1
|
Carroll J, Watt IN, Wright CJ, Ding S, Fearnley IM, Walker JE. The inhibitor protein IF 1 from mammalian mitochondria inhibits ATP hydrolysis but not ATP synthesis by the ATP synthase complex. J Biol Chem 2024; 300:105690. [PMID: 38280428 PMCID: PMC10906535 DOI: 10.1016/j.jbc.2024.105690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
The hydrolytic activity of the ATP synthase in bovine mitochondria is inhibited by a protein called IF1, but bovine IF1 has no effect on the synthetic activity of the bovine enzyme in mitochondrial vesicles in the presence of a proton motive force. In contrast, it has been suggested based on indirect observations that human IFI inhibits both the hydrolytic and synthetic activities of the human ATP synthase and that the activity of human IF1 is regulated by the phosphorylation of Ser-14 of mature IF1. Here, we have made both human and bovine IF1 which are 81 and 84 amino acids long, respectively, and identical in 71.4% of their amino acids and have investigated their inhibitory effects on the hydrolytic and synthetic activities of ATP synthase in bovine submitochondrial particles. Over a wide range of conditions, including physiological conditions, both human and bovine IF1 are potent inhibitors of ATP hydrolysis, with no effect on ATP synthesis. Also, substitution of Ser-14 with phosphomimetic aspartic and glutamic acids had no effect on inhibitory properties, and Ser-14 is not conserved throughout mammals. Therefore, it is unlikely that the inhibitory activity of mammalian IF1 is regulated by phosphorylation of this residue.
Collapse
Affiliation(s)
- Joe Carroll
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ian N Watt
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte J Wright
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Shujing Ding
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ian M Fearnley
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
2
|
Jiko C, Morimoto Y, Tsukihara T, Gerle C. Large-scale column-free purification of bovine F-ATP synthase. J Biol Chem 2024; 300:105603. [PMID: 38159856 PMCID: PMC10851226 DOI: 10.1016/j.jbc.2023.105603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
Mammalian F-ATP synthase is central to mitochondrial bioenergetics and is present in the inner mitochondrial membrane in a dynamic oligomeric state of higher oligomers, tetramers, dimers, and monomers. In vitro investigations of mammalian F-ATP synthase are often limited by the ability to purify the oligomeric forms present in vivo at a quantity, stability, and purity that meets the demand of the planned experiment. We developed a purification approach for the isolation of bovine F-ATP synthase from heart muscle mitochondria that uses a combination of buffer conditions favoring inhibitor factor 1 binding and sucrose density gradient ultracentrifugation to yield stable complexes at high purity in the milligram range. By tuning the glyco-diosgenin to lauryl maltose neopentyl glycol ratio in a final gradient, fractions that are either enriched in tetrameric or monomeric F-ATP synthase can be obtained. It is expected that this large-scale column-free purification strategy broadens the spectrum of in vitro investigation on mammalian F-ATP synthase.
Collapse
Affiliation(s)
- Chimari Jiko
- Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan.
| | - Yukio Morimoto
- Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| | - Tomitake Tsukihara
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto, Kamigori, Hyogo, Japan; Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Christoph Gerle
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Osaka, Japan; Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, Hyogo, Japan.
| |
Collapse
|
3
|
Buzzard E, McLaren M, Bragoszewski P, Brancaccio A, Ford H, Daum B, Kuwabara P, Collinson I, Gold V. The consequence of ATP synthase dimer angle on mitochondrial morphology studied by cryo-electron tomography. Biochem J 2024; 481:BCJ20230450. [PMID: 38164968 PMCID: PMC10903453 DOI: 10.1042/bcj20230450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Mitochondrial ATP synthases form rows of dimers, which induce membrane curvature to give cristae their characteristic lamellar or tubular morphology. The angle formed between the central stalks of ATP synthase dimers varies between species. Using cryo-electron tomography and sub-tomogram averaging, we determined the structure of the ATP synthase dimer from the nematode worm C. elegans and show that the dimer angle differs from previously determined structures. The consequences of this species-specific difference at the dimer interface were investigated by comparing C. elegans and S. cerevisiae mitochondrial morphology. We reveal that C. elegans has a larger ATP synthase dimer angle with more lamellar (flatter) cristae when compared to yeast. The underlying cause of this difference was investigated by generating an atomic model of the C. elegans ATP synthase dimer by homology modelling. A comparison of our C. elegans model to an existing S. cerevisiae structure reveals the presence of extensions and rearrangements in C. elegans subunits associated with maintaining the dimer interface. We speculate that increasing dimer angles could provide an advantage for species that inhabit variable-oxygen environments by forming flatter more energetically efficient cristae.
Collapse
Affiliation(s)
| | | | - Piotr Bragoszewski
- Instytut Biologii Doswiadczalnej im Marcelego Nenckiego Polskiej Akademii Nauk, Warsaw, Poland
| | | | - Holly Ford
- University of Bristol, Bristol, United Kingdom
| | | | | | | | - Vicki Gold
- University of Exeter, Exeter, United Kingdom
| |
Collapse
|
4
|
Godoy-Hernandez A, Asseri AH, Purugganan AJ, Jiko C, de Ram C, Lill H, Pabst M, Mitsuoka K, Gerle C, Bald D, McMillan DGG. Rapid and Highly Stable Membrane Reconstitution by LAiR Enables the Study of Physiological Integral Membrane Protein Functions. ACS CENTRAL SCIENCE 2023; 9:494-507. [PMID: 36968527 PMCID: PMC10037447 DOI: 10.1021/acscentsci.2c01170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 06/18/2023]
Abstract
Functional reintegration into lipid environments represents a major challenge for in vitro investigation of integral membrane proteins (IMPs). Here, we report a new approach, termed LMNG Auto-insertion Reintegration (LAiR), for reintegration of IMPs into lipid bilayers within minutes. The resulting proteoliposomes displayed an unprecedented capability to maintain proton gradients and long-term stability. LAiR allowed for monitoring catalysis of a membrane-bound, physiologically relevant polyisoprenoid quinone substrate by Escherichia coli cytochromes bo 3 (cbo 3) and bd (cbd) under control of the proton motive force. LAiR also facilitated bulk-phase detection and physiological assessment of the "proton leak" in cbo 3, a controversial catalytic state that previously was only approachable at the single-molecule level. LAiR maintained the multisubunit integrity and higher-order oligomeric states of the delicate mammalian F-ATP synthase. Given that LAiR can be applied to both liposomes and planar membrane bilayers and is compatible with IMPs and lipids from prokaryotic and eukaryotic sources, we anticipate LAiR to be applied broadly across basic research, pharmaceutical applications, and biotechnology.
Collapse
Affiliation(s)
- Albert Godoy-Hernandez
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Amer H. Asseri
- Biochemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
- Amsterdam
Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Aiden J. Purugganan
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Chimari Jiko
- Institute
for Integrated Radiation and Nuclear Science, Kyoto University, Kyoto, 606-8501, Japan
| | - Carol de Ram
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Holger Lill
- Amsterdam
Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Martin Pabst
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Kaoru Mitsuoka
- Research
Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 565-0871, Japan
| | - Christoph Gerle
- Institute
for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Life
Science Research Infrastructure Group, RIKEN
SPring-8 Center, Kouto, Hyogo 679-5148, Japan
| | - Dirk Bald
- Amsterdam
Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Duncan G. G. McMillan
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo
City, Tokyo 113-8654, Japan
| |
Collapse
|
5
|
Structural insights into the human PA28-20S proteasome enabled by efficient tagging and purification of endogenous proteins. Proc Natl Acad Sci U S A 2022; 119:e2207200119. [PMID: 35858375 PMCID: PMC9388094 DOI: 10.1073/pnas.2207200119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ability to produce folded and functional proteins is a necessity for structural biology and many other biological sciences. This task is particularly challenging for numerous biomedically important targets in human cells, including membrane proteins and large macromolecular assemblies, hampering mechanistic studies and drug development efforts. Here we describe a method combining CRISPR-Cas gene editing and fluorescence-activated cell sorting to rapidly tag and purify endogenous proteins in HEK cells for structural characterization. We applied this approach to study the human proteasome from HEK cells and rapidly determined cryogenic electron microscopy structures of major proteasomal complexes, including a high-resolution structure of intact human PA28αβ-20S. Our structures reveal that PA28 with a subunit stoichiometry of 3α/4β engages tightly with the 20S proteasome. Addition of a hydrophilic peptide shows that polypeptides entering through PA28 are held in the antechamber of 20S prior to degradation in the proteolytic chamber. This study provides critical insights into an important proteasome complex and demonstrates key methodologies for the tagging of proteins from endogenous sources.
