1
|
Pietrzyk P, Phan-Udom N, Chutoe C, Pingault L, Roy A, Libault M, Saengwilai PJ, Bucksch A. DIRT/µ: automated extraction of root hair traits using combinatorial optimization. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:285-298. [PMID: 39269014 PMCID: PMC11714758 DOI: 10.1093/jxb/erae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
As with phenotyping of any microscopic appendages, such as cilia or antennae, phenotyping of root hairs has been a challenge due to their complex intersecting arrangements in two-dimensional images and the technical limitations of automated measurements. Digital Imaging of Root Traits at Microscale (DIRT/μ) is a newly developed algorithm that addresses this issue by computationally resolving intersections and extracting individual root hairs from two-dimensional microscopy images. This solution enables automatic and precise trait measurements of individual root hairs. DIRT/μ rigorously defines a set of rules to resolve intersecting root hairs and minimizes a newly designed cost function to combinatorically identify each root hair in the microscopy image. As a result, DIRT/μ accurately measures traits such as root hair length distribution and root hair density, which are impractical for manual assessment. We tested DIRT/μ on three datasets to validate its performance and showcase potential applications. By measuring root hair traits in a fraction of the time manual methods require, DIRT/μ eliminates subjective biases from manual measurements. Automating individual root hair extraction accelerates phenotyping and quantifies trait variability within and among plants, creating new possibilities to characterize root hair function and their underlying genetics.
Collapse
Affiliation(s)
- Peter Pietrzyk
- Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, GA 30602, USA
| | - Neen Phan-Udom
- Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400Thailand
| | - Chartinun Chutoe
- Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400Thailand
| | - Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Ankita Roy
- Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, GA 30602, USA
| | - Marc Libault
- Division of Plant Science and Technology, University of Missouri, 1201 E. Rollins, Columbia, MO 65201, USA
| | | | - Alexander Bucksch
- School of Plant Sciences, The University of Arizona, 1140 E South Campus Dr., Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Scarpin D, Este G, D'Este F, Boscutti F, Milani A, Panozzo S, Varotto S, Vuerich M, Petrussa E, Braidot E. Innovative multi-scale approach to study the phenotypic variation of seedling leaves in four weedy Amaranthus species. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39660631 DOI: 10.1111/plb.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Plant phenotyping on morpho-anatomical traits through image analysis, from microscope images to large-scale acquisitions through remote sensing, represents a low-invasive tool providing insight into physiological and structural trait variation, as well as plant-environment interactions. High phenotype diversity in the genus Amaranthus includes annual weed species with high invasiveness and impact on important summer crops, and nutritive grain or vegetable crops. Identification of morpho-anatomical leaf characters at very young stages across weedy amaranths could be useful for better understanding their performance in agroecosystems. We used an innovative multi-scale approach with phenotype analyses of about 20 single-leaf morphometric traits of four Amaranthus species through processing confocal microscopy and camera acquisitions. The results highlight that determination of leaf traits at different investigation levels highlight species-specific traits at a juvenile stage, which are crucial for plant development, competition and establishment. Specifically, leaf circularity and hairiness Aspect Ratio better discriminated A. tuberculatus from other species. Also, leaf DW, hairiness area and perimeter variables allowed identification of dioecious amaranth species as distinct from monoecious species. The methodology used here provides a promising, reliable and low-impact approach for the functional characterization of phylogenetically related species and for statistical quantification of traits involved in taxonomy and biodiversity studies.
Collapse
Affiliation(s)
- D Scarpin
- Department of Agriculture, Food, Environment and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - G Este
- Department of Agriculture, Food, Environment and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - F D'Este
- Department of Medicine, University of Udine, Udine, Italy
| | - F Boscutti
- Department of Agriculture, Food, Environment and Animal Sciences (DI4A), University of Udine, Udine, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - A Milani
- Institute for Sustainable Plant Protection (IPSP)-National Research Council (CNR), Viale dell'Università 16, Legnaro, Italy
| | - S Panozzo
- Institute for Sustainable Plant Protection (IPSP)-National Research Council (CNR), Viale dell'Università 16, Legnaro, Italy
| | - S Varotto
- Department of Agronomy Animal Food Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, Italy
| | - M Vuerich
- Department of Agriculture, Food, Environment and Animal Sciences (DI4A), University of Udine, Udine, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - E Petrussa
- Department of Agriculture, Food, Environment and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - E Braidot
- Department of Agriculture, Food, Environment and Animal Sciences (DI4A), University of Udine, Udine, Italy
| |
Collapse
|
3
|
Ohlendorf R, Tan NYH, Nakayama N. Engineering Themes in Plant Forms and Functions. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:777-801. [PMID: 37216204 DOI: 10.1146/annurev-arplant-061422-094751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Living structures constantly interact with the biotic and abiotic environment by sensing and responding via specialized functional parts. In other words, biological bodies embody highly functional machines and actuators. What are the signatures of engineering mechanisms in biology? In this review, we connect the dots in the literature to seek engineering principles in plant structures. We identify three thematic motifs-bilayer actuator, slender-bodied functional surface, and self-similarity-and provide an overview of their structure-function relationships. Unlike human-engineered machines and actuators, biological counterparts may appear suboptimal in design, loosely complying with physical theories or engineering principles. We postulate what factors may influence the evolution of functional morphology and anatomy to dissect and comprehend better the why behind the biological forms.
