1
|
Drews JD, Pepper VK, Best CA, Szafron JM, Cheatham JP, Yates AR, Hor KN, Zbinden JC, Chang YC, Mirhaidari GJM, Ramachandra AB, Miyamoto S, Blum KM, Onwuka EA, Zakko J, Kelly J, Cheatham SL, King N, Reinhardt JW, Sugiura T, Miyachi H, Matsuzaki Y, Breuer J, Heuer ED, West TA, Shoji T, Berman D, Boe BA, Asnes J, Galantowicz M, Matsumura G, Hibino N, Marsden AL, Pober JS, Humphrey JD, Shinoka T, Breuer CK. Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci Transl Med 2021; 12:12/537/eaax6919. [PMID: 32238576 DOI: 10.1126/scitranslmed.aax6919] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/27/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
We developed a tissue-engineered vascular graft (TEVG) for use in children and present results of a U.S. Food and Drug Administration (FDA)-approved clinical trial evaluating this graft in patients with single-ventricle cardiac anomalies. The TEVG was used as a Fontan conduit to connect the inferior vena cava and pulmonary artery, but a high incidence of graft narrowing manifested within the first 6 months, which was treated successfully with angioplasty. To elucidate mechanisms underlying this early stenosis, we used a data-informed, computational model to perform in silico parametric studies of TEVG development. The simulations predicted early stenosis as observed in our clinical trial but suggested further that such narrowing could reverse spontaneously through an inflammation-driven, mechano-mediated mechanism. We tested this unexpected, model-generated hypothesis by implanting TEVGs in an ovine inferior vena cava interposition graft model, which confirmed the prediction that TEVG stenosis resolved spontaneously and was typically well tolerated. These findings have important implications for our translational research because they suggest that angioplasty may be safely avoided in patients with asymptomatic early stenosis, although there will remain a need for appropriate medical monitoring. The simulations further predicted that the degree of reversible narrowing can be mitigated by altering the scaffold design to attenuate early inflammation and increase mechano-sensing by the synthetic cells, thus suggesting a new paradigm for optimizing next-generation TEVGs. We submit that there is considerable translational advantage to combined computational-experimental studies when designing cutting-edge technologies and their clinical management.
Collapse
Affiliation(s)
- Joseph D Drews
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Victoria K Pepper
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Cameron A Best
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - John P Cheatham
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Andrew R Yates
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Kan N Hor
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jacob C Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yu-Chun Chang
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Gabriel J M Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Shinka Miyamoto
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kevin M Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ekene A Onwuka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jason Zakko
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - John Kelly
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sharon L Cheatham
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Nakesha King
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - James W Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Tadahisa Sugiura
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Hideki Miyachi
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Julie Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Eric D Heuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - T Aaron West
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Toshihiro Shoji
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Darren Berman
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Brian A Boe
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jeremy Asnes
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mark Galantowicz
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Goki Matsumura
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Narutoshi Hibino
- Department of Surgery, University of Chicago/Advocate Children's Hospital, Chicago, IL 60453, USA
| | - Alison L Marsden
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, CA 94304, USA
| | - Jordan S Pober
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA. .,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
2
|
Vogt L, Ruther F, Salehi S, Boccaccini AR. Poly(Glycerol Sebacate) in Biomedical Applications-A Review of the Recent Literature. Adv Healthc Mater 2021; 10:e2002026. [PMID: 33733604 PMCID: PMC11468981 DOI: 10.1002/adhm.202002026] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Poly(glycerol sebacate) (PGS) continues to attract attention for biomedical applications owing to its favorable combination of properties. Conventionally polymerized by a two-step polycondensation of glycerol and sebacic acid, variations of synthesis parameters, reactant concentrations or by specific chemical modifications, PGS materials can be obtained exhibiting a wide range of physicochemical, mechanical, and morphological properties for a variety of applications. PGS has been extensively used in tissue engineering (TE) of cardiovascular, nerve, cartilage, bone and corneal tissues. Applications of PGS based materials in drug delivery systems and wound healing are also well documented. Research and development in the field of PGS continue to progress, involving mainly the synthesis of modified structures using copolymers, hybrid, and composite materials. Moreover, the production of self-healing and electroactive materials has been introduced recently. After almost 20 years of research on PGS, previous publications have outlined its synthesis, modification, properties, and biomedical applications, however, a review paper covering the most recent developments in the field is lacking. The present review thus covers comprehensively literature of the last five years on PGS-based biomaterials and devices focusing on advanced modifications of PGS for applications in medicine and highlighting notable advances of PGS based systems in TE and drug delivery.