Collapse
|
6
|
Gatto C, Grandi M, Solaini G, Baracca A, Giorgio V. The F1Fo-ATPase inhibitor protein IF1 in pathophysiology. Front Physiol 2022; 13:917203. [PMID: 35991181 PMCID: PMC9389554 DOI: 10.3389/fphys.2022.917203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
The endogenous inhibitor of ATP synthase is a protein of about 10 kDa, known as IF1 which binds to the catalytic domain of the enzyme during ATP hydrolysis. The main role of IF1 consists of limiting ATP dissipation under condition of severe oxygen deprivation or in the presence of dysfunctions of mitochondrial respiratory complexes, causing a collapse in mitochondrial membrane potential and therefore ATP hydrolysis. New roles of IF1 are emerging in the fields of cancer and neurodegeneration. Its high expression levels in tumor tissues have been associated with different roles favouring tumor formation, progression and evasion. Since discordant mechanisms of action have been proposed for IF1 in tumors, it is of the utmost importance to clarify them in the prospective of defining novel approaches for cancer therapy. Other IF1 functions, including its involvement in mitophagy, may be protective for neurodegenerative and aging-related diseases. In the present review we aim to clarify and discuss the emerging mechanisms in which IF1 is involved, providing a critical view of the discordant findings in the literature.
Collapse
|
7
|
Mugabo Y, Zhao C, Tan JJ, Ghosh A, Campbell SA, Fadzeyeva E, Paré F, Pan SS, Galipeau M, Ast J, Broichhagen J, Hodson DJ, Mulvihill EE, Petropoulos S, Lim GE. 14-3-3ζ constrains insulin secretion by regulating mitochondrial function in pancreatic β-cells. JCI Insight 2022; 7:156378. [PMID: 35298439 PMCID: PMC9089799 DOI: 10.1172/jci.insight.156378] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
While critical for neurotransmitter synthesis, 14-3-3 proteins are often assumed to have redundant functions due to their ubiquitous expression, but despite this assumption, various 14-3-3 isoforms have been implicated in regulating metabolism. We previously reported contributions of 14-3-3ζ in β cell function, but these studies were performed in tumor-derived MIN6 cells and systemic KO mice. To further characterize the regulatory roles of 14-3-3ζ in β cell function, we generated β cell–specific 14-3-3ζ–KO mice. Although no effects on β cell mass were detected, potentiated glucose-stimulated insulin secretion (GSIS), mitochondrial function, and ATP synthesis were observed. Deletion of 14-3-3ζ also altered the β cell transcriptome, as genes associated with mitochondrial respiration and oxidative phosphorylation were upregulated. Acute 14-3-3 protein inhibition in mouse and human islets recapitulated the enhancements in GSIS and mitochondrial function, suggesting that 14-3-3ζ is the critical isoform in β cells. In dysfunctional db/db islets and human islets from type 2 diabetic donors, expression of Ywhaz/YWHAZ, the gene encoding 14-3-3ζ, was inversely associated with insulin secretion, and pan–14-3-3 protein inhibition led to enhanced GSIS and mitochondrial function. Taken together, this study demonstrates important regulatory functions of 14-3-3ζ in the regulation of β cell function and provides a deeper understanding of how insulin secretion is controlled in β cells.
Collapse
Affiliation(s)
- Yves Mugabo
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Cheng Zhao
- Division of Obstetrics and Gynecology, Department of Clinical Science, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ju Jing Tan
- Immunopathology Axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal, Montreal, Canada
| | - Anindya Ghosh
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Scott A Campbell
- Cardiometabolic Axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal, Montreal, Canada
| | - Evgenia Fadzeyeva
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
| | - Frédéric Paré
- Cardiometabolic Axis, Centre de recherche du CHUM (CRCHUM), Montreal, Canada
| | - Siew Siew Pan
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Maria Galipeau
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Julia Ast
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Pro, University of Birmingham, Birmingham, United Kingdom
| | - Johannes Broichhagen
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Pro, University of Birmingham, Birmingham, United Kingdom
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | | | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, Canada
| |
Collapse
|
8
|
Kobayashi R, Mori S, Ueno H, Noji H. Kinetic analysis of the inhibition mechanism of bovine mitochondrial F1-ATPase inhibitory protein using biochemical assay. J Biochem 2021; 170:79-87. [PMID: 33693769 PMCID: PMC8457647 DOI: 10.1093/jb/mvab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
ATPase inhibitory factor 1 (IF1) is a mitochondrial regulatory protein that blocks ATP hydrolysis of F1-ATPase, by inserting its N-terminus into the rotor-stator interface of F1-ATPase. Although previous studies have proposed a two-step model for IF1-mediated inhibition, the underlying molecular mechanism remains unclear. Here, we analysed the kinetics of IF1-mediated inhibition under a wide range of [ATP]s and [IF1]s, using bovine mitochondrial IF1 and F1-ATPase. Typical hyperbolic curves of inhibition rates with [IF1]s were observed at all [ATP]s tested, suggesting a two-step mechanism: the initial association of IF1 to F1-ATPase and the locking process, where IF1 blocks rotation by inserting its N-terminus. The initial association was dependent on ATP. Considering two principal rotation dwells, binding dwell and catalytic dwell, in F1-ATPase, this result means that IF1 associates with F1-ATPase in the catalytic-waiting state. In contrast, the isomerization process to the locking state was almost independent of ATP, suggesting that it is also independent of the F1-ATPase state. Further, we investigated the role of Glu30 or Tyr33 of IF1 in the two-step mechanism. Kinetic analysis showed that Glu30 is involved in the isomerization, whereas Tyr33 contributes to the initial association. Based on these findings, we propose an IF1-mediated inhibition scheme.
Collapse
Affiliation(s)
- Ryohei Kobayashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sougo Mori
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
9
|
Solaini G, Sgarbi G, Baracca A. The F1Fo-ATPase inhibitor, IF1, is a critical regulator of energy metabolism in cancer cells. Biochem Soc Trans 2021; 49:815-827. [PMID: 33929490 DOI: 10.1042/bst20200742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022]
Abstract
In the last two decades, IF1, the endogenous inhibitor of the mitochondrial F1Fo-ATPase (ATP synthase) has assumed greater and ever greater interest since it has been found to be overexpressed in many cancers. At present, several findings indicate that IF1 is capable of playing a central role in cancer cells by promoting metabolic reprogramming, proliferation and resistance to cell death. However, the mechanism(s) at the basis of this pro-oncogenic action of IF1 remains elusive. Here, we recall the main features of the mechanism of the action of IF1 when the ATP synthase works in reverse, and discuss the experimental evidence that support its relevance in cancer cells. In particular, a clear pro-oncogenic action of IF1 is to avoid wasting of ATP when cancer cells are exposed to anoxia or near anoxia conditions, therefore favoring cell survival and tumor growth. However, more recently, various papers have described IF1 as an inhibitor of the ATP synthase when it is working physiologically (i.e. synthethizing ATP), and therefore reprogramming cell metabolism to aerobic glycolysis. In contrast, other studies excluded IF1 as an inhibitor of ATP synthase under normoxia, providing the basis for a hot debate. This review focuses on the role of IF1 as a modulator of the ATP synthase in normoxic cancer cells with the awareness that the knowledge of the molecular action of IF1 on the ATP synthase is crucial in unravelling the molecular mechanism(s) responsible for the pro-oncogenic role of IF1 in cancer and in developing related anticancer strategies.
Collapse
Affiliation(s)
- Giancarlo Solaini
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| | - Gianluca Sgarbi
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| |
Collapse
|
10
|
Cryo-EM structure of the entire mammalian F-type ATP synthase. Nat Struct Mol Biol 2020; 27:1077-1085. [DOI: 10.1038/s41594-020-0503-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
|
11
|
Shakouri A, Parvan R, Adljouy N, Abdolalizadeh J. Purification of hyaluronidase as an anticancer agent inhibiting CD44. Biomed Chromatogr 2019; 34:e4709. [PMID: 31630417 DOI: 10.1002/bmc.4709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/03/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023]
Abstract
Hyaluronidase (Hyal) can be employed to accomplish a diversity of complications related to hyaluronic acid (HA). Hyal contains some classes of catalysts that cleave HA. This enzyme is detected in several human tissues as well as in animal venoms, pathogenic organisms and cancers. Destructive cancer cells regularly increase the CD44 receptor existing in a cell membrane. This receptor acts as an exact receptor for HA, and HA is recognized to motivate the migration, spread, attack and metastasis of cancer cells. Nearly all of the methods used to purify Hyal are highly costly and not proper for industrial applications. This survey aims to review different methods of Hyal purification, which acts as an anticancer agent by degrading HA in tissues and thus inhibiting the CD44-HA interaction. Hyal can be successfully employed in the management of cancer, which is associated with HA-CD44. This review has described different methods for Hyal purification to prepare an origin to develop a novel purification technique for this highly appreciated protein. Using multiple columns is not applicable for the purification of Hyal and thus cannot be used at the industrial level. It is better to use affinity chromatography of anti-Hyal for Hyal with one-step purification.
