1
|
Shi Y, Masic V, Mosaiab T, Rajaratman P, Hartley-Tassell L, Sorbello M, Goulart CC, Vasquez E, Mishra BP, Holt S, Gu W, Kobe B, Ve T. Structural characterization of macro domain-containing Thoeris antiphage defense systems. SCIENCE ADVANCES 2024; 10:eadn3310. [PMID: 38924412 PMCID: PMC11204291 DOI: 10.1126/sciadv.adn3310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Thoeris defense systems protect bacteria from infection by phages via abortive infection. In these systems, ThsB proteins serve as sensors of infection and generate signaling nucleotides that activate ThsA effectors. Silent information regulator and SMF/DprA-LOG (SIR2-SLOG) containing ThsA effectors are activated by cyclic ADP-ribose (ADPR) isomers 2'cADPR and 3'cADPR, triggering abortive infection via nicotinamide adenine dinucleotide (NAD+) depletion. Here, we characterize Thoeris systems with transmembrane and macro domain (TM-macro)-containing ThsA effectors. We demonstrate that ThsA macro domains bind ADPR and imidazole adenine dinucleotide (IAD), but not 2'cADPR or 3'cADPR. Combining crystallography, in silico predictions, and site-directed mutagenesis, we show that ThsA macro domains form nucleotide-induced higher-order oligomers, enabling TM domain clustering. We demonstrate that ThsB can produce both ADPR and IAD, and we identify a ThsA TM-macro-specific ThsB subfamily with an active site resembling deoxy-nucleotide and deoxy-nucleoside processing enzymes. Collectively, our study demonstrates that Thoeris systems with SIR2-SLOG and TM-macro ThsA effectors trigger abortive infection via distinct mechanisms.
Collapse
Affiliation(s)
- Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Veronika Masic
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Tamim Mosaiab
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Premraj Rajaratman
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | | | - Mitchell Sorbello
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cassia C. Goulart
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Eduardo Vasquez
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Biswa P. Mishra
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Stephanie Holt
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
2
|
Stoll GA, Nikolopoulos N, Zhai H, Zhang L, Douse CH, Modis Y. Crystal structure and biochemical activity of the macrodomain from rubella virus p150. J Virol 2024; 98:e0177723. [PMID: 38289106 PMCID: PMC10878246 DOI: 10.1128/jvi.01777-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/22/2023] [Indexed: 02/13/2024] Open
Abstract
Rubella virus encodes a nonstructural polyprotein with RNA polymerase, methyltransferase, and papain-like cysteine protease activities, along with a putative macrodomain of unknown function. Macrodomains bind ADP-ribose adducts, a post-translational modification that plays a key role in host-virus conflicts. Some macrodomains can also remove the mono-ADP-ribose adduct or degrade poly-ADP-ribose chains. Here, we report high-resolution crystal structures of the macrodomain from rubella virus nonstructural protein p150, with and without ADP-ribose binding. The overall fold is most similar to macroD-type macrodomains from various nonviral species. The specific composition and structure of the residues that coordinate ADP-ribose in the rubella virus macrodomain are most similar to those of macrodomains from alphaviruses. Isothermal calorimetry shows that the rubella virus macrodomain binds ADP-ribose in solution. Enzyme assays show that the rubella virus macrodomain can hydrolyze both mono- and poly-ADP-ribose adducts. Site-directed mutagenesis identifies Asn39 and Cys49 required for mono-ADP-ribosylhydrolase (de-MARylation) activity.IMPORTANCERubella virus remains a global health threat. Rubella infections during pregnancy can cause serious congenital pathology, for which no antiviral treatments are available. Our work demonstrates that, like alpha- and coronaviruses, rubiviruses encode a mono-ADP-ribosylhydrolase with a structurally conserved macrodomain fold to counteract MARylation by poly (ADP-ribose) polymerases (PARPs) in the host innate immune response. Our structural data will guide future efforts to develop novel antiviral therapeutics against rubella or infections with related viruses.