Collapse
Affiliation(s)
- Lena Vogt
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Florian Ruther
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Sahar Salehi
- Chair of Biomaterials, University of Bayreuth, Bayreuth, 95447, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| |
Collapse
|
3
|
Khosravi R, Ramachandra AB, Szafron JM, Schiavazzi DE, Breuer CK, Humphrey JD. A computational bio-chemo-mechanical model of in vivo tissue-engineered vascular graft development. Integr Biol (Camb) 2021; 12:47-63. [PMID: 32222759 DOI: 10.1093/intbio/zyaa004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Stenosis is the primary complication of current tissue-engineered vascular grafts used in pediatric congenital cardiac surgery. Murine models provide considerable insight into the possible mechanisms underlying this situation, but they are not efficient for identifying optimal changes in scaffold design or therapeutic strategies to prevent narrowing. In contrast, computational modeling promises to enable time- and cost-efficient examinations of factors leading to narrowing. Whereas past models have been limited by their phenomenological basis, we present a new mechanistic model that integrates molecular- and cellular-driven immuno- and mechano-mediated contributions to in vivo neotissue development within implanted polymeric scaffolds. Model parameters are inferred directly from in vivo measurements for an inferior vena cava interposition graft model in the mouse that are augmented by data from the literature. By complementing Bayesian estimation with identifiability analysis and simplex optimization, we found optimal parameter values that match model outputs with experimental targets and quantify variability due to measurement uncertainty. Utility is illustrated by parametrically exploring possible graft narrowing as a function of scaffold pore size, macrophage activity, and the immunomodulatory cytokine transforming growth factor beta 1 (TGF-β1). The model captures salient temporal profiles of infiltrating immune and synthetic cells and associated secretion of cytokines, proteases, and matrix constituents throughout neovessel evolution, and parametric studies suggest that modulating scaffold immunogenicity with early immunomodulatory therapies may reduce graft narrowing without compromising compliance.
Collapse
Affiliation(s)
- Ramak Khosravi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Daniele E Schiavazzi
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Poupart O, Conti R, Schmocker A, Pancaldi L, Moser C, Nuss KM, Sakar MS, Dobrocky T, Grützmacher H, Mosimann PJ, Pioletti DP. Pulsatile Flow-Induced Fatigue-Resistant Photopolymerizable Hydrogels for the Treatment of Intracranial Aneurysms. Front Bioeng Biotechnol 2021; 8:619858. [PMID: 33553124 PMCID: PMC7855579 DOI: 10.3389/fbioe.2020.619858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
An alternative intracranial aneurysm embolic agent is emerging in the form of hydrogels due to their ability to be injected in liquid phase and solidify in situ. Hydrogels have the ability to fill an aneurysm sac more completely compared to solid implants such as those used in coil embolization. Recently, the feasibility to implement photopolymerizable poly(ethylene glycol) dimethacrylate (PEGDMA) hydrogels in vitro has been demonstrated for aneurysm application. Nonetheless, the physical and mechanical properties of such hydrogels require further characterization to evaluate their long-term integrity and stability to avoid implant compaction and aneurysm recurrence over time. To that end, molecular weight and polymer content of the hydrogels were tuned to match the elastic modulus and compliance of aneurysmal tissue while minimizing the swelling volume and pressure. The hydrogel precursor was injected and photopolymerized in an in vitro aneurysm model, designed by casting polydimethylsiloxane (PDMS) around 3D printed water-soluble sacrificial molds. The hydrogels were then exposed to a fatigue test under physiological pulsatile flow, inducing a combination of circumferential and shear stresses. The hydrogels withstood 5.5 million cycles and no significant weight loss of the implant was observed nor did the polymerized hydrogel protrude or migrate into the parent artery. Slight surface erosion defects of 2–10 μm in depth were observed after loading compared to 2 μm maximum for non-loaded hydrogels. These results show that our fine-tuned photopolymerized hydrogel is expected to withstand the physiological conditions of an in vivo implant study.