Collapse
Affiliation(s)
- Rahel Ohlendorf
- Department of Bioengineering, Imperial College London, London, United Kingdom;
| | | | - Naomi Nakayama
- Department of Bioengineering, Imperial College London, London, United Kingdom;
| |
Collapse
|
4
|
Zhao F, Long Y. Mechanosensing, from forces to structures. FRONTIERS IN PLANT SCIENCE 2022; 13:1060018. [PMID: 36531357 PMCID: PMC9751800 DOI: 10.3389/fpls.2022.1060018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Sessile plants evolve diverse structures in response to complex environmental cues. These factors, in essence, involve mechanical stimuli, which must be sensed and coordinated properly by the plants to ensure effective growth and development. While we have accumulated substantial knowledge on plant mechanobiology, how plants translate mechanical information into three-dimensional structures is still an open question. In this review, we summarize our current understanding of plant mechanosensing at different levels, particularly using Arabidopsis as a model plant system. We also attempt to abstract the mechanosensing process and link the gaps from mechanical cues to the generation of complex plant structures. Here we review the recent advancements on mechanical response and transduction in plant morphogenesis, and we also raise several questions that interest us in different sections.
Collapse
Affiliation(s)
- Feng Zhao
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Yuchen Long
- Department of Biological Sciences, The National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, The National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Liu X, Tan H, Rigoni C, Hartikainen T, Asghar N, van Dijken S, Timonen JVI, Peng B, Ikkala O. Magnetic field-driven particle assembly and jamming for bistable memory and response plasticity. SCIENCE ADVANCES 2022; 8:eadc9394. [PMID: 36367936 PMCID: PMC9651856 DOI: 10.1126/sciadv.adc9394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Unlike classic synthetic stimulus-responsive and shape-memory materials, which remain limited to fixed responses, the responses of living systems dynamically adapt based on the repetition, intensity, and history of stimuli. Such plasticity is ubiquitous in biology, which is profoundly linked to memory and learning. Concepts thereof are searched for rudimentary forms of "intelligent materials." Here, we show plasticity of electroconductivity in soft ferromagnetic nickel colloidal supraparticles with spiny surfaces, assembling/disassembling to granular conducting micropillars between two electrodes driven by magnetic field B. Colloidal jamming leads to conduction hysteresis and bistable memory upon increasing and subsequently decreasing B. Abrupt B changes induce larger conduction changes than gradual B-changes. Periodic B pulsing drives to frequency-dependent facilitation or suppression of conductivity compared to exposing the same constant field. The concepts allow remotely controlled switching plasticity, illustrated by a rudimentary device. More generally, we foresee adaptive functional materials inspired by response plasticity and learning.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Peng
- Corresponding author. (B.P.); (O.I.)
