shuang Li
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Xuan Tian
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Thomas W Leung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - David S Liebeskind
- Department of Neurology, Neurovascular Imaging Research Core, University of California Los Angeles, Los Angeles, California, USA
| | - Xinyi Leng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
9
|
Zuin M, Chatzizisis YS, Beier S, Shen C, Colombo A, Rigatelli G. Role of secondary flows in coronary artery bifurcations before and after stenting: What is known so far? CARDIOVASCULAR REVASCULARIZATION MEDICINE 2023; 55:83-87. [PMID: 37385893 DOI: 10.1016/j.carrev.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Coronary arteries are uniformly exposed to traditional cardiovascular risk factors. However, atherosclerotic lesions occur in preferential regions of the coronary tree, especially in areas with disturbed local blood flow, such as coronary bifurcations. Over the latest years, secondary flows have been linked to the inception and progression of atherosclerosis. Most of these novel findings have been obtained in the field of computational fluid dynamic (CFD) analysis and biomechanics but remain poorly understood by cardiovascular interventionalists, despite the important impact that they may have in clinical practice. We aimed to summarize the current available data regarding the pathophysiological role of secondary flows in coronary artery bifurcation, providing an interpretation of these findings from an interventional perspective.
Collapse
Affiliation(s)
- Marco Zuin
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| | | | - Susann Beier
- School of Mechanical and Manufacturing Engineering, UNSW, Sydney, NSW 2053, Australia
| | - Chi Shen
- School of Mechanical and Manufacturing Engineering, UNSW, Sydney, NSW 2053, Australia
| | - Andrea Colombo
- School of Mechanical and Manufacturing Engineering, UNSW, Sydney, NSW 2053, Australia
| | - Gianluca Rigatelli
- Interventional Cardiology, Department of Cardiology, Aulss6 Euganea, Ospedali Riuniti Padova Sud, Monselice, Italy
| |
Collapse
|
10
|
Wakako A, Sadato A, Oeda M, Higashiguchi S, Hayakawa M, Oshima M, Hirose Y. Development of a Model for Plaque Induction in Rat Carotid Arteries. Asian J Neurosurg 2023; 18:499-507. [PMID: 38152536 PMCID: PMC10749859 DOI: 10.1055/s-0043-1763522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Objective Plaque induction through intimal injury using a balloon catheter in small animals and by artificial ligation of the carotid artery in large animals have been reported. However, these reports have not yet succeeded in inducing stable plaques nor creating a high degree of intimal thickening to be used as animal models. We have previously developed a plaque induction model in rats but have failed to obtain a plaque incidence frequency that can be used as a model. Thus, in the current study, we aimed to create a versatile disease model to examine the pharmacokinetics of drug administration, determine the efficacy of treatment, and examine the process of intimal thickening. We also attempted to create an improved model with shorter, more frequent, and more severe intimal thickening. Materials and Methods The common carotid artery of male Wistar rats was surgically exposed and completely ligated with a wire and 6-0 nylon thread. Then, the wire was removed to create a partial ligation. To create a high frequency and high degree of intimal thickening, 72 rats were divided into two groups: a single lesion group with a 0.25-mm wire and a single ligature point, and a tandem lesion group with a 0.3-mm wire and two ligature points. Each group was further divided into normal diet and high cholesterol diet groups. The presence and frequency of intimal thickening were examined for each group after 4, 8, and 16 weeks of growth. Results In the single lesion group, intimal thickening was observed in 42% of the 4-week group and 75% of the 8-week group. In the tandem lesion group, intimal thickening was observed in 75% of the 4-week group and 50% of the 8-week group. In addition, 50% of the individuals reared for 16 weeks developed intimal thickening. Conclusion We successfully induced intimal thickening in the carotid arteries of rats with high frequency in the single lesion and tandem lesion groups. The results also showed that the tandem lesion group tended to induce intimal thickening earlier than the single lesion group.
Collapse
Affiliation(s)
- Akira Wakako
- Department of Neurosurgery, Fujita Medical University Okazaki Medical Center, Okazaki, Aichi, Japan
| | - Akiyo Sadato
- Department of Neurosurgery, Fujita Medical University, Toyoake, Aichi, Japan
| | - Motoki Oeda
- Department of Neurosurgery, Toyota Memorial Hospital, Toyota, Aichi, Japan
| | - Saeko Higashiguchi
- Department of Neurosurgery, Fujita Medical University Okazaki Medical Center, Okazaki, Aichi, Japan
| | - Motoharu Hayakawa
- Department of Neurosurgery, Fujita Medical University Okazaki Medical Center, Okazaki, Aichi, Japan
| | - Marie Oshima
- Institute of Industrial Science/Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo, Japan
| | - Yuichi Hirose
- Department of Neurosurgery, Fujita Medical University, Toyoake, Aichi, Japan
| |
Collapse
|
11
|
Tomizawa N, Fujimoto S, Mita T, Takahashi D, Nozaki Y, Fan R, Kudo A, Kawaguchi Y, Takamura K, Hiki M, Kurita M, Kumamaru KK, Watada H, Minamino T, Aoki S. Coronary Artery Vorticity to Predict Functional Plaque Progression in Participants with Type 2 Diabetes Mellitus. Radiol Cardiothorac Imaging 2023; 5:e230016. [PMID: 37693191 PMCID: PMC10483244 DOI: 10.1148/ryct.230016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 09/12/2023]
Abstract
Purpose To investigate whether vorticity could predict functional plaque progression better than high-risk plaque (HRP) and lesion length (LL) in individuals with type 2 diabetes mellitus. Materials and Methods This single-center prospective study included 61 participants (mean age, 61 years ± 9 [SD]; 43 male participants) who underwent serial coronary CT angiography at 2 years, with 20%-70% stenosis at initial CT between October 2015 and March 2020. The number of the following HRP characteristics was recorded: low attenuation, positive remodeling, spotty calcification, and napkin-ring sign. Vorticity was calculated using a mesh-free simulation. A decrease in CT fractional flow reserve larger than 0.05 indicated functional progression. Models using HRP and LL and vorticity were compared using receiver operating characteristic curve analysis. Results Of the 94 vessels evaluated, 25 vessels (27%) showed functional progression. Vessels with functional progression showed higher vorticity at distal stenosis (984 sec-1; IQR: 730-1253 vs 443 sec-1; IQR: 295-602; P < .001) than vessels without progression. The area under the receiver operating characteristic curve of vorticity (0.91; 95% CI: 0.84, 0.97) was higher than that of HRP and LL (0.69; 95% CI: 0.56, 0.82; P < .01). Diagnostic accuracy of vorticity (85%; 80 of 94 vessels; 95% CI: 76, 92) was higher than that of HRP and LL (72%; 68 of 94 vessels; 95% CI: 62, 81; P = .004). Conclusion In participants with type 2 diabetes mellitus, vorticity at distal stenosis was a better predictor of functional plaque progression than HRP and LL.Keywords: Coronary Artery, Vorticity, Functional Plaque Progression, Type 2 Diabetes, Vasculature, CT Angiography, Computational Fluid Dynamics, Fractional Flow Reserve Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
- Nobuo Tomizawa
- From the Department of Radiology (N.T., R.F., K.K.K., S.A.),
Department of Cardiovascular Biology and Medicine (S.F., D.T., Y.N., A.K., Y.K.,
K.T., M.H., T. Minamino), and Department of Diabetes, Endocrinology, and
Metabolism (T. Mita, M.K., H.W.), Juntendo University Graduate School of
Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shinichiro Fujimoto
- From the Department of Radiology (N.T., R.F., K.K.K., S.A.),
Department of Cardiovascular Biology and Medicine (S.F., D.T., Y.N., A.K., Y.K.,
K.T., M.H., T. Minamino), and Department of Diabetes, Endocrinology, and
Metabolism (T. Mita, M.K., H.W.), Juntendo University Graduate School of
Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoya Mita
- From the Department of Radiology (N.T., R.F., K.K.K., S.A.),
Department of Cardiovascular Biology and Medicine (S.F., D.T., Y.N., A.K., Y.K.,
K.T., M.H., T. Minamino), and Department of Diabetes, Endocrinology, and
Metabolism (T. Mita, M.K., H.W.), Juntendo University Graduate School of
Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Daigo Takahashi
- From the Department of Radiology (N.T., R.F., K.K.K., S.A.),
Department of Cardiovascular Biology and Medicine (S.F., D.T., Y.N., A.K., Y.K.,
K.T., M.H., T. Minamino), and Department of Diabetes, Endocrinology, and
Metabolism (T. Mita, M.K., H.W.), Juntendo University Graduate School of
Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yui Nozaki
- From the Department of Radiology (N.T., R.F., K.K.K., S.A.),
Department of Cardiovascular Biology and Medicine (S.F., D.T., Y.N., A.K., Y.K.,
K.T., M.H., T. Minamino), and Department of Diabetes, Endocrinology, and
Metabolism (T. Mita, M.K., H.W.), Juntendo University Graduate School of
Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ruiheng Fan
- From the Department of Radiology (N.T., R.F., K.K.K., S.A.),
Department of Cardiovascular Biology and Medicine (S.F., D.T., Y.N., A.K., Y.K.,
K.T., M.H., T. Minamino), and Department of Diabetes, Endocrinology, and
Metabolism (T. Mita, M.K., H.W.), Juntendo University Graduate School of
Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ayako Kudo
- From the Department of Radiology (N.T., R.F., K.K.K., S.A.),
Department of Cardiovascular Biology and Medicine (S.F., D.T., Y.N., A.K., Y.K.,
K.T., M.H., T. Minamino), and Department of Diabetes, Endocrinology, and
Metabolism (T. Mita, M.K., H.W.), Juntendo University Graduate School of
Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuko Kawaguchi
- From the Department of Radiology (N.T., R.F., K.K.K., S.A.),
Department of Cardiovascular Biology and Medicine (S.F., D.T., Y.N., A.K., Y.K.,
K.T., M.H., T. Minamino), and Department of Diabetes, Endocrinology, and
Metabolism (T. Mita, M.K., H.W.), Juntendo University Graduate School of
Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kazuhisa Takamura
- From the Department of Radiology (N.T., R.F., K.K.K., S.A.),
Department of Cardiovascular Biology and Medicine (S.F., D.T., Y.N., A.K., Y.K.,
K.T., M.H., T. Minamino), and Department of Diabetes, Endocrinology, and
Metabolism (T. Mita, M.K., H.W.), Juntendo University Graduate School of
Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Makoto Hiki
- From the Department of Radiology (N.T., R.F., K.K.K., S.A.),
Department of Cardiovascular Biology and Medicine (S.F., D.T., Y.N., A.K., Y.K.,
K.T., M.H., T. Minamino), and Department of Diabetes, Endocrinology, and
Metabolism (T. Mita, M.K., H.W.), Juntendo University Graduate School of
Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mika Kurita
- From the Department of Radiology (N.T., R.F., K.K.K., S.A.),
Department of Cardiovascular Biology and Medicine (S.F., D.T., Y.N., A.K., Y.K.,
K.T., M.H., T. Minamino), and Department of Diabetes, Endocrinology, and
Metabolism (T. Mita, M.K., H.W.), Juntendo University Graduate School of
Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kanako K. Kumamaru
- From the Department of Radiology (N.T., R.F., K.K.K., S.A.),
Department of Cardiovascular Biology and Medicine (S.F., D.T., Y.N., A.K., Y.K.,
K.T., M.H., T. Minamino), and Department of Diabetes, Endocrinology, and
Metabolism (T. Mita, M.K., H.W.), Juntendo University Graduate School of
Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hirotaka Watada
- From the Department of Radiology (N.T., R.F., K.K.K., S.A.),
Department of Cardiovascular Biology and Medicine (S.F., D.T., Y.N., A.K., Y.K.,
K.T., M.H., T. Minamino), and Department of Diabetes, Endocrinology, and
Metabolism (T. Mita, M.K., H.W.), Juntendo University Graduate School of
Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tohru Minamino
- From the Department of Radiology (N.T., R.F., K.K.K., S.A.),
Department of Cardiovascular Biology and Medicine (S.F., D.T., Y.N., A.K., Y.K.,
K.T., M.H., T. Minamino), and Department of Diabetes, Endocrinology, and
Metabolism (T. Mita, M.K., H.W.), Juntendo University Graduate School of
Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shigeki Aoki
- From the Department of Radiology (N.T., R.F., K.K.K., S.A.),
Department of Cardiovascular Biology and Medicine (S.F., D.T., Y.N., A.K., Y.K.,
K.T., M.H., T. Minamino), and Department of Diabetes, Endocrinology, and
Metabolism (T. Mita, M.K., H.W.), Juntendo University Graduate School of
Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
12
|
Kageyama S, Tufaro V, Torii R, Karamasis GV, Rakhit RD, Poon EKW, Aben JP, Baumbach A, Serruys PW, Onuma Y, Bourantas CV. Agreement of wall shear stress distribution between two core laboratories using three-dimensional quantitative coronary angiography. Int J Cardiovasc Imaging 2023; 39:1581-1592. [PMID: 37243956 PMCID: PMC10427706 DOI: 10.1007/s10554-023-02872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
Wall shear stress (WSS) estimated in models reconstructed from intravascular imaging and 3-dimensional-quantitative coronary angiography (3D-QCA) data provides important prognostic information and enables identification of high-risk lesions. However, these analyses are time-consuming and require expertise, limiting WSS adoption in clinical practice. Recently, a novel software has been developed for real-time computation of time-averaged WSS (TAWSS) and multidirectional WSS distribution. This study aims to examine its inter-corelab reproducibility. Sixty lesions (20 coronary bifurcations) with a borderline negative fractional flow reserve were processed using the CAAS Workstation WSS prototype to estimate WSS and multi-directional WSS values. Analysis was performed by two corelabs and their estimations for the WSS in 3 mm segments across each reconstructed vessel was extracted and compared. In total 700 segments (256 located in bifurcated vessels) were included in the analysis. A high intra-class correlation was noted for all the 3D-QCA and TAWSS metrics between the estimations of the two corelabs irrespective of the presence (range: 0.90-0.92) or absence (range: 0.89-0.90) of a coronary bifurcation, while the ICC was good-moderate for the multidirectional WSS (range: 0.72-0.86). Lesion level analysis demonstrated a high agreement of the two corelabls for detecting lesions exposed to an unfavourable haemodynamic environment (WSS > 8.24 Pa, κ = 0.77) that had a high-risk morphology (area stenosis > 61.3%, κ = 0.71) and were prone to progress and cause events. The CAAS Workstation WSS enables reproducible 3D-QCA reconstruction and computation of WSS metrics. Further research is needed to explore its value in detecting high-risk lesions.
