1
|
Schiffer PH, Natsidis P, Leite DJ, Robertson HE, Lapraz F, Marlétaz F, Fromm B, Baudry L, Simpson F, Høye E, Zakrzewski AC, Kapli P, Hoff KJ, Müller S, Marbouty M, Marlow H, Copley RR, Koszul R, Sarkies P, Telford MJ. Insights into early animal evolution from the genome of the xenacoelomorph worm Xenoturbella bocki. eLife 2024; 13:e94948. [PMID: 39109482 PMCID: PMC11521371 DOI: 10.7554/elife.94948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/03/2024] [Indexed: 10/30/2024] Open
Abstract
The evolutionary origins of Bilateria remain enigmatic. One of the more enduring proposals highlights similarities between a cnidarian-like planula larva and simple acoel-like flatworms. This idea is based in part on the view of the Xenacoelomorpha as an outgroup to all other bilaterians which are themselves designated the Nephrozoa (protostomes and deuterostomes). Genome data can provide important comparative data and help understand the evolution and biology of enigmatic species better. Here, we assemble and analyze the genome of the simple, marine xenacoelomorph Xenoturbella bocki, a key species for our understanding of early bilaterian evolution. Our highly contiguous genome assembly of X. bocki has a size of ~111 Mbp in 18 chromosome-like scaffolds, with repeat content and intron, exon, and intergenic space comparable to other bilaterian invertebrates. We find X. bocki to have a similar number of genes to other bilaterians and to have retained ancestral metazoan synteny. Key bilaterian signaling pathways are also largely complete and most bilaterian miRNAs are present. Overall, we conclude that X. bocki has a complex genome typical of bilaterians, which does not reflect the apparent simplicity of its body plan that has been so important to proposals that the Xenacoelomorpha are the simple sister group of the rest of the Bilateria.
Collapse
Affiliation(s)
- Philipp H Schiffer
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
- worm~lab, Institute of Zoology, University of CologneCologneGermany
| | - Paschalis Natsidis
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - Daniel J Leite
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
- Department of Biosciences, Durham UniversityDurhamUnited Kingdom
| | - Helen E Robertson
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - François Lapraz
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
- Université Côte D'Azur, CNRS, Inserm, iBVNiceFrance
| | - Ferdinand Marlétaz
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT – The Arctic University of NorwayTromsøNorway
| | - Liam Baudry
- Collège Doctoral, Sorbonne UniversitéParisFrance
| | - Fraser Simpson
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - Eirik Høye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University HospitalOsloNorway
- Institute of Clinical Medicine, Medical Faculty, University of OsloOsloNorway
| | - Anne C Zakrzewski
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Paschalia Kapli
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - Katharina J Hoff
- University of Greifswald, Institute for Mathematics and Computer ScienceGreifswaldGermany
- University of Greifswald, Center for Functional Genomics of MicrobesGreifswaldGermany
| | - Steven Müller
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation TrustLondonUnited Kingdom
| | - Martial Marbouty
- Institut Pasteur, Université de Paris, CNRS UMR3525, Unité Régulation Spatiale des GénomesParisFrance
| | - Heather Marlow
- The University of Chicago, Division of Biological SciencesChicagoUnited States
| | - Richard R Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne UniversiteVillefranche-sur-merFrance
| | - Romain Koszul
- Institut Pasteur, Université de Paris, CNRS UMR3525, Unité Régulation Spatiale des GénomesParisFrance
| | - Peter Sarkies
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Maximilian J Telford
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| |
Collapse
|
2
|
Istiban MN, De Fruyt N, Kenis S, Beets I. Evolutionary conserved peptide and glycoprotein hormone-like neuroendocrine systems in C. elegans. Mol Cell Endocrinol 2024; 584:112162. [PMID: 38290646 PMCID: PMC11004728 DOI: 10.1016/j.mce.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.
