1
|
Amador GJ, Klaassen van Oorschot B, Sen U, Karman B, Leenders R. Capillary adhesion of stick insects. Ann N Y Acad Sci 2024; 1538:98-106. [PMID: 39091080 DOI: 10.1111/nyas.15195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Scientific progress within the last few decades has revealed the functional morphology of an insect's sticky footpads-a compliant pad that secretes thin liquid films. However, the physico-chemical mechanisms underlying their adhesion remain elusive. Here, we explore these underlying mechanisms by simultaneously measuring adhesive force and contact geometry of the adhesive footpads of live, tethered Indian stick insects, Carausius morosus, spanning more than two orders of magnitude in body mass. We find that the adhesive force we measure is similar to the previous measurements that use a centrifuge. Our measurements afford us the opportunity to directly probe the adhesive stress in vivo and use existing theory on capillary adhesion to predict the surface tension of the secreted liquid and compare it to previous assumptions. From our predictions, we find that the surface tension required to generate the adhesive stresses we observed ranges between 0.68 and 12 mNm - 1 ${\rm m}^{-1}$ . The low surface tension of the liquid would enhance the wetting of the stick insect's footpads and promote their ability to conform to various substrates. Our insights may inform the biomimetic design of capillary-based, reversible adhesives and motivate future studies on the physico-chemical properties of the secreted liquid.
Collapse
Affiliation(s)
- Guillermo J Amador
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Uddalok Sen
- Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, The Netherlands
| | - Benjamin Karman
- Biology Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rutger Leenders
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
2
|
Dayan CB, Son D, Aghakhani A, Wu Y, Demir SO, Sitti M. Machine Learning-Based Shear Optimal Adhesive Microstructures with Experimental Validation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304437. [PMID: 37691013 DOI: 10.1002/smll.202304437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/06/2023] [Indexed: 09/12/2023]
Abstract
Bioinspired fibrillar structures are promising for a wide range of disruptive adhesive applications. Especially micro/nanofibrillar structures on gecko toes can have strong and controllable adhesion and shear on a wide range of surfaces with residual-free, repeatable, self-cleaning, and other unique features. Synthetic dry fibrillar adhesives inspired by such biological fibrils are optimized in different aspects to increase their performance. Previous fibril designs for shear optimization are limited by predefined standard shapes in a narrow range primarily based on human intuition, which restricts their maximum performance. This study combines the machine learning-based optimization and finite-element-method-based shear mechanics simulations to find shear-optimized fibril designs automatically. In addition, fabrication limitations are integrated into the simulations to have more experimentally relevant results. The computationally discovered shear-optimized structures are fabricated, experimentally validated, and compared with the simulations. The results show that the computed shear-optimized fibrils perform better than the predefined standard fibril designs. This design optimization method can be used in future real-world shear-based gripping or nonslip surface applications, such as robotic pick-and-place grippers, climbing robots, gloves, electronic devices, and medical and wearable devices.
Collapse
Affiliation(s)
- Cem Balda Dayan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Donghoon Son
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Amirreza Aghakhani
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Yingdan Wu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Sinan Ozgun Demir
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich, 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
3
|
Bergmann JB, Moatsou D, Steiner U, Wilts BD. Bio-inspired materials to control and minimise insect attachment. BIOINSPIRATION & BIOMIMETICS 2022; 17:051001. [PMID: 36099911 DOI: 10.1088/1748-3190/ac91b9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
More than three quarters of all animal species on Earth are insects, successfully inhabiting most ecosystems on the planet. Due to their opulence, insects provide the backbone of many biological processes, but also inflict adverse impacts on agricultural and stored products, buildings and human health. To countermeasure insect pests, the interactions of these animals with their surroundings have to be fully understood. This review focuses on the various forms of insect attachment, natural surfaces that have evolved to counter insect adhesion, and particularly features recently developed synthetic bio-inspired solutions. These bio-inspired solutions often enhance the variety of applicable mechanisms observed in nature and open paths for improved technological solutions that are needed in a changing global society.