Collapse
Affiliation(s)
- Shigetaka Kageyama
- Department of Cardiology, University of Galway, College of Medicine, Nursing and Health Sciences, Galway, Ireland
| | - Vincenzo Tufaro
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | | | - Roby D Rakhit
- Royal Free Hospital, London, UK
- Department of Cartiology, Galway University Hospitals, Galway, Ireland
| | - Eric K W Poon
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, Australia
| | | | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Patrick W Serruys
- Department of Cardiology, University of Galway, College of Medicine, Nursing and Health Sciences, Galway, Ireland
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Yoshinobu Onuma
- Department of Cardiology, University of Galway, College of Medicine, Nursing and Health Sciences, Galway, Ireland
- Department of Cartiology, Galway University Hospitals, Galway, Ireland
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK.
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK.
- Institute of Cardiovascular Sciences, University College London, London, UK.
| |
Collapse
|
13
|
Schake MA, McCue IS, Curtis ET, Ripperda TJ, Harvey S, Hackfort BT, Fitzwater A, Chatzizisis YS, Kievit FM, Pedrigi RM. Restoration of normal blood flow in atherosclerotic arteries promotes plaque stabilization. iScience 2023; 26:106760. [PMID: 37235059 PMCID: PMC10206490 DOI: 10.1016/j.isci.2023.106760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Blood flow is a key regulator of atherosclerosis. Disturbed blood flow promotes atherosclerotic plaque development, whereas normal blood flow protects against plaque development. We hypothesized that normal blood flow is also therapeutic, if it were able to be restored within atherosclerotic arteries. Apolipoprotein E-deficient (ApoE-/-) mice were initially instrumented with a blood flow-modifying cuff to induce plaque development and then five weeks later the cuff was removed to allow restoration of normal blood flow. Plaques in decuffed mice exhibited compositional changes that indicated increased stability compared to plaques in mice with the cuff maintained. The therapeutic benefit of decuffing was comparable to atorvastatin and the combination had an additive effect. In addition, decuffing allowed restoration of lumen area, blood velocity, and wall shear stress to near baseline values, indicating restoration of normal blood flow. Our findings demonstrate that the mechanical effects of normal blood flow on atherosclerotic plaques promote stabilization.
Collapse
Affiliation(s)
- Morgan A. Schake
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ian S. McCue
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Evan T. Curtis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Thomas J. Ripperda
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Samuel Harvey
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Bryan T. Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Anna Fitzwater
- Institutional Animal Care Program, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Yiannis S. Chatzizisis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Forrest M. Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ryan M. Pedrigi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
14
|
Zhou M, Yu Y, Chen R, Liu X, Hu Y, Ma Z, Gao L, Jian W, Wang L. Wall shear stress and its role in atherosclerosis. Front Cardiovasc Med 2023; 10:1083547. [PMID: 37077735 PMCID: PMC10106633 DOI: 10.3389/fcvm.2023.1083547] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Atherosclerosis (AS) is the major form of cardiovascular disease and the leading cause of morbidity and mortality in countries around the world. Atherosclerosis combines the interactions of systemic risk factors, haemodynamic factors, and biological factors, in which biomechanical and biochemical cues strongly regulate the process of atherosclerosis. The development of atherosclerosis is directly related to hemodynamic disorders and is the most important parameter in the biomechanics of atherosclerosis. The complex blood flow in arteries forms rich WSS vectorial features, including the newly proposed WSS topological skeleton to identify and classify the WSS fixed points and manifolds in complex vascular geometries. The onset of plaque usually occurs in the low WSS area, and the plaque development alters the local WSS topography. low WSS promotes atherosclerosis, while high WSS prevents atherosclerosis. Upon further progression of plaques, high WSS is associated with the formation of vulnerable plaque phenotype. Different types of shear stress can lead to focal differences in plaque composition and to spatial variations in the susceptibility to plaque rupture, atherosclerosis progression and thrombus formation. WSS can potentially gain insight into the initial lesions of AS and the vulnerable phenotype that gradually develops over time. The characteristics of WSS are studied through computational fluid dynamics (CFD) modeling. With the continuous improvement of computer performance-cost ratio, WSS as one of the effective parameters for early diagnosis of atherosclerosis has become a reality and will be worth actively promoting in clinical practice. The research on the pathogenesis of atherosclerosis based on WSS is gradually an academic consensus. This article will comprehensively review the systemic risk factors, hemodynamics and biological factors involved in the formation of atherosclerosis, and combine the application of CFD in hemodynamics, focusing on the mechanism of WSS and the complex interactions between WSS and plaque biological factors. It is expected to lay a foundation for revealing the pathophysiological mechanisms related to abnormal WSS in the progression and transformation of human atherosclerotic plaques.
Collapse
Affiliation(s)
- Manli Zhou
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yunfeng Yu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ruiyi Chen
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xingci Liu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yilei Hu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhiyan Ma
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Lingwei Gao
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Weixiong Jian
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- National Key Discipline of Traditional Chinese Medicine Diagnostics, Hunan Provincial Key Laboratory, Hunan University of Chinese Medicine, Changsha, China
- Correspondence: Weixiong Jian Liping Wang
| | - Liping Wang
- College of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua, China
- Correspondence: Weixiong Jian Liping Wang
| |
Collapse
|
15
|
Sahni J, Arshad M, Schake MA, Brooks JR, Yang R, Weinberg PD, Pedrigi RM. Characterizing nuclear morphology and expression of eNOS in vascular endothelial cells subjected to a continuous range of wall shear stress magnitudes and directionality. J Mech Behav Biomed Mater 2023; 137:105545. [PMID: 36368188 PMCID: PMC10371053 DOI: 10.1016/j.jmbbm.2022.105545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Complex patterns of hemodynamic wall shear stress occur in regions of arterial branching and curvature. Areas within these regions can be highly susceptible to atherosclerosis. Although many studies have characterized the response of vascular endothelial cells to shear stress in a categorical manner, our study herein addresses the need of characterizing endothelial behaviors over a continuous range of shear stress conditions that reflect the extensive variations seen in the vasculature. We evaluated the response of human umbilical vein endothelial cell monolayers to orbital flow at 120, 250, and 350 revolutions per minute (RPM) for 24 and 72 h. The orbital shaker model uniquely provides a continuous range of shear stress conditions from low and multidirectional at the center of each well of a culture plate to high and unidirectional at the periphery. We found distinct patterns of endothelial nuclear area, nuclear major and minor diameters, nuclear aspect ratio, and expression of endothelial nitric oxide synthase over this range of shear conditions and relationships were fit with linear and, where appropriate, power functions. Nuclear area was particularly sensitive with increases in the low and multidirectional WSS region that incrementally decreased as WSS became higher in magnitude and more unidirectional over the radius of the cell layers. The patterns of all endothelial behaviors exhibited high correlations (positive and negative) with metrics of shear stress magnitude and directionality that have been shown to strongly associate with atherosclerosis. Our findings demonstrate the exquisite sensitivity of these endothelial behaviors to incremental changes in shear stress magnitude and directionality, and provide critical quantitation of these relationships for predicting the susceptibility of an arterial segment to diseases such as atherosclerosis, particularly within complex flow environments in the vasculature such as around bifurcations.