Collapse
Affiliation(s)
- Guido A. Stoll
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nikos Nikolopoulos
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Haoming Zhai
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Liao Zhang
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. ADP-ribosylation from molecular mechanisms to therapeutic implications. Cell 2023; 186:4475-4495. [PMID: 37832523 PMCID: PMC10789625 DOI: 10.1016/j.cell.2023.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 10/15/2023]
Abstract
ADP-ribosylation is a ubiquitous modification of biomolecules, including proteins and nucleic acids, that regulates various cellular functions in all kingdoms of life. The recent emergence of new technologies to study ADP-ribosylation has reshaped our understanding of the molecular mechanisms that govern the establishment, removal, and recognition of this modification, as well as its impact on cellular and organismal function. These advances have also revealed the intricate involvement of ADP-ribosylation in human physiology and pathology and the enormous potential that their manipulation holds for therapy. In this review, we present the state-of-the-art findings covering the work in structural biology, biochemistry, cell biology, and clinical aspects of ADP-ribosylation.
Collapse
Affiliation(s)
| | | | - Johannes G M Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; MRC Centre of Medical Mycology, University of Exeter, Exeter, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Tsika AC, Gallo A, Fourkiotis NK, Argyriou AI, Sreeramulu S, Löhr F, Rogov VV, Richter C, Linhard V, Gande SL, Altincekic N, Krishnathas R, Elamri I, Schwalbe H, Wollenhaupt J, Weiss MS, Spyroulias GA. Binding Adaptation of GS-441524 Diversifies Macro Domains and Downregulates SARS-CoV-2 de-MARylation Capacity. J Mol Biol 2022; 434:167720. [PMID: 35839840 PMCID: PMC9284540 DOI: 10.1016/j.jmb.2022.167720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
Viral infection in cells triggers a cascade of molecular defense mechanisms to maintain host-cell homoeostasis. One of these mechanisms is ADP-ribosylation, a fundamental post-translational modification (PTM) characterized by the addition of ADP-ribose (ADPr) on substrates. Poly(ADP-ribose) polymerases (PARPs) are implicated in this process and they perform ADP-ribosylation on host and pathogen proteins. Some viral families contain structural motifs that can reverse this PTM. These motifs known as macro domains (MDs) are evolutionarily conserved protein domains found in all kingdoms of life. They are divided in different classes with the viral belonging to Macro-D-type class because of their properties to recognize and revert the ADP-ribosylation. Viral MDs are potential pharmaceutical targets, capable to counteract host immune response. Sequence and structural homology between viral and human MDs are an impediment for the development of new active compounds against their function. Remdesivir, is a drug administrated in viral infections inhibiting viral replication through RNA-dependent RNA polymerase (RdRp). Herein, GS-441524, the active metabolite of the remdesivir, is tested as a hydrolase inhibitor for several viral MDs and for its binding to human homologs found in PARPs. This study presents biochemical and biophysical studies, which indicate that GS-441524 selectively modifies SARS-CoV-2 MD de-MARylation activity, while it does not interact with hPARP14 MD2 and hPARP15 MD2. The structural investigation of MD•GS-441524 complexes, using solution NMR and X-ray crystallography, discloses the impact of certain amino acids in ADPr binding cavity suggesting that F360 and its adjacent residues tune the selective binding of the inhibitor to SARS-CoV-2 MD.