Collapse
Affiliation(s)
- Amir Shakouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Parvan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Adljouy
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Gu LQ, Cui PF, Xing L, He YJ, Chang X, Zhou TJ, Liu Y, Li L, Jiang HL. An energy-blocking nanoparticle decorated with anti-VEGF antibody to reverse chemotherapeutic drug resistance. RSC Adv 2019; 9:12110-12123. [PMID: 35548379 PMCID: PMC9087936 DOI: 10.1039/c9ra01356c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/03/2019] [Indexed: 11/21/2022] Open
Abstract
Multi-drug resistance (MDR) of tumor cells has greatly hindered the therapeutic efficacy of chemotherapeutic drugs, resulting in chemotherapy failure, while overexpression of ATP-binding cassette (ABC) transporters in cell membranes is the leading cause of MDR. In this study, we reported novel self-assembled triphenylphosphine-quercetin-polyethylene glycol-monoclonal antibody nanoparticles (TQ-PEG-mAb NPs) for overcoming MDR primarily through mitochondrial damage to block ATP supply to ABC transporters both in vitro and in vivo. The doxorubicin (DOX)-loaded NPs (TQ/DOX-PEG-mAb) were composed of two drugs (TQ and DOX) and an outer shielding shell of the PEG-mAb conjugate. Besides, the outer shell could be acid-responsively detached to expose the positive charge of TQ inside the NPs to enhance cellular uptake. TQ was proved to effectively induce mitochondrial damage with increased ROS levels and depolarization of mitochondrial membrane potential (MMP), leading to prominently reduced ATP supply to ABC transporters. Moreover, the involvement of the anti-vascular endothelial growth factor (VEGF) mAb was not only for efficient targeting but also for combined therapy. Consequently, TQ/DOX-PEG-mAb showed that the internalized amount of DOX was largely improved while the efflux amount was dramatically inhibited on MCF-7/ADR cells, indicating excellent reversal of DOX resistance. Importantly, the growth of DOX-resistant breast tumors was significantly inhibited with no evident systemic toxicity. Therefore, the employment of TQ-PEG-mAb is believed to be a new approach to improve the efficacy of chemotherapeutic drugs in MDR tumors.
Collapse
Affiliation(s)
- Liu-Qing Gu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Peng-Fei Cui
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University Nanjing 210009 China
| | - Yu-Jing He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Xin Chang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Yu Liu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University Nanjing 210009 China +86-25-83271019 +86-25-83271543
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, Southeast University Nanjing 210009 China +86-25-83272011 +86-25-83272012
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
13
|
Gahura O, Panicucci B, Váchová H, Walker JE, Zíková A. Inhibition of F 1 -ATPase from Trypanosoma brucei by its regulatory protein inhibitor TbIF 1. FEBS J 2018; 285:4413-4423. [PMID: 30288927 DOI: 10.1111/febs.14672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/19/2018] [Accepted: 10/01/2018] [Indexed: 12/30/2022]
Abstract
Hydrolysis of ATP by the mitochondrial F-ATPase is inhibited by a protein called IF1 . In the parasitic flagellate, Trypanosoma brucei, this protein, known as TbIF1 , is expressed exclusively in the procyclic stage, where the F-ATPase is synthesizing ATP. In the bloodstream stage, where TbIF1 is absent, the F-ATPase hydrolyzes ATP made by glycolysis and compensates for the absence of a proton pumping respiratory chain by translocating protons into the intermembrane space, thereby maintaining the essential mitochondrial membrane potential. We have defined regions and amino acid residues of TbIF1 that are required for its inhibitory activity by analyzing the binding of several modified recombinant inhibitors to F1 -ATPase isolated from the procyclic stage of T. brucei. Kinetic measurements revealed that the C-terminal portion of TbIF1 facilitates homodimerization, but it is not required for the inhibitory activity, similar to the bovine and yeast orthologs. However, in contrast to bovine IF1 , the inhibitory capacity of the C-terminally truncated TbIF1 diminishes with decreasing pH, similar to full length TbIF1 . This effect does not involve the dimerization of active dimers to form inactive tetramers. Over a wide pH range, the full length and C-terminally truncated TbIF1 form dimers and monomers, respectively. TbIF1 has no effect on bovine F1 -ATPase, and this difference in the mechanism of regulation of the F-ATPase between the host and the parasite could be exploited in the design of drugs to combat human and animal African trypanosomiases.
Collapse
Affiliation(s)
- Ondřej Gahura
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, UK
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic
| | - Hana Váchová
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, UK
| | - Alena Zíková
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
14
|
Mitoproteomics: Tackling Mitochondrial Dysfunction in Human Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1435934. [PMID: 30533169 PMCID: PMC6250043 DOI: 10.1155/2018/1435934] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
Mitochondria are highly dynamic and regulated organelles that historically have been defined based on their crucial role in cell metabolism. However, they are implicated in a variety of other important functions, making mitochondrial dysfunction an important axis in several pathological contexts. Despite that conventional biochemical and molecular biology approaches have provided significant insight into mitochondrial functionality, innovative techniques that provide a global view of the mitochondrion are still necessary. Proteomics fulfils this need by enabling accurate, systems-wide quantitative analysis of protein abundance. More importantly, redox proteomics approaches offer unique opportunities to tackle oxidative stress, a phenomenon that is intimately linked to aging, cardiovascular disease, and cancer. In addition, cutting-edge proteomics approaches reveal how proteins exert their functions in complex interaction networks where even subtle alterations stemming from early pathological states can be monitored. Here, we describe the proteomics approaches that will help to deepen the role of mitochondria in health and disease by assessing not only changes to mitochondrial protein composition but also alterations to their redox state and how protein interaction networks regulate mitochondrial function and dynamics. This review is aimed at showing the reader how the application of proteomics approaches during the last 20 years has revealed crucial mitochondrial roles in the context of aging, neurodegenerative disorders, metabolic disease, and cancer.
Collapse
|
15
|
Osanai T, Tanaka M, Mikami K, Kitajima M, Magota K, Tomita H, Okumura K. Mitochondrial inhibitory factor protein 1 attenuates coupling factor 6-induced aging signal. J Cell Biochem 2018; 119:6194-6203. [PMID: 29575130 DOI: 10.1002/jcb.26828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/28/2018] [Indexed: 12/16/2022]
Abstract
Coupling factor 6 (CF6) forces a counter-clockwise rotation of plasma membrane F1 Fo complex, resulting in proton import and accelerated aging. Inhibitory factor peptide 1 (IF1) suppresses a unidirectional counter-clockwise rotation of F1 Fo complex without affecting ATP synthesis. We tested the hypothesis that IF1 may attenuate CF6-induced aging signaling in CF6-overexpressing transgenic (TG) cells. In IF1-GFP overexpressing wild type (WT) cells, the diffuse peripheral staining of tubular mitochondria was observed with a dense widely distributed network around the nucleus. In TG cells, however, the only peri-nuclear network of fragmented mitochondria was observed at 24 h, but it was developed to a widely distributed mitochondrial network of tubular mitochondria at 72 h. TG cells displayed aging hallmarks of telomere attrition, epigenetic alterations, defective proteostasis, and genomic instability with a decrease in emerin and lamin and loss of heterochromatin. IF1 induction rescued TG cells from telomere attrition, expression of genomic instability with the increase in emerin and lamin, and that of epigenetic alterations with recovery of heterochromatin. In defective proteostasis, IF1 induction restored a potent peri-nuclear staining of autolysosomes compared with the baseline weak staining. The decrease in Atg7 was restored, whereas the increase in P62 was abolished. We conclude that genetic disruption of proton signals by IF1 induction suppressed CF6-induced expression of aging hallmarks such as telomere attrition, epigenetic alterations, defective proteostasis, and genomic instability. Given the widespread biological actions of CF6, the physiological and pathological actions of IF1 may be complex.