Collapse
Affiliation(s)
- Johannes B Bergmann
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Dafni Moatsou
- Institute of Organic Chemistry, Karlsruhe Institute for Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria
| |
Collapse
|
4
|
van den Boogaart LM, Langowski JKA, Amador GJ. Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction. Biomimetics (Basel) 2022; 7:biomimetics7030134. [PMID: 36134938 PMCID: PMC9496521 DOI: 10.3390/biomimetics7030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Controlled, reversible attachment is widely spread throughout the animal kingdom: from ticks to tree frogs, whose weights span from 2 mg to 200 g, and from geckos to mosquitoes, who stick under vastly different situations, such as quickly climbing trees and stealthily landing on human hosts. A fascinating and complex interplay of adhesive and frictional forces forms the foundation of attachment of these highly diverse systems to various substrates. In this review, we present an overview of the techniques used to quantify the adhesion and friction of terrestrial animals, with the aim of informing future studies on the fundamentals of bioadhesion, and motivating the development and adoption of new or alternative measurement techniques. We classify existing methods with respect to the forces they measure, including magnitude and source, i.e., generated by the whole body, single limbs, or by sub-structures. Additionally, we compare their versatility, specifically what parameters can be measured, controlled, and varied. This approach reveals critical trade-offs of bioadhesion measurement techniques. Beyond stimulating future studies on evolutionary and physicochemical aspects of bioadhesion, understanding the fundamentals of biological attachment is key to the development of biomimetic technologies, from soft robotic grippers to gentle surgical tools.
Collapse
Affiliation(s)
- Luc M. van den Boogaart
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Julian K. A. Langowski
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
- Correspondence: (J.K.A.L.); (G.J.A.)
| | - Guillermo J. Amador
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
- Correspondence: (J.K.A.L.); (G.J.A.)
| |
Collapse
|
5
|
Dayan CB, Chun S, Krishna‐Subbaiah N, Drotlef D, Akolpoglu MB, Sitti M. 3D Printing of Elastomeric Bioinspired Complex Adhesive Microstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103826. [PMID: 34396591 PMCID: PMC11468481 DOI: 10.1002/adma.202103826] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Bioinspired elastomeric structural adhesives can provide reversible and controllable adhesion on dry/wet and synthetic/biological surfaces for a broad range of commercial applications. Shape complexity and performance of the existing structural adhesives are limited by the used specific fabrication technique, such as molding. To overcome these limitations by proposing complex 3D microstructured adhesive designs, a 3D elastomeric microstructure fabrication approach is implemented using two-photon-polymerization-based 3D printing. A custom aliphatic urethane-acrylate-based elastomer is used as the 3D printing material. Two designs are demonstrated with two combined biological inspirations to show the advanced capabilities enabled by the proposed fabrication approach and custom elastomer. The first design focuses on springtail- and gecko-inspired hybrid microfiber adhesive, which has the multifunctionalities of side-surface liquid super-repellency, top-surface liquid super-repellency, and strong reversible adhesion features in a single fiber array. The second design primarily centers on octopus- and gecko-inspired hybrid adhesive, which exhibits the benefits of both octopus- and gecko-inspired microstructured adhesives for strong reversible adhesion on both wet and dry surfaces, such as skin. This fabrication approach could be used to produce many other 3D complex elastomeric structural adhesives for future real-world applications.