Collapse
Affiliation(s)
| | - Angelo Gallo
- Department of Pharmacy, University of Patras, GR-26504 Patras, Greece
| | | | | | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Frank Löhr
- Institute for Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Vladimir V. Rogov
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany,Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Verena Linhard
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Santosh L. Gande
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Robin Krishnathas
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Isam Elamri
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany,Corresponding authors
| | - Jan Wollenhaupt
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Manfred S. Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Georgios A. Spyroulias
- Department of Pharmacy, University of Patras, GR-26504 Patras, Greece,Corresponding authors
| |
Collapse
|
5
|
Reversible modification of mitochondrial ADP/ATP translocases by paired Legionella effector proteins. Proc Natl Acad Sci U S A 2022; 119:e2122872119. [PMID: 35653564 DOI: 10.1073/pnas.2122872119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceMitochondria are organelles of the central metabolism that produce ATP and play fundamental roles in eukaryotic cell function and thereby become targets for pathogenic bacteria to manipulate. We found that the intracellular bacterial pathogen, Legionella pneumophila, targets mitochondrial ADP/ATP translocases (ANTs), the function of which is linked to the mitochondrial ATP synthesis. This is achieved by a pair of effector proteins, Lpg0080 and Lpg0081, which have opposing enzymatic activities as an ADP ribosyltransferase (ART) and an ADP ribosylhydrolase (ARH), respectively, coordinately regulating the chemical modification of ANTs upon infection. Our structural analyses indicate that Lpg0081 is an ARH with a noncanonical macrodomain, whose folding topology is distinct from that of the canonical macrodomain of known eukaryotic, archaeal, and bacterial proteins.
Collapse
|
6
|
Tsika AC, Fourkiotis NK, Charalampous P, Gallo A, Spyroulias GA. NMR study of macro domains (MDs) from betacoronavirus: backbone resonance assignments of SARS-CoV and MERS-CoV MDs in the free and the ADPr-bound state. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:9-16. [PMID: 34686999 PMCID: PMC8533669 DOI: 10.1007/s12104-021-10052-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/11/2021] [Indexed: 06/02/2023]
Abstract
SARS-CoV and MERS-CoV Macro Domains (MDs) exhibit topological and conformational features that resemble the nsP3b macro (or "X") domain of SARS-CoV-2. Indeed, all the three domains (SARS-CoV-2, SARS-CoV and MERS-CoV MDs) fold in a three-layer α/β/α sandwich structure, as reported by crystallographic structural investigation of SARS-CoV MD and MERS-CoV MD. These viral MDs are able to bind ADP-ribose as many other MDs from different kingdoms. They have been characterized also as de-ADP-ribosylating enzymes. For this reason, these viral macrodomains recently emerged as important drug targets since they can counteract antiviral ADP-ribosylation mediated by poly-ADP-ribose polymerase (PARPs). Even in presence of the 3D structures of SARS-CoV MD and of MERS-CoV MD, we report herein the almost complete NMR backbone (1H, 13C, 15N) of SARS-CoV MD and MERS-CoV proteins in the free and ADPr bound forms, and the NMR chemical shift-based prediction of their secondary structure elements. These NMR data will help to further understanding of the atomic-level conformational dynamics of these proteins and will allow an extensive screening of small molecules as potential antiviral drugs.
Collapse
Affiliation(s)
| | | | | | - Angelo Gallo
- Department of Pharmacy, University of Patras, 26504, Patras, Greece.
| | | |
Collapse
|
7
|
Fu J, Li P, Guan H, Huang D, Song L, Ouyang S, Luo Z. Legionella pneumophila temporally regulates the activity of ADP/ATP translocases by reversible ADP-ribosylation. MLIFE 2022; 1:51-65. [PMID: 38818321 PMCID: PMC10989772 DOI: 10.1002/mlf2.12014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 06/01/2024]
Abstract
The mitochondrion is an important signaling hub that governs diverse cellular functions, including metabolism, energy production, and immunity. Among the hundreds of effectors translocated into host cells by the Dot/Icm system of Legionella pneumophila, several are targeted to mitochondria but the function of most of them remains elusive. Our recent study found that the effector Ceg3 inhibits the activity of ADP/ATP translocases (ANTs) by ADP-ribosylation (ADPR). Here, we show that the effect of Ceg3 is antagonized by Larg1, an effector encoded by lpg0081, a gene that is situated next to ceg3. Larg1 functions to reverse Ceg3-mediated ADPR of ANTs by cleaving the N-glycosidic bond between the ADPR moiety and the modified arginine residues in ANTs, leading to restoration of their activity in ADP/ATP exchange. Structural analysis of Larg1 and its complex with ADPR reveals that this ADPR glycohydrolase harbors a unique macrodomain that catalyzes the removal of ADPR modification on ANTs. Our results also demonstrate that together with Ceg3, Larg1 imposes temporal regulation of the activity of ANTs by reversible ADPR during L. pneumophila infection.