Collapse
Affiliation(s)
- Jaideep Sahni
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, USA
| | - Mehwish Arshad
- Department of Bioengineering, Imperial College London, UK
| | - Morgan A Schake
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, USA
| | - Justin R Brooks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, USA
| | | | - Ryan M Pedrigi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, USA.
| |
Collapse
|
16
|
Schultz J, van den Hoogen IJ, Kuneman JH, de Graaf MA, Kamperidis V, Broersen A, Jukema JW, Sakellarios A, Nikopoulos S, Tsarapatsani K, Naka K, Michalis L, Fotiadis DI, Maaniitty T, Saraste A, Bax JJ, Knuuti J. Coronary computed tomography angiography-based endothelial wall shear stress in normal coronary arteries. Int J Cardiovasc Imaging 2023; 39:441-450. [PMID: 36255544 PMCID: PMC9870961 DOI: 10.1007/s10554-022-02739-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/27/2022] [Indexed: 01/27/2023]
Abstract
Endothelial wall shear stress (ESS) is a biomechanical force which plays a role in the formation and evolution of atherosclerotic lesions. The purpose of this study is to evaluate coronary computed tomography angiography (CCTA)-based ESS in coronary arteries without atherosclerosis, and to assess factors affecting ESS values. CCTA images from patients with suspected coronary artery disease were analyzed to identify coronary arteries without atherosclerosis. Minimal and maximal ESS values were calculated for 3-mm segments. Factors potentially affecting ESS values were examined, including sex, lumen diameter and distance from the ostium. Segments were categorized according to lumen diameter tertiles into small (< 2.6 mm), intermediate (2.6-3.2 mm) or large (≥ 3.2 mm) segments. A total of 349 normal vessels from 168 patients (mean age 59 ± 9 years, 39% men) were included. ESS was highest in the left anterior descending artery compared to the left circumflex artery and right coronary artery (minimal ESS 2.3 Pa vs. 1.9 Pa vs. 1.6 Pa, p < 0.001 and maximal ESS 3.7 Pa vs. 3.0 Pa vs. 2.5 Pa, p < 0.001). Men had lower ESS values than women, also after adjusting for lumen diameter (p < 0.001). ESS values were highest in small segments compared to intermediate or large segments (minimal ESS 3.8 Pa vs. 1.7 Pa vs. 1.2 Pa, p < 0.001 and maximal ESS 6.0 Pa vs. 2.6 Pa vs. 2.0 Pa, p < 0.001). A weak to strong correlation was found between ESS and distance from the ostium (ρ = 0.22-0.62, p < 0.001). CCTA-based ESS values increase rapidly and become widely scattered with decreasing lumen diameter. This needs to be taken into account when assessing the added value of ESS beyond lumen diameter in highly stenotic lesions.
Collapse
Affiliation(s)
- Jussi Schultz
- grid.410552.70000 0004 0628 215XTurku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Inge J. van den Hoogen
- grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jurrien H. Kuneman
- grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel A. de Graaf
- grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vasileios Kamperidis
- Department of Cardiology, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexander Broersen
- grid.10419.3d0000000089452978Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands
| | - J. Wouter Jukema
- grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands ,grid.411737.7Netherlands Heart Institute, Utrecht, The Netherlands
| | - Antonis Sakellarios
- Department of Biomedical Research, FORTH-IMBB, Ioannina, Greece ,grid.9594.10000 0001 2108 7481Department of Materials Science and Engineering, Unit of Medical Technology and Intelligent Information Systems, University of Ioannina, Ioannina, Greece
| | - Sotirios Nikopoulos
- grid.9594.10000 0001 2108 7481Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Konstantina Tsarapatsani
- Department of Biomedical Research, FORTH-IMBB, Ioannina, Greece ,grid.9594.10000 0001 2108 7481Department of Materials Science and Engineering, Unit of Medical Technology and Intelligent Information Systems, University of Ioannina, Ioannina, Greece
| | - Katerina Naka
- grid.9594.10000 0001 2108 7481Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Lampros Michalis
- grid.9594.10000 0001 2108 7481Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Dimitrios I. Fotiadis
- Department of Biomedical Research, FORTH-IMBB, Ioannina, Greece ,grid.9594.10000 0001 2108 7481Department of Materials Science and Engineering, Unit of Medical Technology and Intelligent Information Systems, University of Ioannina, Ioannina, Greece
| | - Teemu Maaniitty
- grid.410552.70000 0004 0628 215XTurku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Antti Saraste
- grid.410552.70000 0004 0628 215XTurku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland ,grid.410552.70000 0004 0628 215XHeart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Jeroen J. Bax
- grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands ,grid.410552.70000 0004 0628 215XHeart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Juhani Knuuti
- grid.410552.70000 0004 0628 215XTurku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland ,grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Renaldo AC, Lane MR, Shapiro SR, Mobin F, Jordan JE, Williams TK, Neff LP, Gayzik FS, Rahbar E. Development of a computational fluid dynamic model to investigate the hemodynamic impact of REBOA. Front Physiol 2022; 13:1005073. [PMID: 36311232 PMCID: PMC9606623 DOI: 10.3389/fphys.2022.1005073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a lifesaving intervention for major truncal hemorrhage. Balloon-tipped arterial catheters are inserted via the femoral artery to create a temporary occlusion of the aorta, which minimizes the rate of internal bleeding until definitive surgery can be conducted. There is growing concern over the resultant hypoperfusion and potential damage to tissues and organs downstream of REBOA. To better understand the acute hemodynamic changes imposed by REBOA, we developed a three-dimensional computational fluid dynamic (CFD) model under normal, hemorrhage, and aortic occlusion conditions. The goal was to characterize the acute hemodynamic changes and identify regions within the aortic vascular tree susceptible to abnormal flow and shear stress. Methods: Hemodynamic data from established porcine hemorrhage models were used to build a CFD model. Swine underwent 20% controlled hemorrhage and were randomized to receive a full or partial aortic occlusion. Using CT scans, we generated a pig-specific aortic geometry and imposed physiologically relevant inlet flow and outlet pressure boundary conditions to match in vivo data. By assuming non-Newtonian fluid properties, pressure, velocity, and shear stresses were quantified over a cardiac cycle. Results: We observed a significant rise in blood pressure (∼147 mmHg) proximal to REBOA, which resulted in increased flow and shear stress within the ascending aorta. Specifically, we observed high levels of shear stress within the subclavian arteries (22.75 Pa). Alternatively, at the site of full REBOA, wall shear stress was low (0.04 ± 9.07E-4 Pa), but flow oscillations were high (oscillatory shear index of 0.31). Comparatively, partial REBOA elevated shear levels to 84.14 ± 19.50 Pa and reduced flow oscillations. Our numerical simulations were congruent within 5% of averaged porcine experimental data over a cardiac cycle. Conclusion: This CFD model is the first to our knowledge to quantify the acute hemodynamic changes imposed by REBOA. We identified areas of low shear stress near the site of occlusion and high shear stress in the subclavian arteries. Future studies are needed to determine the optimal design parameters of endovascular hemorrhage control devices that can minimize flow perturbations and areas of high shear.
Collapse
Affiliation(s)
- Antonio C. Renaldo
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston Salem, NC, United States
- Virginia Tech—Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, United States
| | - Magan R. Lane
- Department of Vascular and Endovascular Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Sophie R. Shapiro
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Fahim Mobin
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston Salem, NC, United States
- Virginia Tech—Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, United States
| | - James E. Jordan
- Department of Cardiothoracic Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Timothy K. Williams
- Department of Vascular and Endovascular Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Lucas P. Neff
- Department of General Surgery, Section of Pediatric Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - F. Scott Gayzik
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston Salem, NC, United States
- Virginia Tech—Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, United States
- Center for Injury Biomechanics, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston Salem, NC, United States
- Virginia Tech—Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, United States
- Center for Injury Biomechanics, Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
18
|
Michel JB, Lagrange J, Regnault V, Lacolley P. Conductance Artery Wall Layers and Their Respective Roles in the Clearance Functions. Arterioscler Thromb Vasc Biol 2022; 42:e253-e272. [PMID: 35924557 DOI: 10.1161/atvbaha.122.317759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolutionary organization of the arterial wall into layers occurred concomitantly with the emergence of a highly muscularized, pressurized arterial system that facilitates outward hydraulic conductance and mass transport of soluble substances across the arterial wall. Although colliding circulating cells disperse potential energy within the arterial wall, the different layers counteract this effect: (1) the endothelium ensures a partial barrier function; (2) the media comprises smooth muscle cells capable of endocytosis/phagocytosis; (3) the outer adventitia and perivascular adipocytic tissue are the final receptacles of convected substances. While the endothelium forms a physical and a biochemical barrier, the medial layer is avascular, relying on the specific permeability properties of the endothelium for metabolic support. Different components of the media interact with convected molecules: medial smooth muscle cells take up numerous molecules via scavenger receptors and are capable of phagocytosis of macro/micro particles. The outer layers-the highly microvascularized innervated adventitia and perivascular adipose tissue-are also involved in the clearance functions of the media: the adventitia is the seat of immune response development, inward angiogenesis, macromolecular lymphatic drainage, and neuronal stimulation. Consequently, the clearance functions of the arterial wall are physiologically essential, but also may favor the development of arterial wall pathologies. This review describes how the walls of large conductance arteries have acquired physiological clearance functions, how this is determined by the attributes of the endothelial barrier, governed by endocytic and phagocytic capacities of smooth muscle cells, impacting adventitial functions, and the role of these clearance functions in arterial wall diseases.
Collapse
|
19
|
Decoding the Mechanism of Shixiao Powder in Treating Coronary Heart Disease Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3756668. [PMID: 35845584 PMCID: PMC9279019 DOI: 10.1155/2022/3756668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Shixiao powder comes from the Formularies of the Bureau of People's Welfare Pharmacies in the Song Dynasty and consists of two herbs, Puhuang (PH) and Wulingzhi (WLZ). PH-WLZ is a commonly used drug pair for the treatment of coronary heart disease (CHD), and its clinical effect is remarkable. However, our understanding of the mechanism of treatment of CHD is still unclear. In this study, the method of network pharmacology was used to explore the mechanism of PH-WLZ in the treatment of CHD. A total of 56 active ingredients were identified from PH-WLZ, of which 93 targets of 41 active ingredients overlapped with those of CHD. By performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we obtained the main pathways associated with CHD and those associated with the mechanism of PH-WLZ in the treatment of CHD. By constructing the protein-protein interaction (PPI) network of common targets, 10 hub genes were identified. Based on the number of hub genes contained in the enrichment analysis, we obtained the key pathways of PH-WLZ in the treatment of CHD. The key KEGG pathway in the treatment of CHD by PH-WLZ is mainly enriched in atherosclerosis, inflammation, immunity, oxidative stress, and infection-related pathways. Moreover, the results of molecular docking showed that the active ingredients of PH-WLZ had a good affinity with the hub genes. The results indicate that the mechanism of PH-WLZ in the treatment of CHD may be related to regulation of lipid metabolism, regulation of immune and inflammatory responses, regulation of downstream genes of fluid shear stress, antiaging and oxidative stress, and virus inhibition.
Collapse
|
20
|
Ong CW, Kumar GP, Zuo K, Koh LB, Charles CJ, Ho P, Leo HL, Cui F. A novel coating method to reduce membrane infolding through pre-crimping of covered stents – Computationaland experimental evaluation. Comput Biol Med 2022; 145:105524. [DOI: 10.1016/j.compbiomed.2022.105524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
|
21
|
Keller SB, Bumpus JM, Gatenby JC, Yang E, Kassim AA, Dampier C, Gore JC, Buck AKW. Characterizing Intracranial Hemodynamics in Sickle Cell Anemia: Impact of Patient-Specific Viscosity. Cardiovasc Eng Technol 2022; 13:104-119. [PMID: 34286479 PMCID: PMC9030946 DOI: 10.1007/s13239-021-00559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 06/18/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Pediatric and adult patients with sickle cell anemia (SCA) are at increased risk of stroke and cerebrovascular accident. In the general adult population, there is a relationship between arterial hemodynamics and pathology; however, this relationship in SCA patients remains to be elucidated. The aim of this work was to characterize circle of Willis hemodynamics in patients with SCA and quantify the impact of viscosity choice on pathophysiologically-relevant hemodynamics measures. METHODS Based on measured vascular geometries, time-varying flow rates, and blood parameters, detailed patient-specific simulations of the circle of Willis were conducted for SCA patients (n = 6). Simulations quantified the impact of patient-specific and standard blood viscosities on wall shear stress (WSS). RESULTS These results demonstrated that use of a standard blood viscosity introduces large errors into the estimation of pathophysiologically-relevant hemodynamic parameters. Standard viscosity models overpredicted peak WSS by 55% and 49% for steady and pulsatile flow, respectively. Moreover, these results demonstrated non-uniform, spatial patterns of positive and negative WSS errors related to viscosity, and standard viscosity simulations overpredicted the time-averaged WSS by 32% (standard deviation = 7.1%). Finally, differences in shear rate demonstrated that the viscosity choice alters the simulated near-wall flow field, impacting hemodynamics measures. CONCLUSIONS This work presents simulations of circle of Willis arterial flow in SCA patients and demonstrates the importance and feasibility of using a patient-specific viscosity in these simulations. Accurately characterizing cerebrovascular hemodynamics in SCA populations has potential for elucidating the pathophysiology of large-vessel occlusion, aneurysms, and tissue damage in these patients.