Collapse
Affiliation(s)
- Oriane Poupart
- Laboratory of Biomechanical Orthopedics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Riccardo Conti
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Andreas Schmocker
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland.,Laboratory of Applied Photonics Devices, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Lucio Pancaldi
- Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christophe Moser
- Laboratory of Applied Photonics Devices, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Katja M Nuss
- Musculoskeletal Research Unit, Department of Molecular Mechanisms of Disease, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mahmut S Sakar
- Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tomas Dobrocky
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Pascal J Mosimann
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, Bern, Switzerland.,Department of Diagnostic and Interventional Neuroradiology, Alfried Krupp Hospital, Essen, Germany
| | - Dominique P Pioletti
- Laboratory of Biomechanical Orthopedics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Wu YL, Szafron JM, Blum KM, Zbinden JC, Khosravi R, Best CA, Reinhardt JW, Zeng Q, Yi T, Shinoka T, Humphrey JD, Breuer CK, Wang Y. Electrospun Tissue-Engineered Arterial Graft Thickness Affects Long-Term Composition and Mechanics. Tissue Eng Part A 2020; 27:593-603. [PMID: 32854586 DOI: 10.1089/ten.tea.2020.0166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Wall stress is often lower in tissue-engineered constructs than in comparable native tissues due to the use of stiff polymeric materials having thicker walls. In this work, we sought to design a murine arterial graft having a more favorable local mechanical environment for the infiltrating cells; we used electrospinning to enclose a compliant inner core of poly(glycerol sebacate) with a stiffer sheath of poly(caprolactone) to reduce the potential for rupture. Two scaffolds were designed that differed in the thickness of the core as previous computational simulations found that circumferential wall stresses could be increased in the core toward native values by increasing the ratio of the core:sheath. Our modified electrospinning protocols reduced swelling of the core upon implantation and eliminated residual stresses in the sheath, both of which had contributed to the occlusion of implanted grafts during pilot studies. For both designs, a subset of implanted grafts occluded due to thrombosis or ruptured due to suspected point defects in the sheath. However, there were design-based differences in collagen content and mechanical behavior during early remodeling of the patent samples, with the thinner-core scaffolds having more collagen and a stiffer behavior after 12 weeks of implantation than the thicker-core scaffolds. By 24 weeks, the thicker-core scaffolds also became stiff, with similar amounts of collagen but increased smooth muscle cell and elastin content. These data suggest that increasing wall stress toward native values may provide a more favorable environment for normal arterial constituents to form despite the overall stiffness of the construct remaining elevated due to the absolute increase in load-bearing constituents.
Collapse
Affiliation(s)
- Yen-Lin Wu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Kevin M Blum
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Jacob C Zbinden
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ramak Khosravi
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Cameron A Best
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - James W Reinhardt
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Qiang Zeng
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tai Yi
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Toshiharu Shinoka
- Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Zamboulis A, Nakiou EA, Christodoulou E, Bikiaris DN, Kontonasaki E, Liverani L, Boccaccini AR. Polyglycerol Hyperbranched Polyesters: Synthesis, Properties and Pharmaceutical and Biomedical Applications. Int J Mol Sci 2019; 20:E6210. [PMID: 31835372 PMCID: PMC6940955 DOI: 10.3390/ijms20246210] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
In a century when environmental pollution is a major issue, polymers issued from bio-based monomers have gained important interest, as they are expected to be environment-friendly, and biocompatible, with non-toxic degradation products. In parallel, hyperbranched polymers have emerged as an easily accessible alternative to dendrimers with numerous potential applications. Glycerol (Gly) is a natural, low-cost, trifunctional monomer, with a production expected to grow significantly, and thus an excellent candidate for the synthesis of hyperbranched polyesters for pharmaceutical and biomedical applications. In the present article, we review the synthesis, properties, and applications of glycerol polyesters of aliphatic dicarboxylic acids (from succinic to sebacic acids) as well as the copolymers of glycerol or hyperbranched polyglycerol with poly(lactic acid) and poly(ε-caprolactone). Emphasis was given to summarize the synthetic procedures (monomer molar ratio, used catalysts, temperatures, etc.,) and their effect on the molecular weight, solubility, and thermal and mechanical properties of the prepared hyperbranched polymers. Their applications in pharmaceutical technology as drug carries and in biomedical applications focusing on regenerative medicine are highlighted.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Eirini A. Nakiou