| | | |
Collapse
|
6
|
Jiang Y, Zhao P, Cai X, Rong J, Dong Z, Chen H, Wu P, Hu H, Jin X, Zhang D, Liu H. Bristled-wing design of materials, microstructures, and aerodynamics enables flapping flight in tiny wasps. iScience 2022; 25:103692. [PMID: 35036876 PMCID: PMC8753183 DOI: 10.1016/j.isci.2021.103692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022] Open
Abstract
Parasitoid wasps of the smallest flying insects with bristled wings exhibit sophisticated flight behaviors while challenging biomechanical limitations in miniaturization and low-speed flow regimes. Here, we investigate the morphology, material composition, and mechanical properties of the bristles of the parasitoid wasps Anagrus Haliday. The bristles are extremely stiff and exhibit a high-aspect-ratio conical tubular structure with a large Young's modulus. This leads to a marginal deflection and uniform structural stress distribution in the bristles while they experience high-frequency flapping–induced aerodynamic loading, indicating that the bristles are robust to fatigue. The flapping aerodynamics of the bristled wings reveal that the wing surfaces act as porous flat paddles to reduce the overall inertial load while utilizing a passive shear-based aerodynamic drag-enhancing mechanism to generate the requisite aerodynamic forces. The bristled wing may have evolved as a novel design that achieves multiple functions and provides innovative ideas for developing bioinspired engineering microdevices. Bristles are extremely stiff and exhibit a high-aspect-ratio conical tubular structure Bristles uniformalize structural stress distributions and are robust to loading fatigue Bristled wings are light, using less power to achieve novel aerodynamic force production Bristled wings may bring an innovative design for bioinspired engineering microdevices
Collapse
Affiliation(s)
- Yonggang Jiang
- Insitute of Bionic and Micro-nano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
- Corresponding author
| | - Peng Zhao
- Insitute of Bionic and Micro-nano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Xuefei Cai
- Graduate School of Engineering, Chiba University, Chiba, 263-8522, Japan
| | - Jiaxin Rong
- Graduate School of Engineering, Chiba University, Chiba, 263-8522, Japan
| | - Zihao Dong
- Insitute of Bionic and Micro-nano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Huawei Chen
- Insitute of Bionic and Micro-nano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Peng Wu
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215021, China
- Corresponding author
| | - Hongying Hu
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xiangxiang Jin
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Deyuan Zhang
- Insitute of Bionic and Micro-nano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Hao Liu
- Graduate School of Engineering, Chiba University, Chiba, 263-8522, Japan
- Corresponding author
| |
Collapse
|
7
|
Abstract
The fields of micro- and nanomechanics are strongly interconnected with the development of micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) devices, their fabrication and applications. This article highlights the biomimetic concept of designing new nanodevices for advanced materials and sensing applications.
Collapse
|
8
|
Abstract
Dealing safely with nuclear waste is an imperative for the nuclear industry. Increasingly, robots are being developed to carry out complex tasks such as perceiving, grasping, cutting, and manipulating waste. Radioactive material can be sorted, and either stored safely or disposed of appropriately, entirely through the actions of remotely controlled robots. Radiological characterisation is also critical during the decommissioning of nuclear facilities. It involves the detection and labelling of radiation levels, waste materials, and contaminants, as well as determining other related parameters (e.g., thermal and chemical), with the data visualised as 3D scene models. This paper overviews work by researchers at the QMUL Centre for Advanced Robotics (ARQ), a partner in the UK EPSRC National Centre for Nuclear Robotics (NCNR), a consortium working on the development of radiation-hardened robots fit to handle nuclear waste. Three areas of nuclear-related research are covered here: human–robot interfaces for remote operations, sensor delivery, and intelligent robotic manipulation.
Collapse
|
9
|
Xin Y, Pan W, Chen X, Liu Y, Zhang M, Chen X, Yang F, Li J, Wu J, Du Y, Zhang X. Transcriptome profiling reveals key genes in regulation of the tepal trichome development in Lilium pumilum D.C. PLANT CELL REPORTS 2021; 40:1889-1906. [PMID: 34259890 DOI: 10.1007/s00299-021-02753-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
A number of potential genes and pathways involved in tepal trichome development were identified in a natural lily mutant by transcriptome analysis and were confirmed with trichome and trichomeless species. Trichome is a specialized structure found on the surface of the plant with an important function in survival against abiotic and biotic stress. It is also an important economic trait in crop breeding. Extensive research has investigated the foliar trichome in model plants (Arabidopsis and tomato). However, the developmental mechanism of tepal trichome remains elusive. Lilium pumilum is an edible ornamental bulb and a good breeding parent possessing cold and salt-alkali resistance. Here, we found a natural mutant of Lilium pumilum grown on a highland whose tepals are covered by trichomes. Our data indicate that trichomes of the mutant are multicellular and branchless. Notably, stomata are also developed on the tepal of the mutant as well, suggesting there may be a correlation between trichome and stomata regulation. Furthermore, we isolated 27 differentially expressed genes (DEGs) by comparing the transcriptome profiling between the natural mutant and the wild type. These 27 genes belong to 4 groups: epidermal cell cycle and division, trichome morphogenesis, stress response, and transcription factors. Quantitative real-time PCR in Lilium pumilum (natural mutant and the wild type) and other lily species (Lilium leichtlinii var. maximowiczii/trichome; Lilium davidii var. willmottiae/, trichomeless) confirmed the validation of RNA-seq data and identified several trichome-related genes.