Collapse
Affiliation(s)
- Majdulin Nabil Istiban
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
3
|
Wang Y, Liu X, Zheng Y, Yang Y, Chen M. Endocrine regulation of reproductive biology in echinoderms: An evolutionary perspective from closest marine invertebrate relatives to chordates. Mol Cell Endocrinol 2024; 580:112105. [PMID: 37952726 DOI: 10.1016/j.mce.2023.112105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/27/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Echinoderms are a phylum of invertebrate deuterostomes, which contain echinoids, asteroids, holothuroids, crinoids, and ophiuroids. Echinoderms have special evolutionary position and unique characteristics, including pentamerous radial body structure, elaborate calcareous endoskeletons, and versatile water vascular system. Echinoderms exhibit extraordinarily diverse reproductive modes: asexual reproduction, sexual reproduction, sexual reversal, etc. Endocrine regulation plays important well-known roles in sex differentiation, gonadal development and maturation, gametogenesis, and reproductive behavior in vertebrates. However, the entire picture of reproductive endocrinology in echinoderms as an evolutionary model of the closest marine invertebrate relatives to chordates has not been revealed. Here, we reviewed previous and recent research progress on reproductive endocrinology in echinoderms, mainly including two sections: Sex steroids in echinoderms and neuropeptide regulation in echinoderm reproduction. This review introduces a variety of endocrine regulatory mechanisms in reproductive biology of echinoderms. It discusses the vertebrate-like sex steroids, putative steroidogenic pathway and metabolism, and reproduction-related neuropeptides. The review will provide a deeper understanding about endocrine regulatory mechanisms of gonadal development in lower deuterostomes and the application of endocrine control in economic echinoderm species in aquaculture.
Collapse
Affiliation(s)
- Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xinghai Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
4
|
Feng Y, Piñon Gonzalez VM, Lin M, Egertová M, Mita M, Elphick MR. Localization of relaxin-like gonad-stimulating peptide expression in starfish reveals the gonoducts as a source for its role as a regulator of spawning. J Comp Neurol 2023; 531:1299-1316. [PMID: 37212624 PMCID: PMC10952978 DOI: 10.1002/cne.25496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023]
Abstract
Oocyte maturation and gamete release (spawning) in starfish are triggered by relaxin-like gonad-stimulating peptide (RGP), a neuropeptide that was first isolated from the radial nerve cords of these animals. Hitherto, it has generally been assumed that the radial nerve cords are the source of RGP that triggers spawning physiologically. To investigate other sources of RGP, here we report the first comprehensive anatomical analysis of its expression, using both in situ hybridization and immunohistochemistry to map RGP precursor transcripts and RGP, respectively, in the starfish Asterias rubens. Cells expressing RGP precursor transcripts were revealed in the ectoneural epithelium of the radial nerve cords and circumoral nerve ring, arm tips, tube feet, cardiac stomach, pyloric stomach, and, most notably, gonoducts. Using specific antibodies to A. rubens RGP, immunostaining was revealed in cells and/or fibers in the ectoneural region of the radial nerve cords and circumoral nerve ring, tube feet, terminal tentacle and other arm tip-associated structures, body wall, peristomial membrane, esophagus, cardiac stomach, pyloric stomach, pyloric caeca, and gonoducts. Our discovery that RGP is expressed in the gonoducts of A. rubens proximal to its gonadotropic site of action in the gonads is important because it provides a new perspective on how RGP may act as a gonadotropin in starfish. Thus, we hypothesize that it is the release of RGP from the gonoducts that triggers gamete maturation and spawning in starfish, while RGP produced in other parts of the body may regulate other physiological/behavioral processes.