Collapse
Affiliation(s)
- Sara B. Keller
- Department of Bioengineering, University of Washington; Seattle, WA, USA
| | - Jacob M. Bumpus
- Department of Biomedical Engineering, Vanderbilt University; Nashville, TN, USA; currently at Northgate Technologies, Inc.; Elgin, IL, USA
| | | | - Elizabeth Yang
- Center for Cancer and Blood Disorders, Pediatric Specialists of Virginia; Fairfax, VA, USA
| | - Adetola A. Kassim
- Department of Medicine, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Carlton Dampier
- Department of Pediatrics, Emory University and Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center; Nashville, TN, USA,Department of Biomedical Engineering, Vanderbilt University; Nashville, TN, USA,Department of Physics and Astronomy, Vanderbilt University; Nashville, TN, USA
| | - Amanda K. W. Buck
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center; Nashville, TN, USA,Department of Biomedical Engineering, Vanderbilt University; Nashville, TN, USA,Corresponding author: Amanda Kathleen Wake Buck, , Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310
| |
Collapse
|
22
|
Pinheiro-de-Sousa I, Fonseca-Alaniz MH, Teixeira SK, Rodrigues MV, Krieger JE. Uncovering emergent phenotypes in endothelial cells by clustering of surrogates of cardiovascular risk factors. Sci Rep 2022; 12:1372. [PMID: 35079076 PMCID: PMC8789842 DOI: 10.1038/s41598-022-05404-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction (ED) is a hallmark of atherosclerosis and is influenced by well-defined risk factors, including hypoxia, dyslipidemia, inflammation, and oscillatory flow. However, the individual and combined contributions to the molecular underpinnings of ED remain elusive. We used global gene expression in human coronary artery endothelial cells to identify gene pathways and cellular processes in response to chemical hypoxia, oxidized lipids, IL-1β induced inflammation, oscillatory flow, and these combined stimuli. We found that clustering of the surrogate risk factors differed from the sum of the individual insults that gave rise to emergent phenotypes such as cell proliferation. We validated these observations in samples of human coronary artery atherosclerotic plaques analyzed using single-cell RNA sequencing. Our findings suggest a hierarchical interaction between surrogates of CV risk factors and the advent of emergent phenotypes in response to combined stimulation in endothelial cells that may influence ED.
Collapse
Affiliation(s)
- Iguaracy Pinheiro-de-Sousa
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Miriam H Fonseca-Alaniz
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Samantha K Teixeira
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Mariliza V Rodrigues
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Jose E Krieger
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil.
| |
Collapse
|
23
|
Vogl BJ, Niemi NR, Griffiths LG, Alkhouli MA, Hatoum H. Impact of calcific aortic valve disease on valve mechanics. Biomech Model Mechanobiol 2021; 21:55-77. [PMID: 34687365 DOI: 10.1007/s10237-021-01527-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
The aortic valve is a highly dynamic structure characterized by a transvalvular flow that is unsteady, pulsatile, and characterized by episodes of forward and reverse flow patterns. Calcific aortic valve disease (CAVD) resulting in compromised valve function and increased pressure overload on the ventricle potentially leading to heart failure if untreated, is the most predominant valve disease. CAVD is a multi-factorial disease involving molecular, tissue and mechanical interactions. In this review, we aim at recapitulating the biomechanical loads on the aortic valve, summarizing the current and most recent research in the field in vitro, in-silico, and in vivo, and offering a clinical perspective on current strategies adopted to mitigate or approach CAVD.
Collapse
Affiliation(s)
- Brennan J Vogl
- Biomedical Engineering Department, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Nicholas R Niemi
- Biomedical Engineering Department, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Leigh G Griffiths
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Hoda Hatoum
- Biomedical Engineering Department, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA. .,Health Research Institute, Michigan Technological University, Houghton, MI, USA. .,Center of Biocomputing and Digital Health, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
24
|
Mishchenko EL, Mishchenko AM, Ivanisenko VA. Mechanosensitive molecular interactions in atherogenic regions of the arteries: development of atherosclerosis. Vavilovskii Zhurnal Genet Selektsii 2021; 25:552-561. [PMID: 34595377 PMCID: PMC8453358 DOI: 10.18699/vj21.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022] Open
Abstract
A terrible disease of the cardiovascular system, atherosclerosis, develops in the areas of bends and
branches of arteries, where the direction and modulus of the blood flow velocity vector change, and consequently
so does the mechanical effect on endothelial cells in contact with the blood flow. The review focuses on topical
research studies on the development of atherosclerosis – mechanobiochemical events that transform the proatherogenic
mechanical stimulus of blood flow – low and low/oscillatory arterial wall shear stress in the chains of biochemical
reactions in endothelial cells, leading to the expression of specific proteins that cause the progression
of the pathological process. The stages of atherogenesis, systemic risk factors for atherogenesis and its important
hemodynamic factor, low and low/oscillatory wall shear stress exerted by blood flow on the endothelial cells lining
the arterial walls, have been described. The interactions of cell adhesion molecules responsible for the development
of atherosclerosis under low and low/oscillating shear stress conditions have been demonstrated. The activation
of the regulator of the expression of cell adhesion molecules, the transcription factor NF-κB, and the factors
regulating its activation under these conditions have been described. Mechanosensitive signaling pathways leading
to the expression of NF-κB in endothelial cells have been described. Studies of the mechanobiochemical signaling
pathways and interactions involved in the progression of atherosclerosis provide valuable information for the
development of approaches that delay or block the development of this disease.
Key words: atherogenesis; shear stress; transcription factor NF-κB; RelA expression; mechanosensitive receptors;
cell adhesion molecules; signaling pathways; mechanotransduction.
Collapse
Affiliation(s)
- E L Mishchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - V A Ivanisenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
25
|
Mazzi V, De Nisco G, Hoogendoorn A, Calò K, Chiastra C, Gallo D, Steinman DA, Wentzel JJ, Morbiducci U. Early Atherosclerotic Changes in Coronary Arteries are Associated with Endothelium Shear Stress Contraction/Expansion Variability. Ann Biomed Eng 2021; 49:2606-2621. [PMID: 34324092 PMCID: PMC8455396 DOI: 10.1007/s10439-021-02829-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although unphysiological wall shear stress (WSS) has become the consensus hemodynamic mechanism for coronary atherosclerosis, the complex biomechanical stimulus affecting atherosclerosis evolution is still undetermined. This has motivated the interest on the contraction/expansion action exerted by WSS on the endothelium, obtained through the WSS topological skeleton analysis. This study tests the ability of this WSS feature, alone or combined with WSS magnitude, to predict coronary wall thickness (WT) longitudinal changes. Nine coronary arteries of hypercholesterolemic minipigs underwent imaging with local WT measurement at three time points: baseline (T1), after 5.6 ± 0.9 (T2), and 7.6 ± 2.5 (T3) months. Individualized computational hemodynamic simulations were performed at T1 and T2. The variability of the WSS contraction/expansion action along the cardiac cycle was quantified using the WSS topological shear variation index (TSVI). Alone or combined, high TSVI and low WSS significantly co-localized with high WT at the same time points and were significant predictors of thickening at later time points. TSVI and WSS magnitude values in a physiological range appeared to play an atheroprotective role. Both the variability of the WSS contraction/expansion action and WSS magnitude, accounting for different hemodynamic effects on the endothelium, (1) are linked to WT changes and (2) concur to identify WSS features leading to coronary atherosclerosis.
Collapse
Affiliation(s)
- Valentina Mazzi
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - Giuseppe De Nisco
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - Ayla Hoogendoorn
- Department of Cardiology, Biomedical Engineering, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Karol Calò
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - Claudio Chiastra
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - Diego Gallo
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - David A Steinman
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada
| | - Jolanda J Wentzel
- Department of Cardiology, Biomedical Engineering, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Umberto Morbiducci
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy.
| |
Collapse
|
26
|
Evans PC, Fragiadaki M, Morris PD, Serbanovic-Canic J. Shear stress: the dark energy of atherosclerotic plaques. Cardiovasc Res 2021; 117:1811-1813. [PMID: 33146373 PMCID: PMC8262631 DOI: 10.1093/cvr/cvaa315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Paul C Evans
- Cardiovascular Disease Theme, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Maria Fragiadaki
- Cardiovascular Disease Theme, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Paul D Morris
- Cardiovascular Disease Theme, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jovana Serbanovic-Canic
- Cardiovascular Disease Theme, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
27
|
Integrating multi-fidelity blood flow data with reduced-order data assimilation. Comput Biol Med 2021; 135:104566. [PMID: 34157468 DOI: 10.1016/j.compbiomed.2021.104566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
High-fidelity patient-specific modeling of cardiovascular flows and hemodynamics is challenging. Direct blood flow measurement inside the body with in-vivo measurement modalities such as 4D flow magnetic resonance imaging (4D flow MRI) suffer from low resolution and acquisition noise. In-vitro experimental modeling and patient-specific computational fluid dynamics (CFD) models are subject to uncertainty in patient-specific boundary conditions and model parameters. Furthermore, collecting blood flow data in the near-wall region (e.g., wall shear stress) with experimental measurement modalities poses additional challenges. In this study, a computationally efficient data assimilation method called reduced-order modeling Kalman filter (ROM-KF) was proposed, which combined a sequential Kalman filter with reduced-order modeling using a linear model provided by dynamic mode decomposition (DMD). The goal of ROM-KF was to overcome low resolution and noise in experimental and uncertainty in CFD modeling of cardiovascular flows. The accuracy of the method was assessed with 1D Womersley flow, 2D idealized aneurysm, and 3D patient-specific cerebral aneurysm models. Synthetic experimental data were used to enable direct quantification of errors using benchmark datasets. The accuracy of ROM-KF in reconstructing near-wall hemodynamics was assessed by applying the method to problems where near-wall blood flow data were missing in the experimental dataset. The ROM-KF method provided blood flow data that were more accurate than the computational and synthetic experimental datasets and improved near-wall hemodynamics quantification.
Collapse
|
28
|
Blood Flow Quantification in Peripheral Arterial Disease: Emerging Diagnostic Techniques in Vascular Surgery. Surg Technol Int 2021. [PMID: 33970476 DOI: 10.52198/21.sti.38.cv1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The assessment of local blood flow patterns in patients with peripheral arterial disease is clinically relevant, since these patterns are related to atherosclerotic disease progression and loss of patency in stents placed in peripheral arteries, through mechanisms such as recirculating flow and low wall shear stress (WSS). However, imaging of vascular flow in these patients is technically challenging due to the often complex flow patterns that occur near atherosclerotic lesions. While several flow quantification techniques have been developed that could improve the outcomes of vascular interventions, accurate 2D or 3D blood flow quantification is not yet used in clinical practice. This article provides an overview of several important topics that concern the quantification of blood flow in patients with peripheral arterial disease. The hemodynamic mechanisms involved in the development of atherosclerosis and the current clinical practice in the diagnosis of this disease are discussed, showing the unmet need for improved and validated flow quantification techniques in daily clinical practice. This discussion is followed by a showcase of state-of-the-art blood flow quantification techniques and how these could be used before, during and after treatment of stenotic lesions to improve clinical outcomes. These techniques include novel ultrasound-based methods, Phase-Contrast Magnetic Resonance Imaging (PC-MRI) and Computational Fluid Dynamics (CFD). The last section discusses future perspectives, with advanced (hybrid) imaging techniques and artificial intelligence, including the implementation of these techniques in clinical practice.