Collapse
Affiliation(s)
- Tomohiro Osanai
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Makoto Tanaka
- Department of Hypertension and Stroke Internal Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kasumi Mikami
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Maiko Kitajima
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Koji Magota
- Daiichi Sankyo Co., Ltd., Biologics Technology Research Laboratories Group1, Pharmaceutical Technology Division, 2716-1, Kurakake, Akaiwa, Chiyoda-machi, Oura-gun, Gunma, Japan
| | - Hirofumi Tomita
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ken Okumura
- Division of Cardiology, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| |
Collapse
|
16
|
Nesci S, Trombetti F, Ventrella V, Pagliarani A. From the Ca 2+-activated F 1F O-ATPase to the mitochondrial permeability transition pore: an overview. Biochimie 2018; 152:85-93. [PMID: 29964086 DOI: 10.1016/j.biochi.2018.06.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/26/2018] [Indexed: 01/02/2023]
Abstract
Based on recent advances on the Ca2+-activated F1FO-ATPase features, a novel multistep mechanism involving the mitochondrial F1FO complex in the formation and opening of the still enigmatic mitochondrial permeability transition pore (MPTP), is proposed. MPTP opening makes the inner mitochondrial membrane (IMM) permeable to ions and solutes and, through cascade events, addresses cell fate to death. Since MPTP forms when matrix Ca2+ concentration rises and ATP is hydrolyzed by the F1FO-ATPase, conformational changes, triggered by Ca2+ insertion in F1, may be transmitted to FO and locally modify the IMM curvature. These events would cause F1FO-ATPase dimer dissociation and MPTP opening.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy.
| |
Collapse
|
17
|
Trypanosoma brucei TbIF1 inhibits the essential F1-ATPase in the infectious form of the parasite. PLoS Negl Trop Dis 2017; 11:e0005552. [PMID: 28414727 PMCID: PMC5407850 DOI: 10.1371/journal.pntd.0005552] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/27/2017] [Accepted: 04/04/2017] [Indexed: 12/01/2022] Open
Abstract
The mitochondrial (mt) FoF1-ATP synthase of the digenetic parasite, Trypanosoma brucei, generates ATP during the insect procyclic form (PF), but becomes a perpetual consumer of ATP in the mammalian bloodstream form (BF), which lacks a canonical respiratory chain. This unconventional dependence on FoF1-ATPase is required to maintain the essential mt membrane potential (Δψm). Normally, ATP hydrolysis by this rotary molecular motor is restricted to when eukaryotic cells experience sporadic hypoxic conditions, during which this compulsory function quickly depletes the cellular ATP pool. To protect against this cellular treason, the highly conserved inhibitory factor 1 (IF1) binds the enzyme in a manner that solely inhibits the hydrolytic activity. Intriguingly, we were able to identify the IF1 homolog in T. brucei (TbIF1), but determined that its expression in the mitochondrion is tightly regulated throughout the life cycle as it is only detected in PF cells. TbIF1 appears to primarily function as an emergency brake in PF cells, where it prevented the restoration of the Δψm by FoF1-ATPase when respiration was chemically inhibited. In vitro, TbIF1 overexpression specifically inhibits the hydrolytic activity but not the synthetic capability of the FoF1-ATP synthase in PF mitochondria. Furthermore, low μM amounts of recombinant TbIF1 achieve the same inhibition of total mt ATPase activity as the FoF1-ATPase specific inhibitors, azide and oligomycin. Therefore, even minimal ectopic expression of TbIF1 in BF cells proved lethal as the indispensable Δψm collapsed due to inhibited FoF1-ATPase. In summary, we provide evidence that T. brucei harbors a natural and potent unidirectional inhibitor of the vital FoF1-ATPase activity that can be exploited for future structure-based drug design. Enzymes are catalysts that drive both a forward and reverse chemical reaction depending on the thermodynamic properties. FoF1-ATP synthase is a multiprotein enzyme that under normal physiological conditions generates ATP. However, when respiration is impeded, this rotary molecular machine reverses and hydrolyzes ATP to pump protons and maintain the essential mitochondrial membrane potential. While this activity is exceptional in most eukaryotic cells, the unique composition of the Trypanosoma brucei mitochondrion dictates that the infectious stage of this human parasite is utterly dependent on the hydrolytic activity of FoF1-ATPase. While searching for better chemotherapeutics against Human African Trypanosomiasis, several trypanocidal compounds were determined to interact with this enzyme, but they indiscriminately inhibit both the ATP hydrolytic and synthetic activities. A more promising approach involves the conserved eukaryotic protein IF1, a unidirectional inhibitor that prevents just ATP hydrolysis. Auspiciously, we identified this protein homolog in T. brucei (TbIF1) and its expression is tightly regulated between life stages of the parasite. Importantly, the introduction of exogenous TbIF1 protein specifically inhibits FoF1-ATPase and is lethal for the infectious stage of T. brucei. Therefore, we have identified a natural inhibitor of an essential and druggable enzyme that can be exploited for future structure-based drug design.
Collapse
|
18
|
Bridges HR, Mohammed K, Harbour ME, Hirst J. Subunit NDUFV3 is present in two distinct isoforms in mammalian complex I. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2017; 1858:197-207. [PMID: 27940020 PMCID: PMC5293009 DOI: 10.1016/j.bbabio.2016.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/29/2016] [Accepted: 12/07/2016] [Indexed: 01/10/2023]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the electron transport chain in mammalian mitochondria. Extensive proteomic and structural analyses of complex I from Bos taurus heart mitochondria have shown it comprises 45 subunits encoded on both the nuclear and mitochondrial genomes; 44 of them are different and one is present in two copies. The bovine heart enzyme has provided a model for studying the composition of complex I in other mammalian species, including humans, but the possibility of additional subunits or isoforms in other species or tissues has not been explored. Here, we describe characterization of the complexes I purified from five rat tissues and from a rat hepatoma cell line. We identify a~50kDa isoform of subunit NDUFV3, for which the canonical isoform is only ~10kDa in size. We combine LC-MS and MALDI-TOF mass spectrometry data from two different purification methods (chromatography and immuno-purification) with information from blue native PAGE analyses to show the long isoform is present in the mature complex, but at substoichiometric levels. It is also present in complex I in cultured human cells. We describe evidence that the long isoform is more abundant in both the mitochondria and purified complexes from brain (relative to in heart, liver, kidney and skeletal muscle) and more abundant still in complex I in cultured cells. We propose that the long 50kDa isoform competes with its canonical 10kDa counterpart for a common binding site on the flavoprotein domain of complex I.
Collapse
Affiliation(s)
- Hannah R Bridges
- The Medical Research Council Mitochondrial Biology Unit, Wellcome Trust / MRC Building, Hills Road, Cambridge, CB2 0XY, U. K
| | - Khairunnisa Mohammed
- The Medical Research Council Mitochondrial Biology Unit, Wellcome Trust / MRC Building, Hills Road, Cambridge, CB2 0XY, U. K
| | - Michael E Harbour
- The Medical Research Council Mitochondrial Biology Unit, Wellcome Trust / MRC Building, Hills Road, Cambridge, CB2 0XY, U. K
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, Wellcome Trust / MRC Building, Hills Road, Cambridge, CB2 0XY, U. K..
| |
Collapse
|
19
|
Structure of the mitochondrial ATP synthase from Pichia angusta determined by electron cryo-microscopy. Proc Natl Acad Sci U S A 2016; 113:12709-12714. [PMID: 27791192 DOI: 10.1073/pnas.1615902113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The structure of the intact monomeric ATP synthase from the fungus, Pichia angusta, has been solved by electron cryo-microscopy. The structure provides insights into the mechanical coupling of the transmembrane proton motive force across mitochondrial membranes in the synthesis of ATP. This mechanism requires a strong and integral stator, consisting of the catalytic α3β3-domain, peripheral stalk, and, in the membrane domain, subunit a and associated supernumerary subunits, kept in contact with the rotor turning at speeds up to 350 Hz. The stator's integrity is ensured by robust attachment of both the oligomycin sensitivity conferral protein (OSCP) to the catalytic domain and the membrane domain of subunit b to subunit a. The ATP8 subunit provides an additional brace between the peripheral stalk and subunit a. At the junction between the OSCP and the apparently stiff, elongated α-helical b-subunit and associated d- and h-subunits, an elbow or joint allows the stator to bend to accommodate lateral movements during the activity of the catalytic domain. The stator may also apply lateral force to help keep the static a-subunit and rotating c10-ring together. The interface between the c10-ring and the a-subunit contains the transmembrane pathway for protons, and their passage across the membrane generates the turning of the rotor. The pathway has two half-channels containing conserved polar residues provided by a bundle of four α-helices inclined at ∼30° to the plane of the membrane, similar to those described in other species. The structure provides more insights into the workings of this amazing machine.