Collapse
Affiliation(s)
- Yuling Feng
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| | | | - Ming Lin
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Michaela Egertová
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Masatoshi Mita
- Department of BiochemistryShowa University School of MedicineTokyoJapan
| | - Maurice R. Elphick
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
5
|
Mita M. Relaxin-like Gonad-Stimulating Peptides in Asteroidea. Biomolecules 2023; 13:781. [PMID: 37238650 PMCID: PMC10216564 DOI: 10.3390/biom13050781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Starfish relaxin-like gonad-stimulating peptide (RGP) is the first identified peptide hormone with gonadotropin-like activity in invertebrates. RGP is a heterodimeric peptide, comprising A and B chains with disulfide cross-linkages. Although RGP had been named a gonad-stimulating substance (GSS), the purified peptide is a member of relaxin-type peptide family. Thus, GSS was renamed as RGP. The cDNA of RGP encodes not only the A and B chains, but also signal and C-peptides. After the rgp gene is translated as a precursor, mature RGP is produced by eliminating the signal and C-peptides. Hitherto, twenty-four RGP orthologs have been identified or predicted from starfish in the orders Valvatida, Forcipulatida, Paxillosida, Spinulosida, and Velatida. The molecular evolution of the RGP family is in good accordance with the phylogenetic taxonomy in Asteroidea. Recently, another relaxin-like peptide with gonadotropin-like activity, RLP2, was found in starfish. RGP is mainly present in the radial nerve cords and circumoral nerve rings, but also in the arm tips, the gonoducts, and the coelomocytes. RGP acts on ovarian follicle cells and testicular interstitial cells to induce the production of 1-methyladenine (1-MeAde), a starfish maturation-inducing hormone. RGP-induced 1-MeAde production is accompanied by an increase in intracellular cyclic AMP levels. This suggests that the receptor for RGP (RGPR) is a G protein-coupled receptor (GPCR). Two types of GPCRs, RGPR1 and RGPR2, have been postulated as candidates. Furthermore, 1-MeAde produced by RGP not only induces oocyte maturation, but also induces gamete shedding, possibly by stimulating the secretion of acetylcholine in the ovaries and testes. Thus, RGP plays an important role in starfish reproduction, but its secretion mechanism is still unknown. It has also been revealed that RGP is found in the peripheral adhesive papillae of the brachiolaria arms. However, gonads are not developed in the larvae before metamorphosis. It may be possible to discover new physiological functions of RGP other than gonadotropin-like activity.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, Hatanodai 8-5-1, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
6
|
Cai W, Egertová M, Zampronio CG, Jones AM, Elphick MR. Molecular Identification and Cellular Localization of a Corticotropin-Releasing Hormone-Type Neuropeptide in an Echinoderm. Neuroendocrinology 2023; 113:231-250. [PMID: 33965952 DOI: 10.1159/000517087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Corticotropin-releasing hormone (CRH) mediates physiological responses to stressors in mammals by triggering pituitary secretion of adrenocorticotropic hormone, which stimulates adrenal release of cortisol. CRH belongs to a family of related neuropeptides that include sauvagine, urotensin-I, and urocortins in vertebrates and the diuretic hormone DH44 in insects, indicating that the evolutionary origin of this neuropeptide family can be traced to the common ancestor of the Bilateria. However, little is known about CRH-type neuropeptides in deuterostome invertebrates. METHODS Here, we used mass spectrometry, mRNA in situ hybridization, and immunohistochemistry to investigate the structure and expression of a CRH-type neuropeptide (ArCRH) in the starfish Asterias rubens (phylum Echinodermata). RESULTS ArCRH is a 40-residue peptide with N-terminal pyroglutamylation and C-terminal amidation, and it has a widespread pattern of expression in A. rubens. In the central nervous system comprising the circumoral nerve ring and 5 radial nerve cords, ArCRH-expressing cells and fibres were revealed in both the ectoneural region and the hyponeural region, which contains the cell bodies of motoneurons. Accordingly, ArCRH immunoreactivity was detected in innervation of the ampulla and podium of locomotory organs (tube feet), and ArCRH is the first neuropeptide to be identified as a marker for nerve fibres located in the muscle layer of these organs. ArCRH immunoreactivity was also revealed in protractile organs that mediate gas exchange (papulae), the apical muscle, and the digestive system. CONCLUSIONS Our findings provide the first insights into CRH-type neuropeptide expression and function in the unique context of the pentaradially symmetrical body plan of an echinoderm.