Collapse
Affiliation(s)
- Jiaqi Fu
- Department of Biological Sciences, Purdue Institute for Inflammation, Immunology and Infectious DiseasePurdue UniversityWest LafayetteIndianaUSA
| | - Pengwei Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life SciencesFujian Normal UniversityFuzhouChina
| | - Hongxin Guan
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life SciencesFujian Normal UniversityFuzhouChina
| | - Dan Huang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory of Zoonotic Diseases, Department of Respiratory Medicine, Center for Pathogen Biology and Infectious DiseasesThe First Hospital of Jilin UniversityChangchunChina
| | - Lei Song
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory of Zoonotic Diseases, Department of Respiratory Medicine, Center for Pathogen Biology and Infectious DiseasesThe First Hospital of Jilin UniversityChangchunChina
| | - Songying Ouyang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life SciencesFujian Normal UniversityFuzhouChina
| | - Zhao‐Qing Luo
- Department of Biological Sciences, Purdue Institute for Inflammation, Immunology and Infectious DiseasePurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
8
|
Chiu YC, Tseng MC, Hsu CH. Expanding the Substrate Specificity of Macro Domains toward 3″-Isomer of O-Acetyl-ADP-ribose. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi-Chih Chiu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Hua Hsu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Mikolčević P, Hloušek-Kasun A, Ahel I, Mikoč A. ADP-ribosylation systems in bacteria and viruses. Comput Struct Biotechnol J 2021; 19:2366-2383. [PMID: 34025930 PMCID: PMC8120803 DOI: 10.1016/j.csbj.2021.04.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
ADP-ribosylation is an ancient posttranslational modification present in all kingdoms of life. The system likely originated in bacteria where it functions in inter- and intra-species conflict, stress response and pathogenicity. It was repeatedly adopted via lateral transfer by eukaryotes, including humans, where it has a pivotal role in epigenetics, DNA-damage repair, apoptosis, and other crucial pathways including the immune response to pathogenic bacteria and viruses. In other words, the same ammunition used by pathogens is adapted by eukaryotes to fight back. While we know quite a lot about the eukaryotic system, expanding rather patchy knowledge on bacterial and viral ADP-ribosylation would give us not only a better understanding of the system as a whole but a fighting advantage in this constant arms race. By writing this review we hope to put into focus the available information and give a perspective on how this system works and can be exploited in the search for therapeutic targets in the future. The relevance of the subject is especially highlighted by the current situation of being amid the world pandemic caused by a virus harbouring and dependent on a representative of such a system.
Collapse
Affiliation(s)
- Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
10
|
Hammond RG, Schormann N, McPherson RL, Leung AKL, Deivanayagam CCS, Johnson MA. ADP-ribose and analogues bound to the deMARylating macrodomain from the bat coronavirus HKU4. Proc Natl Acad Sci U S A 2021; 118:e2004500118. [PMID: 33397718 PMCID: PMC7812796 DOI: 10.1073/pnas.2004500118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Macrodomains are proteins that recognize and hydrolyze ADP ribose (ADPR) modifications of intracellular proteins. Macrodomains are implicated in viral genome replication and interference with host cell immune responses. They are important to the infectious cycle of Coronaviridae and Togaviridae viruses. We describe crystal structures of the conserved macrodomain from the bat coronavirus (CoV) HKU4 in complex with ligands. The structures reveal a binding cavity that accommodates ADPR and analogs via local structural changes within the pocket. Using a radioactive assay, we present evidence of mono-ADPR (MAR) hydrolase activity. In silico analysis presents further evidence on recognition of the ADPR modification for hydrolysis. Mutational analysis of residues within the binding pocket resulted in diminished enzymatic activity and binding affinity. We conclude that the common structural features observed in the macrodomain in a bat CoV contribute to a conserved function that can be extended to other known macrodomains.