Collapse
Affiliation(s)
- Cem Balda Dayan
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Sungwoo Chun
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Department of Electronics and Information EngineeringKorea UniversitySejong30019Republic of Korea
| | - Nagaraj Krishna‐Subbaiah
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Dirk‐Michael Drotlef
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Mukrime Birgul Akolpoglu
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH ZürichZürich8092Switzerland
- School of Medicine and College of EngineeringKoç UniversityIstanbul34450Turkey
| |
Collapse
|
6
|
Bergmann JB, Redondo A, Steiner U, Wilts BD, Moatsou D. Insect Antiadhesive Surfaces Using Electrosprayed Wrinkled Ethyl Cellulose Particles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9232-9238. [PMID: 33570923 DOI: 10.1021/acsami.0c21602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A range of plants developed leaves, the surfaces of which prevent or diminish insect adhesion due to their microscopic topography. Well known examples include the leaves of the lychee tree (Litchi chinensis). Here, we report a method to coat substrates with ethyl cellulose microparticles that exhibit wrinkled surfaces, resulting in surface morphologies that closely resemble those of insect repelling plants, i.e., Litchi chinensis. The microparticles were prepared by electrospraying, a method that allowed tuning of the particle size and surface morphology. By measuring the traction forces of Colorado potato beetles walking on these surfaces, the wrinkly microsphere parameters were optimized, resulting in biomimetic surfaces that surpass the antiadhesive properties of the biological role model. This study may pave the way to sustainable, nontoxic insecticide replacements.
Collapse
Affiliation(s)
- Johannes B Bergmann
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Alexandre Redondo
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Dafni Moatsou
- Institute of Organic Chemistry, Karlsruhe Institute for Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
7
|
Boudinot BE, Beutel RG, Gorb SN, Polilov AA. Functional diversity of attachment and grooming leg structures is retained in all but the smallest insects. J Zool (1987) 2020. [DOI: 10.1111/jzo.12840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- B. E. Boudinot
- Department of Entomology & Nematology University of California Davis CA USA
| | - R. G. Beutel
- Institut für Zoologie und Evolutionsforschung Friedrich‐Schiller‐Universität Jena Germany
- Economo Group Okinawa Institute of Science and Technology (OIST) Tancha Japan
| | - S. N. Gorb
- Department Functional Morphology and Biomechanics Zoological Institute of the University of Kiel Kiel Germany
| | - A. A. Polilov
- Department of Entomology Biological faculty Lomonosov Moscow State University Moscow Russia
| |
Collapse
|
8
|
Kumar D, Rub MA, Asiri AM. Synthesis and characterization of geminis and implications of their micellar solution on ninhydrin and metal amino acid complex. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200775. [PMID: 32874661 PMCID: PMC7428287 DOI: 10.1098/rsos.200775] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/02/2020] [Indexed: 05/12/2023]
Abstract
In our study, three gemini dicationic surfactants with different methylene group spacer (16-6-16, 16-5-16 and 16-4-16) have been synthesized and characterized in solution by 1H NMR spectroscopic technique. The implications of gemini micellar solution on ninhydrin and metal amino acid complex ([Cu(II)-Trp]+) were performed by the means of single-beam UV-visible spectroscopy. The absorbance was noted at regular time intervals and values of rate constant (kψ ) were determined by using a computer-based program. Synthesized surfactants proved as an efficient catalyst on the interaction of ninhydrin with metal amino acid complex as compared with conventional surfactant and aqueous systems. The required description regarding the implications of gemini dicationic surfactants are provided in the text in detail. The conductivity technique was applied in order to get critical micelle concentration (cmc) of geminis in the presence and absence of reactants. Catalytic results developed in gemini dicationic surfactant system were explained effectively by pseudo-phase model. Various thermodynamic quantities, viz., activation energy, E a, activation enthalpy, ΔH #, and activation entropy, ΔS #, were obtained on interaction of ninhydrin with [Cu(II)-Trp]+ in gemini systems by applying Eyring equation. A detailed explanation about these evaluated parameters was also made.