Collapse
|
20
|
Osanai T, Mikami K, Kitajima M, Urushizaka M, Kawasaki K, Tomisawa T, Itaki C, Noto Y, Magota K, Tomita H. Nutritional regulation of coupling factor 6, a novel vasoactive and proatherogenic peptide. Nutrition 2016; 37:74-78. [PMID: 28359367 DOI: 10.1016/j.nut.2016.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 12/24/2022]
Abstract
High sodium, high glucose, and obesity are important risk factors for age-related diseases such as cardiovascular disease (CVDs), stroke, and cancer. Coupling factor 6 (CF6) is released from vascular endothelial cells and functions as a circulating peptide that inhibits prostacyclin and nitric oxide generation by intracellular acidosis. High glucose elevates CF6 by activation of protein kinase C and p38 mitogen-activated protein kinase, whereas CF6 causes type 2 diabetes mellitus, resulting in a high glucose vicious cycle. Low glucose increases inhibitory factor peptide 1, an endogenous inhibitor of CF6. High salt intake increases CF6 through nuclear factor κB signaling, whereas CF6 induces salt-sensitive hypertension and salt-induced congestive heart failure. Oral administration of vitamin C cancels salt-induced increase in CF6, and estrogen replacement leads to the delayed onset of CF6-induced salt-sensitive hypertension and the rescue from cardiac systolic dysfunction. Because CF6 contributes to the onset of CVDs, nutritional regulation of CF6 will shed light on the understanding of preventive strategy and mechanisms for CVDs and a target for therapy.
Collapse
Affiliation(s)
- Tomohiro Osanai
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan.
| | - Kasumi Mikami
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Maiko Kitajima
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Mayumi Urushizaka
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Kumiko Kawasaki
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Toshiko Tomisawa
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Chieko Itaki
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Yuka Noto
- Department of Nursing Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Koji Magota
- Daiichi Sankyo Co., Ltd., Biologics Technology Research Laboratories Group 1, Pharmaceutical Technology Division, Gunma, Japan
| | - Hirofumi Tomita
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
21
|
Gerle C. On the structural possibility of pore-forming mitochondrial FoF1 ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1191-1196. [PMID: 26968896 DOI: 10.1016/j.bbabio.2016.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
Abstract
The mitochondrial permeability transition is an inner mitochondrial membrane event involving the opening of the permeability transition pore concomitant with a sudden efflux of matrix solutes and breakdown of membrane potential. The mitochondrial F(o)F(1) ATP synthase has been proposed as the molecular identity of the permeability transition pore. The likeliness of potential pore-forming sites in the mitochondrial F(o)F(1) ATP synthase is discussed and a new model, the death finger model, is described. In this model, movement of a p-side density that connects the lipid-plug of the c-ring with the distal membrane bending Fo domain allows reversible opening of the c-ring and structural cross-talk with OSCP and the catalytic (αβ)(3) hexamer. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Christoph Gerle
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.
| |
Collapse
|
22
|
Kawai M, Osanai T, Tanaka M, Magota K, Tomita H, Okumura K. Mitochondrial Inhibitory Factor Protein 1 Functions as an Endogenous Inhibitor for Coupling Factor 6. J Cell Biochem 2016; 117:1680-7. [PMID: 26659871 DOI: 10.1002/jcb.25461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/10/2015] [Indexed: 12/16/2023]
Abstract
Coupling factor 6 (CF6) forces a counter-clockwise rotation of plasma membrane F1 Fo complex unlike a proton-mediated clockwise rotation in the mitochondria, resulting in ATP hydrolysis, proton import, and apoptosis. Inhibitory peptide 1 (IF1) inhibits a unidirectional counter-clockwise rotation of F1 Fo complex without affecting ATP synthesis by a clockwise rotation. We tested the hypothesis that IF1 may antagonize the biological action of CF6 in human embryonic kidney 293 cells. We generated mature and immature IF1 expression vectors and those labeled with GFP at the C-terminus. In the immature IF1-GFP overexpressing cells, the mitochondrial network of IF1-GFP was newly found at the plasma membrane after peripheral translocation, whereas in mature IF1-GFP transfected cells, a less punctuate rather homogenous pattern was found in the cytoplasm. IF1 protein was detected in the exosome fraction of culture media, and it was enhanced by mature or immature IF1 transfection. Extracellular ATP hydrolysis was enhanced by CF6, whereas immature or mature IF1 transfection suppressed ATP hydrolysis in response to CF6. Intracellular pH was decreased by CF6 but was unchanged after immature IF1 transfection. CF6-induced increase in apoptotic cells was blocked by immature or mature IF1, being accompanied by protein kinase B (PKB) phosphorylation. IF1 antagonizes the pro-apoptotic action of CF6 by relief of intracellular acidification and resultant phosphorylation of PKB. Given the widespread biological actions of CF6, the physiological and pathological functions of IF1 may be expected to be complex. J. Cell. Biochem. 117: 1680-1687, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Misato Kawai
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomohiro Osanai
- Department of Health Promotion, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
| | - Makoto Tanaka
- Department of Hypertension and Stroke Internal Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koji Magota
- Faculty of Discovery and Biotechnology II, Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Hirofumi Tomita
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ken Okumura
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
23
|
Hahn A, Parey K, Bublitz M, Mills DJ, Zickermann V, Vonck J, Kühlbrandt W, Meier T. Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology. Mol Cell 2016; 63:445-56. [PMID: 27373333 PMCID: PMC4980432 DOI: 10.1016/j.molcel.2016.05.037] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/21/2016] [Accepted: 05/26/2016] [Indexed: 11/28/2022]
Abstract
We determined the structure of a complete, dimeric F1Fo-ATP synthase from yeast Yarrowia lipolytica mitochondria by a combination of cryo-EM and X-ray crystallography. The final structure resolves 58 of the 60 dimer subunits. Horizontal helices of subunit a in Fo wrap around the c-ring rotor, and a total of six vertical helices assigned to subunits a, b, f, i, and 8 span the membrane. Subunit 8 (A6L in human) is an evolutionary derivative of the bacterial b subunit. On the lumenal membrane surface, subunit f establishes direct contact between the two monomers. Comparison with a cryo-EM map of the F1Fo monomer identifies subunits e and g at the lateral dimer interface. They do not form dimer contacts but enable dimer formation by inducing a strong membrane curvature of ∼100°. Our structure explains the structural basis of cristae formation in mitochondria, a landmark signature of eukaryotic cell morphology. Cryo-EM structure of a yeast F1Fo-ATP synthase dimer Inhibitor-free X-ray structure of the F1 head and rotor complex Mechanism of ATP generation by rotary catalysis Structural basis of cristae formation in the inner mitochondrial membrane
Collapse
Affiliation(s)
- Alexander Hahn
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Kristian Parey
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Maike Bublitz
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, Medical School, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany.
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Matic I, Cocco S, Ferraina C, Martin-Jimenez R, Florenzano F, Crosby J, Lupi R, Amadoro G, Russell C, Pignataro G, Annunziato L, Abramov AY, Campanella M. Neuroprotective coordination of cell mitophagy by the ATPase Inhibitory Factor 1. Pharmacol Res 2016; 103:56-68. [PMID: 26484591 DOI: 10.1016/j.phrs.2015.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 01/03/2023]
Abstract
The mitochondrial ATPase Inhibitory Factor 1 (hereafter referred to as IF1) blocks the reversal of the F1Fo-ATPsynthase to prevent detrimental consumption of cellular ATP and associated demise. Herein, we infer further its molecular physiology by assessing its protective function in neurons during conditions of challenged homeostatic respiration. By adopting in vitro and in vivo protocols of hypoxia/ischemia and re-oxygenation, we show that a shift in the IF1:F1Fo-ATPsynthase expression ratio occurs in neurons. This increased IF1 level is essential to induce accumulation of the PTEN-induced putative kinase 1 (PINK-1) and recruitment of the mitophagic ubiquitin ligase PARK-2 to promote autophagic "control" of the mitochondrial population. In IF1 overexpressing neurons ATP depletion is reduced during hypoxia/ischemia and the mitochondrial membrane potential (ΔYm) resilient to re-oxygenation as well as resistant to electrogenic, Ca(2+) dependent depolarization. These data suggest that in mammalian neurons mitochondria adapt to respiratory stress by upregulating IF1, which exerts a protective role by coordinating pro-survival cell mitophagy and bioenergetics resilience.