Collapse
|
29
|
Engelhard S, van de Velde L, Jebbink E, Jain K, Westenberg J, Zeebregts C, Versluis M, Reijnen M. Blood Flow Quantification in Peripheral Arterial Disease: Emerging Diagnostic Techniques in Vascular Surgery. Surg Technol Int 2021. [DOI: https:/doi.org/10.52198/21.sti.38.cv1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The assessment of local blood flow patterns in patients with peripheral arterial disease is clinically relevant, since these patterns are related to atherosclerotic disease progression and loss of patency in stents placed in peripheral arteries, through mechanisms such as recirculating flow and low wall shear stress (WSS). However, imaging of vascular flow in these patients is technically challenging due to the often complex flow patterns that occur near atherosclerotic lesions. While several flow quantification techniques have been developed that could improve the outcomes of vascular interventions, accurate 2D or 3D blood flow quantification is not yet used in clinical practice. This article provides an overview of several important topics that concern the quantification of blood flow in patients with peripheral arterial disease. The hemodynamic mechanisms involved in the development of atherosclerosis and the current clinical practice in the diagnosis of this disease are discussed, showing the unmet need for improved and validated flow quantification techniques in daily clinical practice. This discussion is followed by a showcase of state-of-the-art blood flow quantification techniques and how these could be used before, during and after treatment of stenotic lesions to improve clinical outcomes. These techniques include novel ultrasound-based methods, Phase-Contrast Magnetic Resonance Imaging (PC-MRI) and Computational Fluid Dynamics (CFD). The last section discusses future perspectives, with advanced (hybrid) imaging techniques and artificial intelligence, including the implementation of these techniques in clinical practice.
Collapse
Affiliation(s)
- Stefan Engelhard
- Department of Vascular Surgery, Rijnstate, Arnhem, The Netherlands
| | | | - Erik Jebbink
- Department of Vascular Surgery, Rijnstate, Arnhem, The Netherlands
| | - Kartik Jain
- Department of Thermal and Fluid Engineering, University of Twente, Enschede, The Netherlands
| | - Jos Westenberg
- Department of Radiology, Cardiovascular Imaging Group, Leiden University Medical Center, Leiden, The Netherlands
| | - Clark Zeebregts
- Department of Surgery (Division of Vascular Surgery), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
| | - Michel Reijnen
- Department of Vascular Surgery, Rijnstate, Arnhem, The Netherlands
| |
Collapse
|
30
|
Mahmoudi M, Farghadan A, McConnell DR, Barker AJ, Wentzel JJ, Budoff MJ, Arzani A. The Story of Wall Shear Stress in Coronary Artery Atherosclerosis: Biochemical Transport and Mechanotransduction. J Biomech Eng 2021; 143:041002. [PMID: 33156343 DOI: 10.1115/1.4049026] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Coronary artery atherosclerosis is a local, multifactorial, complex disease, and the leading cause of death in the US. Complex interactions between biochemical transport and biomechanical forces influence disease growth. Wall shear stress (WSS) affects coronary artery atherosclerosis by inducing endothelial cell mechanotransduction and by controlling the near-wall transport processes involved in atherosclerosis. Each of these processes is controlled by WSS differently and therefore has complicated the interpretation of WSS in atherosclerosis. In this paper, we present a comprehensive theory for WSS in atherosclerosis. First, a short review of shear stress-mediated mechanotransduction in atherosclerosis was presented. Next, subject-specific computational fluid dynamics (CFD) simulations were performed in ten coronary artery models of diseased and healthy subjects. Biochemical-specific mass transport models were developed to study low-density lipoprotein, nitric oxide, adenosine triphosphate, oxygen, monocyte chemoattractant protein-1, and monocyte transport. The transport results were compared with WSS vectors and WSS Lagrangian coherent structures (WSS LCS). High WSS magnitude protected against atherosclerosis by increasing the production or flux of atheroprotective biochemicals and decreasing the near-wall localization of atherogenic biochemicals. Low WSS magnitude promoted atherosclerosis by increasing atherogenic biochemical localization. Finally, the attracting WSS LCS's role was more complex where it promoted or prevented atherosclerosis based on different biochemicals. We present a summary of the different pathways by which WSS influences coronary artery atherosclerosis and compare different mechanotransduction and biotransport mechanisms.
Collapse
Affiliation(s)
- Mostafa Mahmoudi
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ 86011
| | - Ali Farghadan
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ 86011
| | - Daniel R McConnell
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ 86011
| | - Alex J Barker
- Department of Pediatric Radiology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
| | - Jolanda J Wentzel
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | | | - Amirhossein Arzani
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ 86011
| |
Collapse
|
31
|
Wall Shear Stress Topological Skeleton Analysis in Cardiovascular Flows: Methods and Applications. MATHEMATICS 2021. [DOI: 10.3390/math9070720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A marked interest has recently emerged regarding the analysis of the wall shear stress (WSS) vector field topological skeleton in cardiovascular flows. Based on dynamical system theory, the WSS topological skeleton is composed of fixed points, i.e., focal points where WSS locally vanishes, and unstable/stable manifolds, consisting of contraction/expansion regions linking fixed points. Such an interest arises from its ability to reflect the presence of near-wall hemodynamic features associated with the onset and progression of vascular diseases. Over the years, Lagrangian-based and Eulerian-based post-processing techniques have been proposed aiming at identifying the topological skeleton features of the WSS. Here, the theoretical and methodological bases supporting the Lagrangian- and Eulerian-based methods currently used in the literature are reported and discussed, highlighting their application to cardiovascular flows. The final aim is to promote the use of WSS topological skeleton analysis in hemodynamic applications and to encourage its application in future mechanobiology studies in order to increase the chance of elucidating the mechanistic links between blood flow disturbances, vascular disease, and clinical observations.
Collapse
|
32
|
Andelovic K, Winter P, Jakob PM, Bauer WR, Herold V, Zernecke A. Evaluation of Plaque Characteristics and Inflammation Using Magnetic Resonance Imaging. Biomedicines 2021; 9:185. [PMID: 33673124 PMCID: PMC7917750 DOI: 10.3390/biomedicines9020185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is an inflammatory disease of large and medium-sized arteries, characterized by the growth of atherosclerotic lesions (plaques). These plaques often develop at inner curvatures of arteries, branchpoints, and bifurcations, where the endothelial wall shear stress is low and oscillatory. In conjunction with other processes such as lipid deposition, biomechanical factors lead to local vascular inflammation and plaque growth. There is also evidence that low and oscillatory shear stress contribute to arterial remodeling, entailing a loss in arterial elasticity and, therefore, an increased pulse-wave velocity. Although altered shear stress profiles, elasticity and inflammation are closely intertwined and critical for plaque growth, preclinical and clinical investigations for atherosclerosis mostly focus on the investigation of one of these parameters only due to the experimental limitations. However, cardiovascular magnetic resonance imaging (MRI) has been demonstrated to be a potent tool which can be used to provide insights into a large range of biological parameters in one experimental session. It enables the evaluation of the dynamic process of atherosclerotic lesion formation without the need for harmful radiation. Flow-sensitive MRI provides the assessment of hemodynamic parameters such as wall shear stress and pulse wave velocity which may replace invasive and radiation-based techniques for imaging of the vascular function and the characterization of early plaque development. In combination with inflammation imaging, the analyses and correlations of these parameters could not only significantly advance basic preclinical investigations of atherosclerotic lesion formation and progression, but also the diagnostic clinical evaluation for early identification of high-risk plaques, which are prone to rupture. In this review, we summarize the key applications of magnetic resonance imaging for the evaluation of plaque characteristics through flow sensitive and morphological measurements. The simultaneous measurements of functional and structural parameters will further preclinical research on atherosclerosis and has the potential to fundamentally improve the detection of inflammation and vulnerable plaques in patients.
Collapse
Affiliation(s)
- Kristina Andelovic
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
- Experimental Physics V, University of Würzburg, 97074 Würzburg, Germany; (P.W.); (P.M.J.); (V.H.)
| | - Patrick Winter
- Experimental Physics V, University of Würzburg, 97074 Würzburg, Germany; (P.W.); (P.M.J.); (V.H.)
- Internal Medicine I, Cardiology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Peter Michael Jakob
- Experimental Physics V, University of Würzburg, 97074 Würzburg, Germany; (P.W.); (P.M.J.); (V.H.)
| | - Wolfgang Rudolf Bauer
- Internal Medicine I, Cardiology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Volker Herold
- Experimental Physics V, University of Würzburg, 97074 Würzburg, Germany; (P.W.); (P.M.J.); (V.H.)
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
33
|
Hoogendoorn A, Kok AM, Hartman EMJ, de Nisco G, Casadonte L, Chiastra C, Coenen A, Korteland SA, Van der Heiden K, Gijsen FJH, Duncker DJ, van der Steen AFW, Wentzel JJ. Multidirectional wall shear stress promotes advanced coronary plaque development: comparing five shear stress metrics. Cardiovasc Res 2021; 116:1136-1146. [PMID: 31504238 PMCID: PMC7177495 DOI: 10.1093/cvr/cvz212] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/15/2019] [Accepted: 08/20/2019] [Indexed: 01/02/2023] Open
Abstract
Aims Atherosclerotic plaque development has been associated with wall shear stress (WSS). However, the multidirectionality of blood flow, and thus of WSS, is rarely taken into account. The purpose of this study was to comprehensively compare five metrics that describe (multidirectional) WSS behaviour and assess how WSS multidirectionality affects coronary plaque initiation and progression. Methods and results Adult familial hypercholesterolaemic pigs (n = 10) that were fed a high-fat diet, underwent imaging of the three main coronary arteries at three-time points [3 (T1), 9 (T2), and 10–12 (T3) months]. Three-dimensional geometry of the arterial lumen, in combination with local flow velocity measurements, was used to calculate WSS at T1 and T2. For analysis, arteries were divided into 3 mm/45° sectors (n = 3648). Changes in wall thickness and final plaque composition were assessed with near-infrared spectroscopy–intravascular ultrasound, optical coherence tomography imaging, and histology. Both in pigs with advanced and mild disease, the highest plaque progression rate was exclusively found at low time-averaged WSS (TAWSS) or high multidirectional WSS regions at both T1 and T2. However, the eventually largest plaque growth was located in regions with initial low TAWSS or high multidirectional WSS that, over time, became exposed to high TAWSS or low multidirectional WSS at T2. Besides plaque size, also the presence of vulnerable plaque components at the last time point was related to low and multidirectional WSS. Almost all WSS metrics had good predictive values for the development of plaque (47–50%) and advanced fibrous cap atheroma (FCA) development (59–61%). Conclusion This study demonstrates that low and multidirectional WSS promote both initiation and progression of coronary atherosclerotic plaques. The high-predictive values of the multidirectional WSS metrics for FCA development indicate their potential as an additional clinical marker for the vulnerable disease.