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Eleana Kontonasaki
- Department of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Liliana Liverani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| |
Collapse
|
7
|
Novel controllable degradation behavior and biocompatibility of segmented poly–ε–caprolactone in rats. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Xiao B, Yang W, Lei D, Huang J, Yin Y, Zhu Y, You Z, Wang F, Sun S. PGS Scaffolds Promote the In Vivo Survival and Directional Differentiation of Bone Marrow Mesenchymal Stem Cells Restoring the Morphology and Function of Wounded Rat Uterus. Adv Healthc Mater 2019; 8:e1801455. [PMID: 30734535 DOI: 10.1002/adhm.201801455] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/26/2018] [Indexed: 01/23/2023]
Abstract
Intrauterine adhesion (IUA) causing infertility and recurrent miscarriage of reproductive female mammals usually results from endometrium injury. Nevertheless, there is no efficient therapeutic method to avoid IUA. Bone marrow derived mesenchymal stem cells (BMSCs) are an important cell source for tissue regeneration. This study designs and explores the ability of BMSC-loaded elastic poly(glycerol sebacate) (PGS) scaffold to prevent IUA and compares the effect of PGS with poly(lactic-co-glycolic acid) (PLGA) and collagen scaffolds in resumption of damaged rat uteruses. The 3D architecture provided by PGS scaffolds favors the attachment and growth of rat BMSCs. In vivo bioluminescence imaging shows that compared with direct BMSC intrauterine injection, PLGA, and collagen scaffolds, the PGS scaffold significantly prolongs the retention time of BMSCs in a wounded rat uterus model. More importantly, BMSCs can directly differentiate into endometrial stromal cells after transplantation of PGS/BMSCs constructs, but not PLGA/BMSCs and collagen/BMSCs. It is found that the level of transforming growth factor β1 (TGF-β1), basic fibroblast growth factor (bFGF), vascular endothelial growth factor, and insulin-like growth factors in the injured endometrium adjacent to PGS/BMSCs constructs is higher than those of rats receiving PLGA/BMSCs, collagen/BMSCs, or BMSCs intrauterine transplantation. Besides, transplantation of PGS/BMSCs leads to better morphology recovery of the damaged uterus than PLGA/BMSCs and collagen/BMSCs. The receptive fertility of PGS/BMSCs is 72.2 ± 6.4%, similar to the one of collagen/BMSCs, but significantly higher than 42.3 ± 3.9% in PLGA/BMSCs. Taken together, PGS/BMSCs may be a promising candidate for preventing IUA.
Collapse
Affiliation(s)
- Bang Xiao
- Department of Medical Genetics; Second Military Medical University; 800 Xiangyin Road Shanghai 200433 P. R. China
| | - Wenjun Yang
- Department of Medical Genetics; Second Military Medical University; 800 Xiangyin Road Shanghai 200433 P. R. China
| | - Dong Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; International Joint Laboratory for Advanced Fiber and Low-dimension Materials; College of Materials Science and Engineering; Donghua University; Shanghai 201620 P. R. China
| | - Jinfeng Huang
- Department of Medical Genetics; Second Military Medical University; 800 Xiangyin Road Shanghai 200433 P. R. China
| | - Yupeng Yin
- Department of Medical Genetics; Second Military Medical University; 800 Xiangyin Road Shanghai 200433 P. R. China
| | - Yiqing Zhu
- Department of Medical Genetics; Second Military Medical University; 800 Xiangyin Road Shanghai 200433 P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; International Joint Laboratory for Advanced Fiber and Low-dimension Materials; College of Materials Science and Engineering; Donghua University; Shanghai 201620 P. R. China
| | - Fang Wang
- Department of Medical Genetics; Second Military Medical University; 800 Xiangyin Road Shanghai 200433 P. R. China
| | - Shuhan Sun
- Department of Medical Genetics; Second Military Medical University; 800 Xiangyin Road Shanghai 200433 P. R. China
| |
Collapse
|
9
|