Collapse
Affiliation(s)
- Ivana Matic
- Department of Biology, University of Rome "TorVergata", 00133 Rome, Italy
| | - Stefania Cocco
- EBRI-European Brain Research Institute, 00143 Rome, Italy
| | - Caterina Ferraina
- Department of Biology, University of Rome "TorVergata", 00133 Rome, Italy; Regina Elena-National Cancer Institute, 00144 Rome, Italy
| | - Rebeca Martin-Jimenez
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street NW1 0TU, United Kingdom
| | | | - James Crosby
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street NW1 0TU, United Kingdom
| | - Ramona Lupi
- EBRI-European Brain Research Institute, 00143 Rome, Italy
| | - Giusy Amadoro
- EBRI-European Brain Research Institute, 00143 Rome, Italy
| | - Claire Russell
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street NW1 0TU, United Kingdom
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, Federico II University of Naples, Italy; Department of Molecular Neuroscience, Institute of Neurology, University College London, United Kingdom
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, School of Medicine, Federico II University of Naples, Italy; Department of Molecular Neuroscience, Institute of Neurology, University College London, United Kingdom
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, Institute of Neurology, University College London, United Kingdom
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street NW1 0TU, United Kingdom; UCL Consortium for Mitochondrial Research, Royal College Street, University of London, United Kingdom; Department of Biology, University of Rome "TorVergata", 00133 Rome, Italy; Regina Elena-National Cancer Institute, 00144 Rome, Italy.
| |
Collapse
|
25
|
The c-Ring of the F1FO-ATP Synthase: Facts and Perspectives. J Membr Biol 2015; 249:11-21. [PMID: 26621635 DOI: 10.1007/s00232-015-9860-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
The F1FO-ATP synthase is the only enzyme in nature endowed with bi-functional catalytic mechanism of synthesis and hydrolysis of ATP. The enzyme functions, not only confined to energy transduction, are tied to three intrinsic features of the annular arrangement of c subunits which constitutes the so-called c-ring, the core of the membrane-embedded FO domain: (i) the c-ring constitution is linked to the number of ions (H(+) or Na(+)) channeled across the membrane during the dissipation of the transmembrane electrochemical gradient, which in turn determines the species-specific bioenergetic cost of ATP, the "molecular currency unit" of energy transfer in all living beings; (ii) the c-ring is increasingly involved in the mitochondrial permeability transition, an event linked to cell death and to most mitochondrial dysfunctions; (iii) the c subunit species-specific amino acid sequence and susceptibility to post-translational modifications can address antibacterial drug design according to the model of enzyme inhibitors which target the c subunits. Therefore, the simple c-ring structure not only allows the F1FO-ATP synthase to perform the two opposite tasks of molecular machine of cell life and death, but it also amplifies the enzyme's potential role as a drug target.
Collapse
|
26
|
Linking structural features from mitochondrial and bacterial F-type ATP synthases to their distinct mechanisms of ATPase inhibition. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:94-102. [DOI: 10.1016/j.pbiomolbio.2015.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 01/11/2023]
|
27
|
Morales-Ríos E, Montgomery MG, Leslie AGW, García-Trejo JJ, Walker JE. Structure of a catalytic dimer of the α- and β-subunits of the F-ATPase from Paracoccus denitrificans at 2.3 Å resolution. Acta Crystallogr F Struct Biol Commun 2015; 71:1309-17. [PMID: 26457523 PMCID: PMC4601596 DOI: 10.1107/s2053230x15016076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/27/2015] [Indexed: 02/02/2023] Open
Abstract
The structures of F-ATPases have predominantly been determined from mitochondrial enzymes, and those of the enzymes in eubacteria have been less studied. Paracoccus denitrificans is a member of the α-proteobacteria and is related to the extinct protomitochondrion that became engulfed by the ancestor of eukaryotic cells. The P. denitrificans F-ATPase is an example of a eubacterial F-ATPase that can carry out ATP synthesis only, whereas many others can catalyse both the synthesis and the hydrolysis of ATP. Inhibition of the ATP hydrolytic activity of the P. denitrificans F-ATPase involves the ζ inhibitor protein, an α-helical protein that binds to the catalytic F1 domain of the enzyme. This domain is a complex of three α-subunits and three β-subunits, and one copy of each of the γ-, δ- and ℇ-subunits. Attempts to crystallize the F1-ζ inhibitor complex yielded crystals of a subcomplex of the catalytic domain containing the α- and β-subunits only. Its structure was determined to 2.3 Å resolution and consists of a heterodimer of one α-subunit and one β-subunit. It has no bound nucleotides, and it corresponds to the `open' or `empty' catalytic interface found in other F-ATPases. The main significance of this structure is that it aids in the determination of the structure of the intact membrane-bound F-ATPase, which has been crystallized.
Collapse
Affiliation(s)
- Edgar Morales-Ríos
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, England
| | - Martin G. Montgomery
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, England
| | - Andrew G. W. Leslie
- The Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - José J. García-Trejo
- Departmento de Biología, Facultad Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - John E. Walker
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, England
| |
Collapse
|
28
|
Morales-Rios E, Watt IN, Zhang Q, Ding S, Fearnley IM, Montgomery MG, Wakelam MJO, Walker JE. Purification, characterization and crystallization of the F-ATPase from Paracoccus denitrificans. Open Biol 2015; 5:150119. [PMID: 26423580 PMCID: PMC4593670 DOI: 10.1098/rsob.150119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The structures of F-ATPases have been determined predominantly with mitochondrial enzymes, but hitherto no F-ATPase has been crystallized intact. A high-resolution model of the bovine enzyme built up from separate sub-structures determined by X-ray crystallography contains about 85% of the entire complex, but it lacks a crucial region that provides a transmembrane proton pathway involved in the generation of the rotary mechanism that drives the synthesis of ATP. Here the isolation, characterization and crystallization of an integral F-ATPase complex from the α-proteobacterium Paracoccus denitrificans are described. Unlike many eubacterial F-ATPases, which can both synthesize and hydrolyse ATP, the P. denitrificans enzyme can only carry out the synthetic reaction. The mechanism of inhibition of its ATP hydrolytic activity involves a ζ inhibitor protein, which binds to the catalytic F₁-domain of the enzyme. The complex that has been crystallized, and the crystals themselves, contain the nine core proteins of the complete F-ATPase complex plus the ζ inhibitor protein. The formation of crystals depends upon the presence of bound bacterial cardiolipin and phospholipid molecules; when they were removed, the complex failed to crystallize. The experiments open the way to an atomic structure of an F-ATPase complex.
Collapse
Affiliation(s)
- Edgar Morales-Rios
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ian N. Watt
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - Shujing Ding
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ian M. Fearnley
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Martin G. Montgomery
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - John E. Walker
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK,e-mail:
| |
Collapse
|
29
|
GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM. Structure 2015; 23:1769-1775. [DOI: 10.1016/j.str.2015.06.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022]
|
30
|
Assembly of human mitochondrial ATP synthase through two separate intermediates, F1-c-ring andb-e-gcomplex. FEBS Lett 2015; 589:2707-12. [DOI: 10.1016/j.febslet.2015.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/04/2015] [Accepted: 08/09/2015] [Indexed: 12/22/2022]
|
31
|
The purification and characterization of ATP synthase complexes from the mitochondria of four fungal species. Biochem J 2015; 468:167-75. [PMID: 25759169 PMCID: PMC4422255 DOI: 10.1042/bj20150197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ATP synthases have been isolated by affinity chromatography from the mitochondria of the fungal species Yarrowia lipolytica, Pichia pastoris, Pichia angusta and Saccharomyces cerevisiae. The subunit compositions of the purified enzyme complexes depended on the detergent used to solubilize and purify the complex, and the presence or absence of exogenous phospholipids. All four enzymes purified in the presence of n-dodecyl-β-D-maltoside had a complete complement of core subunits involved directly in the synthesis of ATP, but they were deficient to different extents in their supernumerary membrane subunits. In contrast, the enzymes from P. angusta and S. cerevisiae purified in the presence of n-decyl-β-maltose neopentyl glycol and the phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, cardiolipin (diphosphatidylglycerol) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] had a complete complement of core subunits and also contained all of the known supernumerary membrane subunits, e, f, g, j, k and ATP8 (or Aap1), plus an additional new membrane component named subunit l, related in sequence to subunit k. The catalytic domain of the enzyme from P. angusta was more resistant to thermal denaturation than the enzyme from S. cerevisiae, but less stable than the catalytic domain of the bovine enzyme, but the stator and the integrity of the transmembrane proton pathway were most stable in the enzyme from P. angusta. The P. angusta enzyme provides a suitable source of enzyme for studying the structure of the membrane domain and properties associated with that sector of the enzyme complex. ATP, the fuel of life, is produced in mitochondria of living cells by a molecular machine, the ATP synthase. We have isolated the machines from four fungal species, compared their stabilities and identified the proteins from which they are constructed.