Collapse
Affiliation(s)
- Dileep Kumar
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Malik Abdul Rub
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Iazzolino A, Cerkvenik U, Tourtit Y, Ladang A, Compère P, Gilet T. Liquid dispensing in the adhesive hairy pads of dock beetles. J R Soc Interface 2020; 17:20200024. [PMID: 32370693 PMCID: PMC7276548 DOI: 10.1098/rsif.2020.0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/07/2020] [Indexed: 11/12/2022] Open
Abstract
Many insects can climb on smooth inverted substrates using adhesive hairy pads on their legs. The hair-surface contact is often mediated by minute volumes of liquid, which form capillary bridges in the contact zones and aid in adhesion. The liquid transport to the contact zones is poorly understood. We investigated the dynamics of liquid secretion in the dock beetle Gastrophysa viridula by quantifying the volume of the deposited liquid footprints during simulated walking experiments. The footprint volume increased with pad-surface contact time and was independent of the non-contact time. Furthermore, the footprint volume decreased to zero after reaching a threshold cumulative volume (approx. 30 fl) in successive steps. This suggests a limited reservoir with low liquid influx. We modelled our results as a fluidic resistive system and estimated the hydraulic resistance of a single attachment hair of the order of MPa · s/fl. The liquid secretion in beetle hairy pads is dominated by passive suction of the liquid during the contact phase. The high calculated resistance of the secretion pathway may originate from the nanosized channels in the hair cuticle. Such nanochannels presumably mediate the transport of cuticular lipids, which are chemically similar to the adhesive liquid.
Collapse
Affiliation(s)
- Antonio Iazzolino
- Microfluidics Lab, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| | - Uroš Cerkvenik
- Microfluidics Lab, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
- Functional and Evolutionary Morphology Laboratory, FOCUS, University of Liège, Liège, Belgium
| | - Youness Tourtit
- Microfluidics Lab, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
- Transfers, Interfaces and Processes, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Auxane Ladang
- Microfluidics Lab, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| | - Philippe Compère
- Functional and Evolutionary Morphology Laboratory, FOCUS, University of Liège, Liège, Belgium
| | - Tristan Gilet
- Microfluidics Lab, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
10
|
Dai Q, Qiu S, Huang W, Wang X. Non-sticky and Free-forward Performances of Grubs against Soil. Colloids Surf B Biointerfaces 2020; 191:111006. [PMID: 32283332 DOI: 10.1016/j.colsurfb.2020.111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
Abstract
The intriguing non-sticky and free-forward performances of grubs against soil deeply attract our interests. In this study, the life cycle and body morphology of a kind of grubs, larvae of Japanese rhinoceros beetles, are introduced. The uniformly oriented hierarchical micro structures pattern on the back epidermis is firstly reported. The rotating and forwarding motion configuration of grubs in soil is unraveled. The friction and adhesion properties of grubs are evaluated and compared with typical materials. The biological electroosmosis induced adhesion reduction effect and the hierarchical structures pattern induced anisotropic friction feature are highlighted.
Collapse
Affiliation(s)
- Qingwen Dai
- National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China
| | - Shaojie Qiu
- National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China
| | - Wei Huang
- National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China
| | - Xiaolei Wang
- National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China.
| |
Collapse
|
11
|
Federle W, Labonte D. Dynamic biological adhesion: mechanisms for controlling attachment during locomotion. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190199. [PMID: 31495309 PMCID: PMC6745483 DOI: 10.1098/rstb.2019.0199] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2019] [Indexed: 01/12/2023] Open
Abstract
The rapid control of surface attachment is a key feature of natural adhesive systems used for locomotion, and a property highly desirable for man-made adhesives. Here, we describe the challenges of adhesion control and the timescales involved across diverse biological attachment systems and different adhesive mechanisms. The most widespread control principle for dynamic surface attachment in climbing animals is that adhesion is 'shear-sensitive' (directional): pulling adhesive pads towards the body results in strong attachment, whereas pushing them away from it leads to easy detachment, providing a rapid mechanical 'switch'. Shear-sensitivity is based on changes of contact area and adhesive strength, which in turn arise from non-adhesive default positions, the mechanics of peeling, pad sliding, and the targeted storage and controlled release of elastic strain energy. The control of adhesion via shear forces is deeply integrated with the climbing animals' anatomy and locomotion, and involves both active neuromuscular control, and rapid passive responses of sophisticated mechanical systems. The resulting dynamic adhesive systems are robust, reliable, versatile and nevertheless remarkably simple. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.