Collapse
Affiliation(s)
- Ayla Hoogendoorn
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Annette M Kok
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Eline M J Hartman
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Giuseppe de Nisco
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Lorena Casadonte
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Claudio Chiastra
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Adriaan Coenen
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Suze-Anne Korteland
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Kim Van der Heiden
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Frank J H Gijsen
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Experimental Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Jolanda J Wentzel
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Corresponding author. Tel: +31 10 7044 044; fax: +31 10 7044 720, E-mail:
| |
Collapse
|
34
|
Bajraktari A, Bytyçi I, Henein MY. High Coronary Wall Shear Stress Worsens Plaque Vulnerability: A Systematic Review and Meta-Analysis. Angiology 2021; 72:706-714. [PMID: 33535802 PMCID: PMC8326896 DOI: 10.1177/0003319721991722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aim: The aim of this meta-analysis is to assess the impact of wall shear stress (WSS) severity on arterial plaque vulnerability. Methods: We systematically searched electronic databases and selected studies which assessed the relationship between WSS measured by intravascular ultrasound and coronary artery plaque features. In 7 studies, a total of 615 patients with 28 276 arterial segments (median follow-up: 7.71 months) were identified. At follow-up, the pooled analysis showed high WSS to be associated with regression of plaque fibrous area, weighted mean difference (WMD) −0.11 (95% CI: −0.20 to −0.02, P = .02) and fibrofatty area, WMD −0.09 (95% CI: −0.17 to −0.01, P = .02), reduction in plaque total area, WMD −0.09 (95% CI: −0.14 to −0.04, P = .007) and increased necrotic core area, and WMD 0.04 (95% CI: 0.01-0.09, P = .03) compared with low WSS. Dense calcium deposits remained unchanged in high and low WSS (0.01 vs 0.02 mm2; P > .05). High WSS resulted in profound remodeling (40% vs 18%, P < .05) and with more constructive remodeling than low WSS (78% vs 40%, P < .01). Conclusions: High WSS in coronary arteries is associated with worsening plaque vulnerability and more profound arterial wall remodeling compared with low WSS.
Collapse
Affiliation(s)
- Artan Bajraktari
- Institute of Public Health and Clinical Medicine, Umea University, Sweden
| | - Ibadete Bytyçi
- Institute of Public Health and Clinical Medicine, Umea University, Sweden.,University College, Bardhosh, Kosovo.,Clinic of Cardiology, University Clinical Centre of Kosovo, Prishtina, Kosovo
| | - Michael Y Henein
- Institute of Public Health and Clinical Medicine, Umea University, Sweden.,Molecular and Clinic Research Institute, St George University, London, and Brunel University, United Kingdom
| |
Collapse
|
35
|
Bahrami S, Norouzi M. Hemodynamic impacts of hematocrit level by two-way coupled FSI in the left coronary bifurcation. Clin Hemorheol Microcirc 2020; 76:9-26. [DOI: 10.3233/ch-200854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cardiovascular disease is now under the influence of several factors that encourage researchers to investigate the flow of these vessels. Oscillation influences the blood circulation in the volume of red blood cells (RBC) strongly. Therefore, in this study, its effects have been considered on hemodynamic parameters in the elastic wall and coronary bifurcation. In this study, a 3D geometry of non-Newtonian and pulsatile blood circulation is considered in the left coronary artery bifurcation. The Casson model with various hematocrits is analyzed in elastic and rigid walls. The wall shear stress (WSS) cannot show the stenosis artery alone, therefore, the oscillatory shear index (OSI) is represented as a hemodynamic parameter of WSS individually of time. The results are determined using two-way fluid-structure interaction (FSI) coupling method using an arbitrary Lagrangian-Eulerian method. The most prominent difference in velocity happened in the bifurcation and at hematocrit 30 with yield stress 6.59E-04 Pa. The backflow and vortex flow in the LCx branch grown with increasing shear rates. The likelihood of plaque generation at the ending of the LM branch is observed in hematocrits 10 and 20, while the WSS magnitude is normal in the hematocrit 60 with the greatest yield stress in the bifurcation. The shear stress among the rigid and elastic models is the highest at the ending of the LM branch. The wall shear stress magnitude among the models decreased at most of 24.49% by dividing the flow. Time-independent results for models showed that there is the highest value of OSI at the bifurcation, which then quickly dropped.
Collapse
Affiliation(s)
- Saeed Bahrami
- Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Semnan, Iran
| | - Mahmood Norouzi
- Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Semnan, Iran
| |
Collapse
|
36
|
Sterpetti AV. Inflammatory Cytokines and Atherosclerotic Plaque Progression. Therapeutic Implications. Curr Atheroscler Rep 2020; 22:75. [PMID: 33025148 PMCID: PMC7538409 DOI: 10.1007/s11883-020-00891-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE OF THE REVIEW Inflammatory cytokines play a major role in atherosclerotic plaque progression. This review summarizes the rationale for personalized anti-inflammatory therapy. RECENT FINDINGS Systemic inflammatory parameters may be used to follow the clinical outcome in primary and secondary prevention. Medical therapy, both in patients with stable cardiovascular disease, or with acute events, may be tailored taking into consideration the level and course of systemic inflammatory mediators. There is significant space for improvement in primary prevention and in the treatment of patients who have suffered from severe cardiovascular events, paying attention to not only blood pressure and cholesterol levels but also including inflammatory parameters in our clinical analysis. The potential exists to alter the course of atherosclerosis with anti-inflammatory drugs. With increased understanding of the specific mechanisms that regulate the relationship between inflammation and atherosclerosis, new, more effective and specific anti-inflammatory treatment may become available.
Collapse
Affiliation(s)
- Antonio V Sterpetti
- University of Rome Sapienza, Rome, Italy.
- AV Sterpetti- Policlinico Umberto I, Viale del Policlinico, 00167, Rome, Italy.
| |
Collapse
|
37
|
Hsu CPD, Hutcheson JD, Ramaswamy S. Oscillatory fluid-induced mechanobiology in heart valves with parallels to the vasculature. VASCULAR BIOLOGY 2020; 2:R59-R71. [PMID: 32923975 PMCID: PMC7439923 DOI: 10.1530/vb-19-0031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
Forces generated by blood flow are known to contribute to cardiovascular development and remodeling. These hemodynamic forces induce molecular signals that are communicated from the endothelium to various cell types. The cardiovascular system consists of the heart and the vasculature, and together they deliver nutrients throughout the body. While heart valves and blood vessels experience different environmental forces and differ in morphology as well as cell types, they both can undergo pathological remodeling and become susceptible to calcification. In addition, while the plaque morphology is similar in valvular and vascular diseases, therapeutic targets available for the latter condition are not effective in the management of heart valve calcification. Therefore, research in valvular and vascular pathologies and treatments have largely remained independent. Nonetheless, understanding the similarities and differences in development, calcific/fibrous pathologies and healthy remodeling events between the valvular and vascular systems can help us better identify future treatments for both types of tissues, particularly for heart valve pathologies which have been understudied in comparison to arterial diseases.
Collapse
Affiliation(s)
- Chia-Pei Denise Hsu
- Engineering Center, Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| | - Joshua D Hutcheson
- Engineering Center, Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| | - Sharan Ramaswamy
- Engineering Center, Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| |
Collapse
|
38
|
Wang D, Serracino-Inglott F, Feng J. Numerical simulations of patient-specific models with multiple plaques in human peripheral artery: a fluid-structure interaction analysis. Biomech Model Mechanobiol 2020; 20:255-265. [PMID: 32915332 PMCID: PMC7892515 DOI: 10.1007/s10237-020-01381-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/23/2020] [Indexed: 11/30/2022]
Abstract
Atherosclerotic plaque in the femoral is the leading cause of peripheral artery disease (PAD), the worse consequence of which may lead to ulceration and gangrene of the feet. Numerical studies on fluid-structure interactions (FSI) of atherosclerotic femoral arteries enable quantitative analysis of biomechanical features in arteries. This study aims to investigate the hemodynamic performance and its interaction with femoral arterial wall based on the patient-specific model with multiple plaques (calcified and lipid plaques). Three types of models, calcification-only, lipid-only and calcification-lipid models, are established. Hyperelastic material coefficients of the human femoral arteries obtained from experimental studies are employed for all simulations. Oscillation of WSS is observed in the healthy downstream region in the lipid-only model. The pressure around the plaques in the two-plaque model is lower than that in the corresponding one-plaque models due to the reduction of blood flow domain, which consequently diminishes the loading forces on both plaques. Therefore, we found that stress acting on the plaques in the two-plaque model is lower than that in the corresponding one-plaque models. This finding implies that the lipid plaque, accompanied by the calcified plaque around, might reduce its risk of rupture due to the reduced the stress acting on it.
Collapse
Affiliation(s)
- Danyang Wang
- Department of Engineering, Manchester Metropolitan University, Manchester, UK
| | | | - Jiling Feng
- Department of Engineering, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
39
|
Costopoulos C, Timmins LH, Huang Y, Hung OY, Molony DS, Brown AJ, Davis EL, Teng Z, Gillard JH, Samady H, Bennett MR. Impact of combined plaque structural stress and wall shear stress on coronary plaque progression, regression, and changes in composition. Eur Heart J 2020; 40:1411-1422. [PMID: 30907406 PMCID: PMC6503452 DOI: 10.1093/eurheartj/ehz132] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/02/2018] [Accepted: 03/08/2019] [Indexed: 12/03/2022] Open
Affiliation(s)
- Charis Costopoulos
- Division of Cardiovascular Medicine, University of Cambridge, Level 6, ACCI, Hills Road, Addenbrooke's Hospital, Cambridge, UK
| | - Lucas H Timmins
- Division of Cardiology, Department of Medicine, Andreas Gruentzig Cardiovascular Center, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, USA.,Department of Bioengineering, University of Utah, 50 S. Central Campus Drive, Salt Lake City, UT, USA
| | - Yuan Huang
- EPSRC Centre for Mathematical and Statistical Analysis of Multimodal Imaging, University of Cambridge, 20 Clarkson Road, Cambridge, UK.,Department of Radiology, University of Cambridge, Hills Road, Addenbrooke's Hospital, Cambridge, UK
| | - Olivia Y Hung
- Division of Cardiology, Department of Medicine, Andreas Gruentzig Cardiovascular Center, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, USA
| | - David S Molony
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, USA
| | - Adam J Brown
- Division of Cardiovascular Medicine, University of Cambridge, Level 6, ACCI, Hills Road, Addenbrooke's Hospital, Cambridge, UK
| | - Emily L Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, USA
| | - Zhongzhao Teng
- Department of Radiology, University of Cambridge, Hills Road, Addenbrooke's Hospital, Cambridge, UK.,Department of Engineering, University of Cambridge, Hills Road, Addenbrooke's Hospital, Cambridge, UK
| | - Jonathan H Gillard
- Department of Radiology, University of Cambridge, Hills Road, Addenbrooke's Hospital, Cambridge, UK
| | - Habib Samady
- Division of Cardiology, Department of Medicine, Andreas Gruentzig Cardiovascular Center, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, USA
| | - Martin R Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Level 6, ACCI, Hills Road, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
40
|
Seo J, Schiavazzi DE, Kahn AM, Marsden AL. The effects of clinically-derived parametric data uncertainty in patient-specific coronary simulations with deformable walls. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3351. [PMID: 32419369 PMCID: PMC8211426 DOI: 10.1002/cnm.3351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/20/2020] [Accepted: 05/09/2020] [Indexed: 05/31/2023]
Abstract
Cardiovascular simulations are increasingly used for noninvasive diagnosis of cardiovascular disease, to guide treatment decisions, and in the design of medical devices. Quantitative assessment of the variability of simulation outputs due to input uncertainty is a key step toward further integration of cardiovascular simulations in the clinical workflow. In this study, we present uncertainty quantification in computational models of the coronary circulation to investigate the effect of uncertain parameters, including coronary pressure waveform, intramyocardial pressure, morphometry exponent, and the vascular wall Young's modulus. We employ a left coronary artery model with deformable vessel walls, simulated via an Arbitrary-Lagrangian-Eulerian framework for fluid-structure interaction, with a prescribed inlet pressure and open-loop lumped parameter network outlet boundary conditions. Stochastic modeling of the uncertain inputs is determined from intra-coronary catheterization data or gathered from the literature. Uncertainty propagation is performed using several approaches including Monte Carlo, Quasi Monte Carlo sampling, stochastic collocation, and multi-wavelet stochastic expansion. Variabilities in the quantities of interest, including branch pressure, flow, wall shear stress, and wall deformation are assessed. We find that uncertainty in inlet pressures and intramyocardial pressures significantly affect all resulting QoIs, while uncertainty in elastic modulus only affects the mechanical response of the vascular wall. Variability in the morphometry exponent used to distribute the total downstream vascular resistance to the single outlets, has little effect on coronary hemodynamics or wall mechanics. Finally, we compare convergence behaviors of statistics of QoIs using several uncertainty propagation methods on three model benchmark problems and the left coronary simulations. From the simulation results, we conclude that the multi-wavelet stochastic expansion shows superior accuracy and performance against Quasi Monte Carlo and stochastic collocation methods.