Collapse
Affiliation(s)
- Robert G Hammond
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Norbert Schormann
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Robert Lyle McPherson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287
| | - Champion C S Deivanayagam
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Margaret A Johnson
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294;
| |
Collapse
|
11
|
Rack JGM, Zorzini V, Zhu Z, Schuller M, Ahel D, Ahel I. Viral macrodomains: a structural and evolutionary assessment of the pharmacological potential. Open Biol 2020; 10:200237. [PMID: 33202171 PMCID: PMC7729036 DOI: 10.1098/rsob.200237] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Viral macrodomains possess the ability to counteract host ADP-ribosylation, a post-translational modification implicated in the creation of an antiviral environment via immune response regulation. This brought them into focus as promising therapeutic targets, albeit the close homology to some of the human macrodomains raised concerns regarding potential cross-reactivity and adverse effects for the host. Here, we evaluate the structure and function of the macrodomain of SARS-CoV-2, the causative agent of COVID-19. We show that it can antagonize ADP-ribosylation by PARP14, a cellular (ADP-ribosyl)transferase necessary for the restriction of coronaviral infections. Furthermore, our structural studies together with ligand modelling revealed the structural basis for poly(ADP-ribose) binding and hydrolysis, an emerging new aspect of viral macrodomain biology. These new insights were used in an extensive evolutionary analysis aimed at evaluating the druggability of viral macrodomains not only from the Coronaviridae but also Togaviridae and Iridoviridae genera (causing diseases such as Chikungunya and infectious spleen and kidney necrosis virus disease, respectively). We found that they contain conserved features, distinct from their human counterparts, which may be exploited during drug design.
Collapse
Affiliation(s)
| | | | | | | | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
12
|
Abstract
ADP-ribosylation is an intricate and versatile posttranslational modification involved in the regulation of a vast variety of cellular processes in all kingdoms of life. Its complexity derives from the varied range of different chemical linkages, including to several amino acid side chains as well as nucleic acids termini and bases, it can adopt. In this review, we provide an overview of the different families of (ADP-ribosyl)hydrolases. We discuss their molecular functions, physiological roles, and influence on human health and disease. Together, the accumulated data support the increasingly compelling view that (ADP-ribosyl)hydrolases are a vital element within ADP-ribosyl signaling pathways and they hold the potential for novel therapeutic approaches as well as a deeper understanding of ADP-ribosylation as a whole.
Collapse
Affiliation(s)
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, 80145 Naples, Italy
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
13
|
Tsika AC, Melekis E, Tsatsouli SA, Papageorgiou N, Maté MJ, Canard B, Coutard B, Bentrop D, Spyroulias GA. Deciphering the Nucleotide and RNA Binding Selectivity of the Mayaro Virus Macro Domain. J Mol Biol 2019; 431:2283-2297. [PMID: 30998933 PMCID: PMC7094482 DOI: 10.1016/j.jmb.2019.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 12/25/2022]
Abstract
Mayaro virus (MAYV) is a member of Togaviridae family, which also includes Chikungunya virus as a notorious member. MAYV recently emerged in urban areas of the Americas, and this emergence emphasized the current paucity of knowledge about its replication cycle. The macro domain (MD) of MAYV belongs to the N-terminal region of its non-structural protein 3, part of the replication complex. Here, we report the first structural and dynamical characterization of a previously unexplored Alphavirus MD investigated through high-resolution NMR spectroscopy, along with data on its ligand selectivity and binding properties. The structural analysis of MAYV MD reveals a typical "macro" (ββαββαβαβα) fold for this polypeptide, while NMR-driven interaction studies provide in-depth insights into MAYV MD-ligand adducts. NMR data in concert with thermodynamics and biochemical studies provide convincing experimental evidence for preferential binding of adenosine diphosphate ribose (ADP-r) and adenine-rich RNAs to MAYV MD, thus shedding light on the structure-function relationship of a previously unexplored viral MD. The emerging differences with any other related MD are expected to enlighten distinct functions.