Collapse
Affiliation(s)
- Weigang Cai
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Michaela Egertová
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
7
|
Aleotti A, Wilkie IC, Yañez-Guerra LA, Gattoni G, Rahman TA, Wademan RF, Ahmad Z, Ivanova DA, Semmens DC, Delroisse J, Cai W, Odekunle E, Egertová M, Ferrario C, Sugni M, Bonasoro F, Elphick MR. Discovery and functional characterization of neuropeptides in crinoid echinoderms. Front Neurosci 2022; 16:1006594. [PMID: 36583101 PMCID: PMC9793003 DOI: 10.3389/fnins.2022.1006594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
Neuropeptides are one of the largest and most diverse families of signaling molecules in animals and, accordingly, they regulate many physiological processes and behaviors. Genome and transcriptome sequencing has enabled the identification of genes encoding neuropeptide precursor proteins in species from a growing variety of taxa, including bilaterian and non-bilaterian animals. Of particular interest are deuterostome invertebrates such as the phylum Echinodermata, which occupies a phylogenetic position that has facilitated reconstruction of the evolution of neuropeptide signaling systems in Bilateria. However, our knowledge of neuropeptide signaling in echinoderms is largely based on bioinformatic and experimental analysis of eleutherozoans-Asterozoa (starfish and brittle stars) and Echinozoa (sea urchins and sea cucumbers). Little is known about neuropeptide signaling in crinoids (feather stars and sea lilies), which are a sister clade to the Eleutherozoa. Therefore, we have analyzed transcriptome/genome sequence data from three feather star species, Anneissia japonica, Antedon mediterranea, and Florometra serratissima, to produce the first comprehensive identification of neuropeptide precursors in crinoids. These include representatives of bilaterian neuropeptide precursor families and several predicted crinoid neuropeptide precursors. Using A. mediterranea as an experimental model, we have investigated the expression of selected neuropeptides in larvae (doliolaria), post-metamorphic pentacrinoids and adults, providing new insights into the cellular architecture of crinoid nervous systems. Thus, using mRNA in situ hybridization F-type SALMFamide precursor transcripts were revealed in a previously undescribed population of peptidergic cells located dorso-laterally in doliolaria. Furthermore, using immunohistochemistry a calcitonin-type neuropeptide was revealed in the aboral nerve center, circumoral nerve ring and oral tube feet in pentacrinoids and in the ectoneural and entoneural compartments of the nervous system in adults. Moreover, functional analysis of a vasopressin/oxytocin-type neuropeptide (crinotocin), which is expressed in the brachial nerve of the arms in A. mediterranea, revealed that this peptide causes a dose-dependent change in the mechanical behavior of arm preparations in vitro-the first reported biological action of a neuropeptide in a crinoid. In conclusion, our findings provide new perspectives on neuropeptide signaling in echinoderms and the foundations for further exploration of neuropeptide expression/function in crinoids as a sister clade to eleutherozoan echinoderms.