Collapse
Affiliation(s)
- Yin Xin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xi Chen
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yixin Liu
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Mingfang Zhang
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuqing Chen
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Fengping Yang
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jingru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China.
| | - Yunpeng Du
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Xiuhai Zhang
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
10
|
Mahadik GA, Hernandez-Sanchez JF, Arunachalam S, Gallo A, Cheng L, Farinha AS, Thoroddsen ST, Mishra H, Duarte CM. Superhydrophobicity and size reduction enabled Halobates (Insecta: Heteroptera, Gerridae) to colonize the open ocean. Sci Rep 2020; 10:7785. [PMID: 32385357 PMCID: PMC7210887 DOI: 10.1038/s41598-020-64563-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/15/2020] [Indexed: 11/09/2022] Open
Abstract
Despite the remarkable evolutionary success of insects at colonizing every conceivable terrestrial and aquatic habitat, only five Halobates (Heteroptera: Gerridae) species (~0.0001% of all known insect species) have succeeded at colonizing the open ocean - the largest biome on Earth. This remarkable evolutionary achievement likely required unique adaptations for them to survive and thrive in the challenging oceanic environment. For the first time, we explore the morphology and behavior of an open-ocean Halobates germanus and a related coastal species H. hayanus to understand mechanisms of these adaptations. We provide direct experimental evidence based on high-speed videos which reveal that Halobates exploit their specialized and self-groomed body hair to achieve extreme water repellence, which facilitates rapid skating and plastron respiration under water. Moreover, the grooming behavior and presence of cuticular wax aids in the maintenance of superhydrophobicity. Further, reductions of their body mass and size enable them to achieve impressive accelerations (~400 ms-2) and reaction times (~12 ms) to escape approaching predators or environmental threats and are crucial to their survival under harsh marine conditions. These findings might also inspire rational strategies for developing liquid-repellent surfaces for drag reduction, water desalination, and preventing bio-fouling.
Collapse
Affiliation(s)
- G A Mahadik
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Red Sea Research Center (RSRC), Thuwal, 23955-6900, Saudi Arabia
| | - J F Hernandez-Sanchez
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering (PSE), Thuwal, 23955-6900, Saudi Arabia
| | - S Arunachalam
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal, 23955-6900, Saudi Arabia
| | - A Gallo
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal, 23955-6900, Saudi Arabia
| | - L Cheng
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - A S Farinha
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal, 23955-6900, Saudi Arabia
| | - S T Thoroddsen
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering (PSE), Thuwal, 23955-6900, Saudi Arabia
| | - H Mishra
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal, 23955-6900, Saudi Arabia.
| | - Carlos M Duarte
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Red Sea Research Center (RSRC), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Jiang Y, Zhao P, Ma Z, Shen D, Liu G, Zhang D. Enhanced flow sensing with interfacial microstructures. BIOSURFACE AND BIOTRIBOLOGY 2020. [DOI: 10.1049/bsbt.2019.0043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yonggang Jiang
- Institute of Bionic and Micro‐Nano SystemsSchool of Mechanical Engineering and AutomationBeihang UniversityBeijing100191People's Republic of China
- International Research Institute of Multidisciplinary ScienceBeihang UniversityBeijing100191People's Republic of China
| | - Peng Zhao
- Institute of Bionic and Micro‐Nano SystemsSchool of Mechanical Engineering and AutomationBeihang UniversityBeijing100191People's Republic of China
| | - Zhiqiang Ma
- Institute of Bionic and Micro‐Nano SystemsSchool of Mechanical Engineering and AutomationBeihang UniversityBeijing100191People's Republic of China
| | - Dawei Shen
- Institute of Bionic and Micro‐Nano SystemsSchool of Mechanical Engineering and AutomationBeihang UniversityBeijing100191People's Republic of China
| | - Gongchao Liu
- Institute of Bionic and Micro‐Nano SystemsSchool of Mechanical Engineering and AutomationBeihang UniversityBeijing100191People's Republic of China
| | - Deyuan Zhang
- Institute of Bionic and Micro‐Nano SystemsSchool of Mechanical Engineering and AutomationBeihang UniversityBeijing100191People's Republic of China
| |
Collapse
|
12
|
Starostin EL, Grant RA, Dougill G, van der Heijden GHM, Goss VGA. The Euler spiral of rat whiskers. SCIENCE ADVANCES 2020; 6:eaax5145. [PMID: 31998835 PMCID: PMC6962041 DOI: 10.1126/sciadv.aax5145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
This paper reports on an analytical study of the intrinsic shapes of 523 whiskers from 15 rats. We show that the variety of whiskers on a rat's cheek, each of which has different lengths and shapes, can be described by a simple mathematical equation such that each whisker is represented as an interval on the Euler spiral. When all the representative curves of mystacial vibrissae for a single rat are assembled together, they span an interval extending from one coiled domain of the Euler spiral to the other. We additionally find that each whisker makes nearly the same angle of 47∘ with the normal to the spherical virtual surface formed by the tips of whiskers, which constitutes the rat's tactile sensory shroud or "search space." The implications of the linear curvature model for gaining insight into relationships between growth, form, and function are discussed.