Collapse
Affiliation(s)
| | | | | | | | - Maria J Maté
- AFMB, UMR7257 CNRS/Aix Marseille Université, Marseille, CEDEX 9, France
| | - Bruno Canard
- AFMB, UMR7257 CNRS/Aix Marseille Université, Marseille, CEDEX 9, France
| | - Bruno Coutard
- UVE: Aix-Marseille Univ-IRD 190-Inserm 27-IHU Méditerranée Infection, Marseille, France.
| | - Detlef Bentrop
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | | |
Collapse
|
14
|
Quantitative Determination of MAR Hydrolase Residue Specificity In Vitro by Tandem Mass Spectrometry. Methods Mol Biol 2019; 1813:271-283. [PMID: 30097875 DOI: 10.1007/978-1-4939-8588-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
ADP-ribosylation is a posttranslational modification that involves the conjugation of monomers and polymers of the small molecule ADP-ribose onto amino acid side chains. A family of ADP-ribosyltransferases catalyzes the transfer of the ADP-ribose moiety of nicotinamide adenine dinucleotide (NAD+) onto a variety of amino acid side chains including aspartate, glutamate, lysine, arginine, cysteine, and serine. The monomeric form of the modification mono(ADP-ribosyl)ation (MARylation) is reversed by a number of enzymes including a family of MacroD-type macrodomain-containing mono(ADP-ribose) (MAR) hydrolases. Though it has been inferred from various chemical tests that these enzymes have specificity for MARylated aspartate and glutamate residues in vitro, the amino acid and site specificity of different family members are often not unambiguously defined. Here we describe a mass spectrometry-based assay to determine the site specificity of MAR hydrolases in vitro.
Collapse
|
15
|
García-Saura AG, Zapata-Pérez R, Hidalgo JF, Cabanes J, Gil-Ortiz F, Sánchez-Ferrer Á. An uncharacterized FMAG_01619 protein from Fusobacterium mortiferum ATCC 9817 demonstrates that some bacterial macrodomains can also act as poly-ADP-ribosylhydrolases. Sci Rep 2019; 9:3230. [PMID: 30824723 PMCID: PMC6397177 DOI: 10.1038/s41598-019-39691-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Macrodomains constitute a conserved fold widely distributed that is not only able to bind ADP-ribose in its free and protein-linked forms but also can catalyse the hydrolysis of the latter. They are involved in the regulation of important cellular processes, such as signalling, differentiation, proliferation and apoptosis, and in host-virus response, and for this, they are considered as promising therapeutic targets to slow tumour progression and viral pathogenesis. Although extensive work has been carried out with them, including their classification into six distinct phylogenetically clades, little is known on bacterial macrodomains, especially if these latter are able to remove poly(ADP-ribose) polymer (PAR) from PARylated proteins, activity that only has been confirmed in human TARG1 (C6orf130) protein. To extend this limited knowledge, we demonstrate, after a comprehensive bioinformatic and phylogenetic analysis, that Fusobacterium mortiferum ATCC 9817 TARG1 (FmTARG1) is the first bacterial macrodomain shown to have high catalytic efficiency towards O-acyl-ADP-ribose, even more than hTARG1, and towards mono- and poly(ADPribosyl)ated proteins. Surprisingly, FmTARG1 gene is also inserted into a unique operonic context, only shared by the distantly related Fusobacterium perfoetens ATCC 29250 macrodomain, which include an immunity protein 51 domain, typical of bacterial polymorphic toxin systems.
Collapse
Affiliation(s)
- Antonio Ginés García-Saura
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Campus Espinardo, E-30100, Murcia, Spain
- Murcia Biomedical Research Institute (IMIB-Arrixaca), 30120, Murcia, Spain
| | - Rubén Zapata-Pérez
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Campus Espinardo, E-30100, Murcia, Spain
- Murcia Biomedical Research Institute (IMIB-Arrixaca), 30120, Murcia, Spain
| | - José Francisco Hidalgo
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Campus Espinardo, E-30100, Murcia, Spain
| | - Juana Cabanes
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Campus Espinardo, E-30100, Murcia, Spain
- Murcia Biomedical Research Institute (IMIB-Arrixaca), 30120, Murcia, Spain
| | | | - Álvaro Sánchez-Ferrer
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Campus Espinardo, E-30100, Murcia, Spain.