Collapse
Affiliation(s)
- Walter Federle
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - David Labonte
- Department of Bioengineering, Imperial College, London, UK
| |
Collapse
|
12
|
Booth JA, Tinnemann V, Hensel R, Arzt E, McMeeking RM, Foster KL. Statistical properties of defect-dependent detachment strength in bioinspired dry adhesives. J R Soc Interface 2019; 16:20190239. [PMID: 31362613 DOI: 10.1098/rsif.2019.0239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dry adhesives using surface microstructures inspired by climbing animals have been recognized for their potentially novel capabilities, with relevance to a range of applications including pick-and-place handling. Past work has suggested that performance may be strongly dependent on variability in the critical defect size among fibrillar sub-contacts. However, it has not been directly verified that the resulting adhesive strength distribution is well described by the statistical theory of fracture used. Using in situ contact visualization, we characterize adhesive strength on a fibril-by-fibril basis for a synthetic fibrillar adhesive. Two distinct detachment mechanisms are observed. The fundamental, design-dependent mechanism involves defect propagation from within the contact. The secondary mechanism involves defect propagation from fabrication imperfections at the perimeter. The existence of two defect populations complicates characterization of the statistical properties. This is addressed by using the mean order ranking method to isolate the fundamental mechanism. The statistical properties obtained are subsequently used within a bimodal framework, allowing description of the secondary mechanism. Implications for performance are discussed, including the improvement of strength associated with elimination of fabrication imperfections. This statistical analysis of defect-dependent detachment represents a more complete approach to the characterization of fibrillar adhesives, offering new insight for design and fabrication.
Collapse
Affiliation(s)
- Jamie A Booth
- Mechanical Engineering Department, University of California, Santa Barbara, CA 93106, USA
| | - Verena Tinnemann
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - René Hensel
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Eduard Arzt
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.,Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany
| | - Robert M McMeeking
- Mechanical Engineering Department, University of California, Santa Barbara, CA 93106, USA.,INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.,Materials Department, University of California, Santa Barbara, CA 93106, USA.,School of Engineering, University of Aberdeen, King's College, Aberdeen AB24 3UE, UK
| | - Kimberly L Foster
- Mechanical Engineering Department, University of California, Santa Barbara, CA 93106, USA.,School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
13
|
Gilet T, Heepe L, Lambert P, Compère P, Gorb SN. Liquid secretion and setal compliance: the beetle's winning combination for a robust and reversible adhesion. CURRENT OPINION IN INSECT SCIENCE 2018; 30:19-25. [PMID: 30553481 DOI: 10.1016/j.cois.2018.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/12/2018] [Accepted: 08/18/2018] [Indexed: 06/09/2023]
Abstract
This paper is a brief review and discussion of the recent literature on the hairy adhesive pads of beetles, with the focus on two features of these pads, firstly, compliant setal tips and secondly, a liquid secretion, that together guarantee robust cycles of attachment/detachment on smooth and rough substrates. The compliance is required to ensure sufficient contact between the setal tips and the substrate with a minimum of elastically stored energy at the contact interface. The secretion fills potential gaps between both surfaces, generates capillary adhesive forces, and enhances self-cleaning of these microstructures. Furthermore, the secretion might prevent setal dehydration and subsequently maintain setal tip compliancy. The paper also pinpoints a series of open questions on the physical mechanisms at play to passively regulate the contact forces developed by these hairy pads during locomotion.
Collapse
Affiliation(s)
- Tristan Gilet
- Microfluidics Lab, Aerospace and Mechanical Engineering, University of Liège, B-4000 Liège, Belgium.
| | - Lars Heepe
- Functional Morphology and Biomechanics, Kiel University, D-24118 Kiel, Germany
| | - Pierre Lambert
- TIPs, CP 165/67, Université Libre de Bruxelles, B-1000 Brussels, Belgium
| | - Philippe Compère
- Laboratoire de Morphologie Fonctionnelle et Evolutive, FOCUS, University of Liège, B-4000 Liège, Belgium
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Kiel University, D-24118 Kiel, Germany
| |
Collapse
|