Collapse
Affiliation(s)
- Eugene L. Starostin
- School of Engineering, London South Bank University, 103 Borough Rd., London SE1 0AA, UK
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower St., London WC1E 6BT, UK
| | - Robyn A. Grant
- Division of Biology and Conservation Ecology, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK
| | - Gary Dougill
- Division of Biology and Conservation Ecology, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK
| | - Gert H. M. van der Heijden
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower St., London WC1E 6BT, UK
| | - Victor G. A. Goss
- School of Engineering, London South Bank University, 103 Borough Rd., London SE1 0AA, UK
| |
Collapse
|
13
|
Tooth-Inspired Tactile Sensor for Detection of Multidirectional Force. MICROMACHINES 2018; 10:mi10010018. [PMID: 30597943 PMCID: PMC6356831 DOI: 10.3390/mi10010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 11/17/2022]
Abstract
The anatomy of a tooth was the inspiration for this tactile sensor study. The sensor consisted of a pole that was fixed in the middle of an acrylic base using a viscoelastic silicone elastomer. Four strain gauges were fixed three-dimensionally around the pole to detect its movement, which was formed in a single step in the assembly. When the load was applied to the side of the pole, the strain gauges were bent or released, depending on the direction of the applied load and the position of the strain gauges. The sensor device had the sensitivity of 0.016 mm−1 and 0.313 N−1 against the resistance change ratio. For the load detection experiment, a consistent pattern of full sine-curve, with a constant resistance change for the angles, was obtained for all of the four strain gauges, which confirmed the reliability of the sensor device to detect the direction of applied load. The amplitudes of the resistance change ratio remained to be consistent after loading-unloading processes at the frequency of 0.05–0.25 Hz.
Collapse
|
14
|
Astreinidi Blandin A, Bernardeschi I, Beccai L. Biomechanics in Soft Mechanical Sensing: From Natural Case Studies to the Artificial World. Biomimetics (Basel) 2018; 3:E32. [PMID: 31105254 PMCID: PMC6352697 DOI: 10.3390/biomimetics3040032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/14/2018] [Accepted: 10/12/2018] [Indexed: 12/25/2022] Open
Abstract
Living beings use mechanical interaction with the environment to gather essential cues for implementing necessary movements and actions. This process is mediated by biomechanics, primarily of the sensory structures, meaning that, at first, mechanical stimuli are morphologically computed. In the present paper, we select and review cases of specialized sensory organs for mechanical sensing-from both the animal and plant kingdoms-that distribute their intelligence in both structure and materials. A focus is set on biomechanical aspects, such as morphology and material characteristics of the selected sensory organs, and on how their sensing function is affected by them in natural environments. In this route, examples of artificial sensors that implement these principles are provided, and/or ways in which they can be translated artificially are suggested. Following a biomimetic approach, our aim is to make a step towards creating a toolbox with general tailoring principles, based on mechanical aspects tuned repeatedly in nature, such as orientation, shape, distribution, materials, and micromechanics. These should be used for a future methodical design of novel soft sensing systems for soft robotics.
Collapse
Affiliation(s)
- Afroditi Astreinidi Blandin
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pontedera, 56025 Pisa, Italy.
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, 56025 Pisa, Italy.
| | - Irene Bernardeschi
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pontedera, 56025 Pisa, Italy.
| | - Lucia Beccai
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pontedera, 56025 Pisa, Italy.
| |
Collapse
|
15
|
Cummins C, Seale M, Macente A, Certini D, Mastropaolo E, Viola IM, Nakayama N. A separated vortex ring underlies the flight of the dandelion. Nature 2018; 562:414-418. [DOI: 10.1038/s41586-018-0604-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 11/09/2022]
|