Gade PS, Robertson AM, Chuang CY. Multiphoton Imaging of Collagen, Elastin, and Calcification in Intact Soft-Tissue Samples. CURRENT PROTOCOLS IN CYTOMETRY 2019; 87:e51. [PMID: 30379412 PMCID: PMC6314890 DOI: 10.1002/cpcy.51] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiphoton-induced second-harmonic generation and two-photon excitation enable imaging of collagen and elastin fibers at micron-level resolution to depths of hundreds of microns, without the use of exogenous stains. These attributes can be leveraged for quantitative analysis of the 3D architecture of collagen and elastin fibers within intact, soft tissue specimens such as the artery and bladder wall. This architecture influences the function of intramural cells and also plays a primary role in determining tissue passive mechanical properties. Calcification deposition in soft tissues is a highly prevalent pathology in both older and diseased populations that can alter tissue properties. In this unit, we provide a protocol for simultaneous multiphoton microscopy (MPM) imaging and analysis of 3D collagen and elastin structures with calcification, which is effective for fixed and fresh intact samples. We also provide an associated micro-CT protocol to identify regions of interest in the samples as a means to target the MPM imaging. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Piyusha S. Gade
- Department of Bioengineerin, University of Pittsburgh Pittsburgh, PA
| | - Anne M. Robertson
- Department of Bioengineerin, University of Pittsburgh Pittsburgh, PA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh Pittsburgh, PA
| | - Chih-Yuan Chuang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh Pittsburgh, PA
| |
Collapse
|
10
|
Lee KW, Gade PS, Dong L, Zhang Z, Aral AM, Gao J, Ding X, Stowell CE, Nisar MU, Kim K, Reinhardt DP, Solari MG, Gorantla VS, Robertson AM, Wang Y. A biodegradable synthetic graft for small arteries matches the performance of autologous vein in rat carotid arteries. Biomaterials 2018; 181:67-80. [DOI: 10.1016/j.biomaterials.2018.07.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022]
|
11
|
Stowell CET, Wang Y. Quickening: Translational design of resorbable synthetic vascular grafts. Biomaterials 2018; 173:71-86. [PMID: 29772461 PMCID: PMC6492619 DOI: 10.1016/j.biomaterials.2018.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022]
Abstract
Traditional tissue-engineered vascular grafts have yet to gain wide clinical use. The difficulty of scaling production of these cell- or biologic-based products has hindered commercialization. In situ tissue engineering bypasses such logistical challenges by using acellular resorbable scaffolds. Upon implant, the scaffolds become remodeled by host cells. This review describes the scientific and translational advantages of acellular, synthetic vascular grafts. It surveys in vivo results obtained with acellular synthetics over their fifty years of technological development. Finally, it discusses emerging principles, highlights strategic considerations for designers, and identifies questions needing additional research.
Collapse
Affiliation(s)
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, USA.
| |
Collapse
|
12
|
Lee SH, Lee KW, Gade PS, Robertson AM, Wang Y. Microwave-assisted facile fabrication of porous poly (glycerol sebacate) scaffolds. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2018; 29:907-916. [PMID: 28569644 PMCID: PMC5738282 DOI: 10.1080/09205063.2017.1335076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022]
Abstract
The biodegradable elastomeric polyester poly(glycerol sebacate) (PGS) was developed for soft-tissue engineering. It has been used in various research applications such as wound healing, cartilage tissue engineering, and vascular grafting due to its biocompatibility and elastomeric properties. However conventional PGS manufacture is generally limited by the laborious reaction conditions needed for curing which requires elevated reaction temperatures, high vacuum and multi-day reaction times. In this study, we developed a microwave irradiation methodology to fabricate PGS scaffolds under milder conditions with curing times that are 8 times faster than conventional methods. In particular, we determined microwave reaction temperatures and times for maximum crosslinking of PGS elastomers, demonstrating that PGS is fully crosslinked using gradual heating up to 160 °C for 3 h. Porosity and mechanical properties of these microwave-cured PGS elastomers were shown to be similar to PGS elastomers fabricated by the conventional polycondensation method (150 °C under 30 Torr for 24 h). To move one step closer to clinical application, we also examined the biocompatibility of microwave-cured PGS using in vitro cell viability assays with primary baboon arterial smooth muscle cells (SMCs). These combined results show microwave curing of PGS is a viable alternative to conventional curing.
Collapse
Affiliation(s)
- Soo Hyon Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Kee-Won Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Piyusha S. Gade
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Anne M. Robertson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA, USA
- Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|