Collapse
|
32
|
Lee J, Ding S, Walpole TB, Holding AN, Montgomery MG, Fearnley IM, Walker JE. Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking. J Biol Chem 2015; 290:13308-20. [PMID: 25851905 PMCID: PMC4505582 DOI: 10.1074/jbc.m115.645283] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 12/21/2022] Open
Abstract
The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase.
Collapse
Affiliation(s)
- Jennifer Lee
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - ShuJing Ding
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - Thomas B Walpole
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - Andrew N Holding
- The Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Martin G Montgomery
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - Ian M Fearnley
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - John E Walker
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| |
Collapse
|
33
|
Walpole TB, Palmer DN, Jiang H, Ding S, Fearnley IM, Walker JE. Conservation of complete trimethylation of lysine-43 in the rotor ring of c-subunits of metazoan adenosine triphosphate (ATP) synthases. Mol Cell Proteomics 2015; 14:828-40. [PMID: 25608518 PMCID: PMC4390263 DOI: 10.1074/mcp.m114.047456] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/13/2015] [Indexed: 11/06/2022] Open
Abstract
The rotors of ATP synthases turn about 100 times every second. One essential component of the rotor is a ring of hydrophobic c-subunits in the membrane domain of the enzyme. The rotation of these c-rings is driven by a transmembrane proton-motive force, and they turn against a surface provided by another membrane protein, known as subunit a. Together, the rotating c-ring and the static subunit a provide a pathway for protons through the membrane in which the c-ring and subunit a are embedded. Vertebrate and invertebrate c-subunits are well conserved. In the structure of the bovine F1-ATPase-c-ring subcomplex, the 75 amino acid c-subunit is folded into two transmembrane α-helices linked by a short loop. Each bovine rotor-ring consists of eight c-subunits with the N- and C-terminal α-helices forming concentric inner and outer rings, with the loop regions exposed to the phospholipid head-group region on the matrix side of the inner membrane. Lysine-43 is in the loop region and its ε-amino group is completely trimethylated. The role of this modification is unknown. If the trimethylated lysine-43 plays some important role in the functioning, assembly or degradation of the c-ring, it would be expected to persist throughout vertebrates and possibly invertebrates also. Therefore, we have carried out a proteomic analysis of c-subunits across representative species from different classes of vertebrates and from invertebrate phyla. In the twenty-nine metazoan species that have been examined, the complete methylation of lysine-43 is conserved, and it is likely to be conserved throughout the more than two million extant metazoan species. In unicellular eukaryotes and prokaryotes, when the lysine is conserved it is unmethylated, and the stoichiometries of c-subunits vary from 9-15. One possible role for the trimethylated residue is to provide a site for the specific binding of cardiolipin, an essential component of ATP synthases in mitochondria.
Collapse
Affiliation(s)
- Thomas B Walpole
- From the ‡Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge, CB2 0XY, United Kingdom and
| | - David N Palmer
- From the ‡Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge, CB2 0XY, United Kingdom and the §Agriculture and Life Sciences Faculty, Lincoln University, 7647, New Zealand
| | - Huibing Jiang
- From the ‡Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge, CB2 0XY, United Kingdom and the §Agriculture and Life Sciences Faculty, Lincoln University, 7647, New Zealand
| | - Shujing Ding
- From the ‡Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge, CB2 0XY, United Kingdom and
| | - Ian M Fearnley
- From the ‡Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge, CB2 0XY, United Kingdom and
| | - John E Walker
- From the ‡Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge, CB2 0XY, United Kingdom and
| |
Collapse
|
34
|
Jiko C, Davies KM, Shinzawa-Itoh K, Tani K, Maeda S, Mills DJ, Tsukihara T, Fujiyoshi Y, Kühlbrandt W, Gerle C. Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 2D membrane crystals. eLife 2015; 4:e06119. [PMID: 25815585 PMCID: PMC4413875 DOI: 10.7554/elife.06119] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/26/2015] [Indexed: 01/06/2023] Open
Abstract
We have used a combination of electron cryo-tomography, subtomogram averaging, and electron crystallographic image processing to analyse the structure of intact bovine F1Fo ATP synthase in 2D membrane crystals. ATPase assays and mass spectrometry analysis of the 2D crystals confirmed that the enzyme complex was complete and active. The structure of the matrix-exposed region was determined at 24 Å resolution by subtomogram averaging and repositioned into the tomographic volume to reveal the crystal packing. F1Fo ATP synthase complexes are inclined by 16° relative to the crystal plane, resulting in a zigzag topology of the membrane and indicating that monomeric bovine heart F1Fo ATP synthase by itself is sufficient to deform lipid bilayers. This local membrane curvature is likely to be instrumental in the formation of ATP synthase dimers and dimer rows, and thus for the shaping of mitochondrial cristae. DOI:http://dx.doi.org/10.7554/eLife.06119.001 Cells use a molecule called adenosine triphosphate (or ATP for short) to power many processes that are vital for life. Animals, plants, and fungi primarily make their ATP in a specialised compartment called the mitochondrion, which is found inside their cells. The mitochondrion is often referred to as the powerhouse of cells as it captures and stores the energy that animals gain from eating food in the molecule ATP. Other enzymes in the cell break apart ATP to release the stored energy, which they use to power various cellular processes. The interior architecture of the mitochondrion includes a highly folded inner membrane where electrical energy is transformed into chemical energy. The tight folding of the inner membrane is thought to make this process more efficient. An enzyme named ATP synthase performs the final steps of the energy transformation process by producing ATP (ATP synthase literally means ‘ATP maker’). This enzyme sits in pairs along the edges of the inner membrane folds. This raises the question: does the ATP synthase cause the membrane to fold or does this enzyme just ‘prefer’ these folded edges (which are instead caused by something else inside the mitochondrion)? To investigate this question, Jiko, Davies et al. extracted ATP synthase from the mitochondria of cow hearts and mixed them with modified fat molecules to form a ‘2D membrane crystal’: a membrane containing an ordered pattern of enzymes. An electron microscope was used to generate a three-dimensional volume of the 2D membrane crystal via a process similar to a MRI or CAT scan that one might have in hospital. In the three-dimensional volume of the membrane crystal, Jiko, Davies et al. discovered that instead of being flat as expected, the membrane of the 2D membrane crystal was rippled and that this ripple was caused by the membrane-embedded part of the ATP synthase. The geometry of the ripple exactly matched half of the bend at the edge of the membrane folds in the mitochondrion. Therefore, Jiko, Davies et al. concluded that a pair of ATP synthases, as found in mitochondria, was responsible for defining the tight folds of the inner mitochondrial membrane. DOI:http://dx.doi.org/10.7554/eLife.06119.002
Collapse
Affiliation(s)
- Chimari Jiko
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Karen M Davies
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Kazutoshi Tani
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | - Shintaro Maeda
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Tomitake Tsukihara
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Christoph Gerle
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| |
Collapse
|
35
|
Abstract
Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.
Collapse
Affiliation(s)
- Wolfgang Junge
- Department of Biophysics, Universität Osnabrück, DE-49069 Osnabrück, Germany;
| | | |
Collapse
|
36
|
Bueler SA, Rubinstein JL. Vma9p need not be associated with the yeast V-ATPase for fully-coupled proton pumping activity in vitro. Biochemistry 2015; 54:853-8. [PMID: 25546637 DOI: 10.1021/bi5013172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vacuolar-type ATPases (V-ATPases) acidify numerous intracellular compartments in all eukaryotic cells and are responsible for extracellular acidification in some specialized cells. V-ATPases are large macromolecular complexes with at least 15 different subunits, some of which are found in multiple copies. The main roles of all V-ATPase subunits have been established except for the e subunit, encoded by the gene VMA9 in Saccharomyces cerevisiae, and the Ac45 subunit, which is not found in the S. cerevisiae enzyme. Here we demonstrate that when the S. cerevisiae V-ATPase is solubilized with the detergent dodecylmaltoside (DDM), Vma9p is removed. We further demonstrate that after Vma9p has been removed by detergent the purified enzyme is still able to perform fully-coupled ATP-dependent proton pumping. This observation shows that Vma9p is not necessary in vitro for this principal activity of the V-ATPase.
Collapse
Affiliation(s)
- Stephanie A Bueler
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute , Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|
37
|
Zhou A, Rohou A, Schep DG, Bason JV, Montgomery MG, Walker JE, Grigorieff N, Rubinstein JL. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. eLife 2015; 4:e10180. [PMID: 26439008 PMCID: PMC4718723 DOI: 10.7554/elife.10180] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/05/2015] [Indexed: 02/02/2023] Open
Abstract
Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases.