Collapse
Affiliation(s)
- Jongmin Seo
- Department of Pediatrics (Cardiology), Bioengineering and ICME, Stanford University, Stanford, California
| | - Daniele E. Schiavazzi
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Indiana
| | - Andrew M. Kahn
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Alison L. Marsden
- Department of Pediatrics (Cardiology), Bioengineering and ICME, Stanford University, Stanford, California
| |
Collapse
|
41
|
Accelerating massively parallel hemodynamic models of coarctation of the aorta using neural networks. Sci Rep 2020; 10:9508. [PMID: 32528104 PMCID: PMC7289812 DOI: 10.1038/s41598-020-66225-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/18/2020] [Indexed: 11/09/2022] Open
Abstract
Comorbidities such as anemia or hypertension and physiological factors related to exertion can influence a patient’s hemodynamics and increase the severity of many cardiovascular diseases. Observing and quantifying associations between these factors and hemodynamics can be difficult due to the multitude of co-existing conditions and blood flow parameters in real patient data. Machine learning-driven, physics-based simulations provide a means to understand how potentially correlated conditions may affect a particular patient. Here, we use a combination of machine learning and massively parallel computing to predict the effects of physiological factors on hemodynamics in patients with coarctation of the aorta. We first validated blood flow simulations against in vitro measurements in 3D-printed phantoms representing the patient’s vasculature. We then investigated the effects of varying the degree of stenosis, blood flow rate, and viscosity on two diagnostic metrics – pressure gradient across the stenosis (ΔP) and wall shear stress (WSS) - by performing the largest simulation study to date of coarctation of the aorta (over 70 million compute hours). Using machine learning models trained on data from the simulations and validated on two independent datasets, we developed a framework to identify the minimal training set required to build a predictive model on a per-patient basis. We then used this model to accurately predict ΔP (mean absolute error within 1.18 mmHg) and WSS (mean absolute error within 0.99 Pa) for patients with this disease.
Collapse
|
42
|
Kilic Y, Safi H, Bajaj R, Serruys PW, Kitslaar P, Ramasamy A, Tufaro V, Onuma Y, Mathur A, Torii R, Baumbach A, Bourantas CV. The Evolution of Data Fusion Methodologies Developed to Reconstruct Coronary Artery Geometry From Intravascular Imaging and Coronary Angiography Data: A Comprehensive Review. Front Cardiovasc Med 2020; 7:33. [PMID: 32296713 PMCID: PMC7136420 DOI: 10.3389/fcvm.2020.00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/21/2020] [Indexed: 12/01/2022] Open
Abstract
Understanding the mechanisms that regulate atherosclerotic plaque formation and evolution is a crucial step for developing treatment strategies that will prevent plaque progression and reduce cardiovascular events. Advances in signal processing and the miniaturization of medical devices have enabled the design of multimodality intravascular imaging catheters that allow complete and detailed assessment of plaque morphology and biology. However, a significant limitation of these novel imaging catheters is that they provide two-dimensional (2D) visualization of the lumen and vessel wall and thus they cannot portray vessel geometry and 3D lesion architecture. To address this limitation computer-based methodologies and user-friendly software have been developed. These are able to off-line process and fuse intravascular imaging data with X-ray or computed tomography coronary angiography (CTCA) to reconstruct coronary artery anatomy. The aim of this review article is to summarize the evolution in the field of coronary artery modeling; we thus present the first methodologies that were developed to model vessel geometry, highlight the modifications introduced in revised methods to overcome the limitations of the first approaches and discuss the challenges that need to be addressed, so these techniques can have broad application in clinical practice and research.
Collapse
Affiliation(s)
- Yakup Kilic
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Hannah Safi
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Retesh Bajaj
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Patrick W Serruys
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Pieter Kitslaar
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Anantharaman Ramasamy
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Vincenzo Tufaro
- Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | | | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Institute of Cardiovascular Sciences, University College London, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| |
Collapse
|
43
|
Bajraktari A, Bytyçi I, Henein MY. The Relationship between Coronary Artery Wall Shear Strain and Plaque Morphology: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2020; 10:diagnostics10020091. [PMID: 32046306 PMCID: PMC7168174 DOI: 10.3390/diagnostics10020091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 11/26/2022] Open
Abstract
Background and Aim: Arterial wall shear strain (WSS) has been proposed to impact the features of atherosclerotic plaques. The aim of this meta-analysis was to assess the impact of different types of WSS on plaque features in coronary artery disease (CAD). Methods: We systematically searched PubMed-Medline, EMBASE, Scopus, Google Scholar, and the Cochrane Central Registry, from 1989 up to January 2020 and selected clinical trials and observational studies which assessed the relationship between WSS, measured by intravascular ultrasound (IVUS), and plaque morphology in patients with CAD. Results: In four studies, a total of 72 patients with 13,098 coronary artery segments were recruited, with mean age 57.5 ± 9.5 years. The pooled analysis showed that low WSS was associated with larger baseline lumen area (WMD 2.55 [1.34 to 3.76, p < 0.001]), smaller plaque area (WMD −1.16 [−1.84 to −0.49, p = 0.0007]), lower plaque burden (WMD −12.7 [−21.4 to −4.01, p = 0.04]), and lower necrotic core area (WMD −0.32 [−0.78 to 0.14, p = 0.04]). Low WSS also had smaller fibrous area (WMD −0.79 [−1.88 to 0.30, p = 0.02]) and smaller fibro-fatty area (WMD −0.22 [−0.57 to 0.13, p = 0.02]), compared with high WSS, but the dense calcium score was similar between the two groups (WMD −0.17 [−0.47 to 0.13, p = 0.26]). No differences were found between intermediate and high WSS. Conclusions: High WSS is associated with signs of plaque instability such as higher necrotic core, higher calcium score, and higher plaque burden compared with low WSS. These findings highlight the role of IVUS in assessing plaque vulnerability.
Collapse
Affiliation(s)
- Artan Bajraktari
- Institute of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (A.B.); (I.B.)
| | - Ibadete Bytyçi
- Institute of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (A.B.); (I.B.)
- Clinic of Cardiology, University Clinical Centre of Kosovo, Prishtina 10000, Kosovo
| | - Michael Y. Henein
- Institute of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (A.B.); (I.B.)
- Institute of Environment & Health and Societies, Brunel University, Middlesex UB8 3PH, UK
- Molecular and Clinic Research Institute, St George University, London SW17 0RE, UK
- Correspondence: ; Tel.: +46-90-785-1431
| |
Collapse
|
44
|
Arzani A. Coronary artery plaque growth: A two-way coupled shear stress-driven model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3293. [PMID: 31820589 DOI: 10.1002/cnm.3293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/30/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Atherosclerosis in coronary arteries can lead to plaque growth, stenosis formation, and blockage of the blood flow supplying the heart tissue. Several studies have shown that hemodynamics play an important role in the growth of coronary artery plaques. Specifically, low wall shear stress (WSS) appears to be the leading hemodynamic parameter promoting atherosclerotic plaque growth, which in turn influences the blood flow and WSS distribution. Therefore, a two-way coupled interaction exists between WSS and atherosclerosis growth. In this work, a computational framework was developed to study the coupling between WSS and plaque growth in coronary arteries. Computational fluid dynamics (CFD) was used to quantify WSS distribution. Surface mesh nodes were moved in the inward normal direction according to a growth model based on WSS. After each growth stage, the geometry was updated and the CFD simulation repeated to find updated WSS values for the next growth stage. One hundred twenty growth stages were simulated in an idealized tube and an image-based left anterior descending artery. An automated framework was developed using open-source software to couple CFD simulations with growth. Changes in plaque morphology and hemodynamic patterns during different growth stages are presented. The results show larger plaque growth towards the downstream segment of the plaque, agreeing with the reported clinical observations. The developed framework could be used to establish hemodynamic-driven growth models and study the interaction between these processes.
Collapse
Affiliation(s)
- Amirhossein Arzani
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona
| |
Collapse
|
45
|
Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico TJ, Ridger V, Roddie H, Evans PC. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol 2020; 17:52-63. [PMID: 31366922 DOI: 10.1038/s41569-019-0239-5] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 01/04/2023]
Abstract
Flowing blood generates a frictional force called shear stress that has major effects on vascular function. Branches and bends of arteries are exposed to complex blood flow patterns that exert low or low oscillatory shear stress, a mechanical environment that promotes vascular dysfunction and atherosclerosis. Conversely, physiologically high shear stress is protective. Endothelial cells are critical sensors of shear stress but the mechanisms by which they decode complex shear stress environments to regulate physiological and pathophysiological responses remain incompletely understood. Several laboratories have advanced this field by integrating specialized shear-stress models with systems biology approaches, including transcriptome, methylome and proteome profiling and functional screening platforms, for unbiased identification of novel mechanosensitive signalling pathways in arteries. In this Review, we describe these studies, which reveal that shear stress regulates diverse processes and demonstrate that multiple pathways classically known to be involved in embryonic development, such as BMP-TGFβ, WNT, Notch, HIF1α, TWIST1 and HOX family genes, are regulated by shear stress in arteries in adults. We propose that mechanical activation of these pathways evolved to orchestrate vascular development but also drives atherosclerosis in low shear stress regions of adult arteries.