- Murcia Biomedical Research Institute (IMIB-Arrixaca), 30120, Murcia, Spain.
| |
Collapse
|
16
|
Makrynitsa GI, Ntonti D, Marousis KD, Birkou M, Matsoukas MT, Asami S, Bentrop D, Papageorgiou N, Canard B, Coutard B, Spyroulias GA. Conformational plasticity of the VEEV macro domain is important for binding of ADP-ribose. J Struct Biol 2019; 206:119-127. [PMID: 30825649 PMCID: PMC7111667 DOI: 10.1016/j.jsb.2019.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/14/2023]
Abstract
ADPr’s binding triggers conformational changes to the whole VEEV macro domain. High flexibility of the loops β5-α3 and α3-β6 assist the ADPr’s binding. Loops around ADPr site undergo a transition pathway between apo and complex state.
Venezuelan equine encephalitis virus (VEEV) is a new world alphavirus which can be involved in several central nervous system disorders such as encephalitis and meningitis. The VEEV genome codes for 4 non-structural proteins (nsP), of which nsP3 contains a Macro domain. Macro domains (MD) can be found as stand-alone proteins or embedded within larger proteins in viruses, bacteria and eukaryotes. Their most common feature is the binding of ADP-ribose (ADPr), while several macro domains act as ribosylation writers, erasers or readers. Alphavirus MD erase ribosylation but their precise contribution in viral replication is still under investigation. NMR-driven titration experiments of ADPr in solution with the VEEV macro domain (in apo- and complex state) show that it adopts a suitable conformation for ADPr binding. Specific experiments indicate that the flexibility of the loops β5-α3 and α3-β6 is critical for formation of the complex and assists a wrapping mechanism for ADPr binding. Furthermore, along with this sequence of events, the VEEV MD undergoes a conformational exchange process between the apo state and a low-populated “dark” conformational state.
Collapse
Affiliation(s)
| | - Dioni Ntonti
- Department of Pharmacy, University of Patras, GR-26504, Greece
| | | | - Maria Birkou
- Department of Pharmacy, University of Patras, GR-26504, Greece
| | | | - Sam Asami
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
| | - Detlef Bentrop
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | | | - Bruno Canard
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Bruno Coutard
- UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France.
| | | |
Collapse
|
17
|
Comparative inhibitory profile and distribution of bacterial PARPs, using Clostridioides difficile CD160 PARP as a model. Sci Rep 2018; 8:8056. [PMID: 29795234 PMCID: PMC5966428 DOI: 10.1038/s41598-018-26450-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/14/2018] [Indexed: 01/23/2023] Open
Abstract
Poly-ADP-ribose polymerases (PARPs) are involved in the regulation of important cellular processes, such as DNA repair, aging and apoptosis, among others. They have been considered as promising therapeutic targets, since human cancer cells carrying BRCA1 and BRCA2 mutations are highly sensitive to human PARP-1 inhibitors. Although extensive work has been carried out with the latter enzyme, little is known on bacterial PARPs, of which only one has been demonstrated to be active. To extend this limited knowledge, we demonstrate that the Gram-positive bacterium Clostridioides difficile CD160 PARP is a highly active enzyme with a high production yield. Its phylogenetic analysis also pointed to a singular domain organization in contrast to other clostridiales, which could be due to the long-term divergence of C. difficile CD160. Surprisingly, its PARP becomes the first enzyme to be characterized from this strain, which has a genotype never before described based on its sequenced genome. Finally, the inhibition study carried out after a high-throughput in silico screening and an in vitro testing with hPARP1 and bacterial PARPs identified a different inhibitory profile, a new highly inhibitory compound never before described for hPARP1, and a specificity of bacterial PARPs for a compound that mimics NAD+ (EB-47).
Collapse
|