Collapse
Affiliation(s)
- Anna Zhou
- The Hospital for Sick Children Research Institute, Toronto, Canada,Department of Medical Biophysics, The University of Toronto, Ontario, Canada
| | - Alexis Rohou
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Daniel G Schep
- The Hospital for Sick Children Research Institute, Toronto, Canada,Department of Medical Biophysics, The University of Toronto, Ontario, Canada
| | - John V Bason
- MRC Mitochondrial Biology Unit, Cambridge, United Kingdom
| | | | - John E Walker
- MRC Mitochondrial Biology Unit, Cambridge, United Kingdom, (JEW)
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States, (NG)
| | - John L Rubinstein
- The Hospital for Sick Children Research Institute, Toronto, Canada,Department of Medical Biophysics, The University of Toronto, Ontario, Canada,Department of Biochemistry, The University of Toronto, Ontario, Canada, (JLR)
| |
Collapse
|
38
|
Li J, Qi Y, Liu H, Cui Y, Zhang L, Gong H, Li Y, Li L, Zhang Y. Acute high-altitude hypoxic brain injury: Identification of ten differential proteins. Neural Regen Res 2014; 8:2932-41. [PMID: 25206614 PMCID: PMC4146176 DOI: 10.3969/j.issn.1673-5374.2013.31.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/30/2013] [Indexed: 12/31/2022] Open
Abstract
Hypobaric hypoxia can cause severe brain damage and mitochondrial dysfunction, and is involved in hypoxic brain injury. However, little is currently known about the mechanisms responsible for mitochondrial dysfunction in hypobaric hypoxic brain damage. In this study, a rat model of hypobaric hypoxic brain injury was established to investigate the molecular mechanisms associated with mitochondrial dysfunction. As revealed by two-dimensional electrophoresis analysis, 16, 21, and 36 differential protein spots in cerebral mitochondria were observed at 6, 12, and 24 hours post-hypobaric hypoxia, respectively. Furthermore, ten protein spots selected from each hypobaric hypoxia subgroup were similarly regulated and were identified by mass spectrometry. These detected proteins included dihydropyrimidinase-related protein 2, creatine kinase B-type, isovaleryl-CoA dehydrogenase, elongation factor Ts, ATP synthase beta-subunit, 3-mercaptopyruvate sulfurtransferase, electron transfer flavoprotein alpha-subunit, Chain A of 2-enoyl-CoA hydratase, NADH dehydrogenase iron-sulfur protein 8 and tropomyosin beta chain. These ten proteins are all involved in the electron transport chain and the function of ATP synthase. Our findings indicate that hypobaric hypoxia can induce the differential expression of several cerebral mitochondrial proteins, which are involved in the regulation of mitochondrial energy production.
Collapse
Affiliation(s)
- Jianyu Li
- Department of Pharmaceutical Chemistry, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Yuting Qi
- Department of Pharmaceutical Chemistry, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Hui Liu
- Department of Hepatobiliary, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Ying Cui
- Department of Pharmaceutical Chemistry, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China ; Tianjin Key Laboratory of Occupational and Environmental Hazards Biomarkers, Tianjin 300162, China
| | - Li Zhang
- Tianjin Key Laboratory of Occupational and Environmental Hazards Biomarkers, Tianjin 300162, China
| | - Haiying Gong
- Department of Pharmaceutical Chemistry, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Yaxiao Li
- Department of Pharmaceutical Chemistry, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Lingzhi Li
- Department of Pharmaceutical Chemistry, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China ; Tianjin Key Laboratory of Occupational and Environmental Hazards Biomarkers, Tianjin 300162, China
| | - Yongliang Zhang
- Tianjin Key Laboratory of Occupational and Environmental Hazards Biomarkers, Tianjin 300162, China
| |
Collapse
|
39
|
Bason JV, Montgomery MG, Leslie AGW, Walker JE. Pathway of binding of the intrinsically disordered mitochondrial inhibitor protein to F1-ATPase. Proc Natl Acad Sci U S A 2014; 111:11305-10. [PMID: 25049402 PMCID: PMC4128166 DOI: 10.1073/pnas.1411560111] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The hydrolysis of ATP by the ATP synthase in mitochondria is inhibited by a protein called IF1. Bovine IF1 has 84 amino acids, and its N-terminal inhibitory region is intrinsically disordered. In a known structure of bovine F1-ATPase inhibited with residues 1-60 of IF1, the inhibitory region from residues 1-50 is mainly α-helical and buried deeply at the α(DP)β(DP)-catalytic interface, where it forms extensive interactions with five of the nine subunits of F1-ATPase but mainly with the β(DP)-subunit. As described here, on the basis of two structures of inhibited complexes formed in the presence of large molar excesses of residues 1-60 of IF1 and of a version of IF1 with the mutation K39A, it appears that the intrinsically disordered inhibitory region interacts first with the αEβE-catalytic interface, the most open of the three catalytic interfaces, where the available interactions with the enzyme allow it to form an α-helix from residues 31-49. Then, in response to the hydrolysis of an ATP molecule and the associated partial closure of the interface to the αTPβTP state, the extent of the folded α-helical region of IF1 increases to residues 23-50 as more interactions with the enzyme become possible. Finally, in response to the hydrolysis of a second ATP molecule and a concomitant 120° rotation of the γ-subunit, the interface closes further to the α(DP)β(DP)-state, allowing more interactions to form between the enzyme and IF1. The structure of IF1 now extends to its maximally folded state found in the previously observed inhibited complex.
Collapse
Affiliation(s)
- John V Bason
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom; and
| | - Martin G Montgomery
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom; and
| | - Andrew G W Leslie
- The Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom; and
| |
Collapse
|
40
|
Fujikawa M, Ohsakaya S, Sugawara K, Yoshida M. Population of ATP synthase molecules in mitochondria is limited by available 6.8-kDa proteolipid protein (MLQ). Genes Cells 2013; 19:153-60. [DOI: 10.1111/gtc.12121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/01/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Makoto Fujikawa
- JST ICORP ATP-Synthesis Regulation Project; 2-3-6 Aomi Koto-ku Tokyo 135-0064 Japan
- Department of Biochemistry; Faculty of Pharmaceutical Science; Tokyo University of Science; 2641 Yamazaki Noda 278-8510 Japan
| | - Shigenori Ohsakaya
- Chemical Resources Laboratory; Tokyo Institute of Technology; Nagatsuta 4259-R1-8 Midori-ku Yokohama 226-8503 Japan
| | - Kanako Sugawara
- JST ICORP ATP-Synthesis Regulation Project; 2-3-6 Aomi Koto-ku Tokyo 135-0064 Japan
- Department of Molecular Bioscience; Kyoto Sangyo University; Kamigamo-Motoyama Sakyo-ku Kyoto 603-8555 Japan
| | - Masasuke Yoshida
- JST ICORP ATP-Synthesis Regulation Project; 2-3-6 Aomi Koto-ku Tokyo 135-0064 Japan
- Department of Molecular Bioscience; Kyoto Sangyo University; Kamigamo-Motoyama Sakyo-ku Kyoto 603-8555 Japan
| |
Collapse
|
41
|
Robinson GC, Bason JV, Montgomery MG, Fearnley IM, Mueller DM, Leslie AGW, Walker JE. The structure of F₁-ATPase from Saccharomyces cerevisiae inhibited by its regulatory protein IF₁. Open Biol 2013; 3:120164. [PMID: 23407639 PMCID: PMC3603450 DOI: 10.1098/rsob.120164] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/21/2013] [Indexed: 11/29/2022] Open
Abstract
The structure of F₁-ATPase from Saccharomyces cerevisiae inhibited by the yeast IF₁ has been determined at 2.5 Å resolution. The inhibitory region of IF₁ from residues 1 to 36 is entrapped between the C-terminal domains of the α(DP)- and β(DP)-subunits in one of the three catalytic interfaces of the enzyme. Although the structure of the inhibited complex is similar to that of the bovine-inhibited complex, there are significant differences between the structures of the inhibitors and their detailed interactions with F₁-ATPase. However, the most significant difference is in the nucleotide occupancy of the catalytic β(E)-subunits. The nucleotide binding site in β(E)-subunit in the yeast complex contains an ADP molecule without an accompanying magnesium ion, whereas it is unoccupied in the bovine complex. Thus, the structure provides further evidence of sequential product release, with the phosphate and the magnesium ion released before the ADP molecule.
Collapse
Affiliation(s)
- Graham C. Robinson
- The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - John V. Bason
- The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - Martin G. Montgomery
- The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - Ian M. Fearnley
- The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - David M. Mueller
- Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Andrew G. W. Leslie
- The Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - John E. Walker
- The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|