Collapse
Affiliation(s)
- Celine Souilhol
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Timothy J Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre for Lifecourse Biology, University of Sheffield, Sheffield, UK
| | - Victoria Ridger
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Hannah Roddie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
- Bateson Centre for Lifecourse Biology, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
46
|
Wang G, Kostidis S, Tiemeier GL, Sol WMPJ, de Vries MR, Giera M, Carmeliet P, van den Berg BM, Rabelink TJ. Shear Stress Regulation of Endothelial Glycocalyx Structure Is Determined by Glucobiosynthesis. Arterioscler Thromb Vasc Biol 2019; 40:350-364. [PMID: 31826652 DOI: 10.1161/atvbaha.119.313399] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Endothelial cells exposed to laminar shear stress express a thick glycocalyx on their surface that plays an important role in reducing vascular permeability and endothelial anti-inflammatory, antithrombotic, and antiangiogenic properties. Production and maintenance of this glycocalyx layer is dependent on cellular carbohydrate synthesis, but its regulation is still unknown. Approach and Results: Here, we show that biosynthesis of the major structural component of the endothelial glycocalyx, hyaluronan, is regulated by shear. Both in vitro as well as in in vivo, hyaluronan expression on the endothelial surface is increased on laminar shear and reduced when exposed to oscillatory flow, which is regulated by KLF2 (Krüppel-like Factor 2). Using a CRISPR-CAS9 edited small tetracysteine tag to endogenous HAS2 (hyaluronan synthase 2), we demonstrated increased translocation of HAS2 to the endothelial cell membrane during laminar shear. Hyaluronan production by HAS2 was shown to be further driven by availability of the hyaluronan substrates UDP-glucosamine and UDP-glucuronic acid. KLF2 inhibits endothelial glycolysis and allows for glucose intermediates to shuttle into the hexosamine- and glucuronic acid biosynthesis pathways, as measured using nuclear magnetic resonance analysis in combination with 13C-labeled glucose. CONCLUSIONS These data demonstrate how endothelial glycocalyx function and functional adaptation to shear is coupled to KLF2-mediated regulation of endothelial glycolysis.
Collapse
Affiliation(s)
- Gangqi Wang
- From the Division of Nephrology, Department of Internal Medicine (G.W., G.L.T., W.M.P.J.S., B.M.v.d.B., T.J.R.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, the Netherlands (S.K., M.G.)
| | - Gesa L Tiemeier
- From the Division of Nephrology, Department of Internal Medicine (G.W., G.L.T., W.M.P.J.S., B.M.v.d.B., T.J.R.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Wendy M P J Sol
- From the Division of Nephrology, Department of Internal Medicine (G.W., G.L.T., W.M.P.J.S., B.M.v.d.B., T.J.R.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Margreet R de Vries
- Department of Surgery (M.R.d.V.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, the Netherlands (S.K., M.G.)
| | - Peter Carmeliet
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven, Vesalius Research Center, VIB, Belgium (P.C.).,Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium (P.C.)
| | - Bernard M van den Berg
- From the Division of Nephrology, Department of Internal Medicine (G.W., G.L.T., W.M.P.J.S., B.M.v.d.B., T.J.R.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Ton J Rabelink
- From the Division of Nephrology, Department of Internal Medicine (G.W., G.L.T., W.M.P.J.S., B.M.v.d.B., T.J.R.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| |
Collapse
|
47
|
Li M, Li L, Wu W, Jiang Y, Zhang P. Biomechanical characteristics of isolated carotid atherosclerotic plaques assessed by ultrasonography. INT ANGIOL 2019; 38:443-450. [PMID: 31782278 DOI: 10.23736/s0392-9590.19.04174-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The aim of this study was to assess the biomechanical characteristics of carotid atherosclerotic plaques using intima-media thickness (IMT) automatic tracking combined with acoustic densitometry (AD) imaging, and to elucidate the relationship between biomechanical characteristics and inflammatory activity of corresponding plaques evaluated by 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). METHODS Sixty-one patients with isolated carotid atherosclerotic plaques underwent conventional carotid ultrasonography, IMT automatic tracking, and acoustic densitometry (AD) imaging. Following these assessments, patients received an 18F-FDG PET/CT scan within 24 hours. We quantified biomechanical and AD parameters including IMT strain rate (SR), IMT time strain rate (TR), and corrected average image intensity value (AIIc%) on the upstream, fibrous cap top, and downstream regions of the plaque and compared them to the reference area(normal intima adjacent to the upstream of the assessed plaque). Target background ratio (TBR) was acquired by 18F-FDG PET/CT for evaluating the inflammatory activity of corresponding plaques. We further divided all participants into an inflammatory group (TBR≥1.25) and non-inflammatory group (TBR<1.25) measures of SR/TR and AIIc% in the two groups were compared and analyzed. RESULTS SR/TR were significantly lower in the plaque group when compared to reference area. SR/TR at the cap top area (CTA) and downstream area (DA) of the plaques were lower than those in the reference area (P<0.05) while there was no statistically significant difference in SR or TR of the upstream area (UA) between the plaque and reference area. SR/TR were significantly greater for UA than CTA and DA (P<0.05 for both). AIIc% was significantly lower for UA and CTA than that for DA (P<0.05). The SR/TR of plaque regions were negatively correlated with corresponding AIIc% (r=-0.74, r=-0.75, P<0.05). TR in the inflammatory group was significantly lower than in the non-inflammatory group (P<0.05), while SR and AIIc% showed no statistically significant difference. TR demonstrated a significant negative correlation with TBR (r=-0.83, P<0.05). Receiver operating characteristic curve (ROC) analysis showed that the area under the curve (AUC) of TR was 0.87. Furthermore, TR less than 75.06‰ demonstrated a sensitivity of 88.0% and a specificity of 80.6% for the identification of inflammatory plaques. CONCLUSIONS IMT automatic tracking, combined with AD imaging, can be applied to identify the anisotropic biomechanical features of carotid plaques. This novel imaging modality may be used to provide an early assessment of the biomechanical characteristics of carotid plaques. Additionally, the TR parameter was associated with plaque inflammation reaction, possibly providing a new indicator for the early identification of plaque vulnerability.
Collapse
Affiliation(s)
- Miao Li
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lin Li
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenfang Wu
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yehui Jiang
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Pingyang Zhang
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, China -
| |
Collapse
|
48
|
Kok AM, Molony DS, Timmins LH, Ko YA, Boersma E, Eshtehardi P, Wentzel JJ, Samady H. The influence of multidirectional shear stress on plaque progression and composition changes in human coronary arteries. EUROINTERVENTION 2019; 15:692-699. [DOI: 10.4244/eij-d-18-00529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Bourantas CV, Ramasamy A, Karagiannis A, Sakellarios A, Zanchin T, Yamaji K, Ueki Y, Shen X, Fotiadis DI, Michalis LK, Mathur A, Serruys PW, Garcia-Garcia HM, Koskinas K, Torii R, Windecker S, Räber L. Angiographic derived endothelial shear stress: a new predictor of atherosclerotic disease progression. Eur Heart J Cardiovasc Imaging 2019; 20:314-322. [PMID: 30020435 DOI: 10.1093/ehjci/jey091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS To examine the efficacy of angiography derived endothelial shear stress (ESS) in predicting atherosclerotic disease progression. METHODS AND RESULTS Thirty-five patients admitted with ST-elevation myocardial infarction that had three-vessel intravascular ultrasound (IVUS) immediately after revascularization and at 13 months follow-up were included. Three dimensional (3D) reconstruction of the non-culprit vessels were performed using (i) quantitative coronary angiography (QCA) and (ii) methodology involving fusion of IVUS and biplane angiography. In both models, blood flow simulation was performed and the minimum predominant ESS was estimated in 3 mm segments. Baseline plaque characteristics and ESS were used to identify predictors of atherosclerotic disease progression defied as plaque area increase and lumen reduction at follow-up. Fifty-four vessels were included in the final analysis. A moderate correlation was noted between ESS estimated in the 3D QCA and the IVUS-derived models (r = 0.588, P < 0.001); 3D QCA accurately identified segments exposed to low (<1 Pa) ESS in the IVUS-based reconstructions (AUC: 0.793, P < 0.001). Low 3D QCA-derived ESS (<1.75 Pa) was associated with an increase in plaque area, burden, and necrotic core at follow-up. In multivariate analysis, low ESS estimated either in 3D QCA [odds ratio (OR): 2.07, 95% confidence interval (CI): 1.17-3.67; P = 0.012) or in IVUS (<1 Pa; OR: 2.23, 95% CI: 1.23-4.03; P = 0.008) models, and plaque burden were independent predictors of atherosclerotic disease progression; 3D QCA and IVUS-derived models had a similar accuracy in predicting disease progression (AUC: 0.826 vs. 0.827, P = 0.907). CONCLUSIONS 3D QCA-derived ESS can predict disease progression. Further research is required to examine its value in detecting vulnerable plaques.
Collapse
Affiliation(s)
- Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Sciences, University College London, London, UK
| | | | - Alexios Karagiannis
- CTU Bern, Institute of Social and Preventive Medicine, Bern University, Bern, Switzerland
| | - Antonis Sakellarios
- CTU Bern, Institute of Social and Preventive Medicine, Bern University, Bern, Switzerland
| | - Thomas Zanchin
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Kyohei Yamaji
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Yasushi Ueki
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Xiaohui Shen
- Department of Mechanical Engineering, University College London, London, UK
| | - Dimitrios I Fotiadis
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Lampros K Michalis
- 2nd Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Patrick W Serruys
- International Centre for Circulatory Health, NHLI, Imperial College London, London, UK
| | - Hector M Garcia-Garcia
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | | | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Stephan Windecker
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
50
|
Kweon J, Kang SJ, Kim YH, Lee JG, Han S, Ha H, Yang DH, Kang JW, Lim TH, Kwon O, Ahn JM, Lee PH, Park DW, Lee SW, Lee CW, Park SW, Park SJ. Impact of coronary lumen reconstruction on the estimation of endothelial shear stress: in vivo comparison of three-dimensional quantitative coronary angiography and three-dimensional fusion combining optical coherent tomography. Eur Heart J Cardiovasc Imaging 2019; 19:1134-1141. [PMID: 29028985 DOI: 10.1093/ehjci/jex222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/02/2017] [Indexed: 11/14/2022] Open
Abstract
Aims It is not clearly elucidated how the fusion technique improves the accuracy of endothelial shear stress (ESS) prediction, in comparison with that of three-dimensional (3D) quantitative coronary angiography (QCA) alone. We aimed to evaluate the difference in geometric measurements and haemodynamic estimation between 3D QCA and a 3D fusion model combining 3D QCA and optical coherence tomography (OCT). Methods and results Computational fluid dynamics was assessed in the coronary models of 20 patients. In the plane-per-plane comparison, the difference and agreement were assessed using a generalized linear mixed model and concordance correlation coefficient (CCC), respectively. The haemodynamic feature around minimum-lumen-diameter (MLD) was characterized using CCC values calculated for 1-mm segments. In comparison with the 3D fusion model, 3D QCA showed a shorter maximum lumen diameter (2.54 ± 0.67 mm vs. 2.78 ± 0.73 mm, P < 0.001) and smaller lumen area (4.81 ± 2.56 mm2 vs. 5.66 ± 2.97 mm2, P < 0.001), resulting in a significantly higher ESS (4.64 Pa vs. 3.78 Pa, p = 0.029). A more asymmetric lumen shape of the 3D fusion model was more likely associated with under- and over-estimation of the maximum and minimum lumen diameters in the 3D QCA model, respectively. The circumferential ESS variations, which were blunted by 3D QCA, showed the worst concordance near the MLD site (CCC = 0.370) on segment-based comparison. Conclusion The 3D fusion technique may be a more relevant tool for the haemodynamic simulation of coronary arteries through providing more accurate lumen characterization than 3D QCA.
Collapse
Affiliation(s)
- Jihoon Kweon
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Soo-Jin Kang
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Young-Hak Kim
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - June-Goo Lee
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Seungbong Han
- Department of Applied Statistics, Gachon University, 1342, Seongnam-Daero, Sujeong-Gu, Seongnam, Korea
| | - Hojin Ha
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Dong Hyun Yang
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Joon-Won Kang
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Tae-Hwan Lim
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Osung Kwon
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Jung-Min Ahn
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Pil Hyung Lee
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Duk-Woo Park
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Seung-Whan Lee
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Cheol Whan Lee
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Seong-Wook Park
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| | - Seung-Jung Park
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul, Korea
| |
Collapse
|