Collapse
Affiliation(s)
- Alessandra Aleotti
- Department of Environmental Science and Policy, University of Milan, Milan, Italy,School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Iain C. Wilkie
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Luis A. Yañez-Guerra
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Giacomo Gattoni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy,School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Tahshin A. Rahman
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Richard F. Wademan
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Zakaryya Ahmad
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Deyana A. Ivanova
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Dean C. Semmens
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Jérôme Delroisse
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Weigang Cai
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Esther Odekunle
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Michaela Egertová
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Maurice R. Elphick
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom,*Correspondence: Maurice R. Elphick,
| |
Collapse
|
8
|
Sekiguchi T. Evolution of calcitonin/calcitonin gene-related peptide family in chordates: Identification of CT/CGRP family peptides in cartilaginous fish genome. Gen Comp Endocrinol 2022; 328:114123. [PMID: 36075341 DOI: 10.1016/j.ygcen.2022.114123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/04/2022]
Abstract
The calcitonin (CT)/CT gene-related peptide (CGRP) family is a peptide gene family that is widely found in bilaterians. CT, CGRP, adrenomedullin (AM), amylin (AMY), and CT receptor-stimulating peptide (CRSP) are members of the CT/CGRP family. In mammals, CT is involved in calcium homeostasis, while CGRP and AM primarily function in vasodilation. AMY and CRSP are associated with anorectic effects. Diversification of the molecular features and physiological functions of the CT/CGRP family in vertebrate lineages have been extensively reported. However, the origin and diversification mechanisms of the vertebrate CT/CGRP family of peptides remain unclear. In this review, the molecular characteristics of CT/CGRP family peptides and their receptors, along with their major physiological functions in mammals and teleosts, are introduced. Furthermore, novel candidates of the CT/CGRP family in cartilaginous fish are presented based on genomic information. The CT/CGRP family peptides and receptors in urochordates and cephalochordates, which are closely related to vertebrates, are also described. Finally, a putative evolutionary scenario of the CT/CGRP family peptides and receptors in chordates is discussed.
Collapse
Affiliation(s)
- Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan.
| |
Collapse
|
9
|
Zheng Y, Cong X, Liu H, Wang Y, Storey KB, Chen M. Nervous System Development and Neuropeptides Characterization in Embryo and Larva: Insights from a Non-Chordate Deuterostome, the Sea Cucumber Apostichopus japonicus. BIOLOGY 2022; 11:1538. [PMID: 36290441 PMCID: PMC9598280 DOI: 10.3390/biology11101538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Here, we described the complex nervous system at five early developmental stages (blastula, gastrula, auricularia, doliolaria and pentactula) of a holothurian species with highly economic value, Apostichopus japonicus. The results revealed that the nervous system of embryos and larvae is mainly distributed in the anterior apical region, ciliary bands or rings, and the feeding and attachment organs, and that serotonergic immunoreactivity was not observed until the embryo developed into the late gastrula; these are evolutionarily conserved features of echinoderm, hemichordate and protostome larvae. Furthermore, based on available transcriptome data, we reported the neuropeptide precursors profile at different embryonic and larval developmental stages. This analysis showed that 40 neuropeptide precursors present in adult sea cucumbers were also identified at different developmental stages of embryos and larvae, and only four neuropeptide precursors (SWYG precursor 2, GYWKDLDNYVKAHKT precursor, Neuropeptide precursor 14-like precursor, GLRFAmprecursor-like precursor) predicted in adults were absent in embryos and larvae. Combining the quantitative expression of ten specific neuropeptide precursor genes (NPs) by qRT-PCR, we revealed the potential important roles of neuropeptides in embryo development, feeding and attachment in A. japonicus larvae. In conclusion, this work provides novel perspectives on the diverse physiological functions of neuropeptides and contributes to understanding the evolution of neuropeptidergic systems in echinoderm embryos and larvae.
Collapse
Affiliation(s)
- Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiao Cong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Huachen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Kenneth B. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
10
|
Li C, Zheng Y, Cong X, Liu H, Storey KB, Chen M. Molecular and functional characterization of the luqin-type neuropeptide signaling system in the sea cucumber Apostichopus japonicus. Peptides 2022; 155:170839. [PMID: 35839946 DOI: 10.1016/j.peptides.2022.170839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 11/18/2022]
Abstract
The functional characteristics of neuropeptides in marine invertebrates have attracted significant attention recently although functional studies of luqin-type neuropeptides are still very limited, especially in deuterostomes. The sea cucumber, Apostichopus japonicus, is a representative species of deuterostomian Holothurian invertebrates. The species has high nutritional and medicinal value in China. In this study, we report the first comprehensive histological, biochemical and pharmacological characterization of luqin-type neuropeptide signaling in the sea cucumber A. japonicus. The A. japonicus luqin-like neuropeptide precursor (AjLQP) contains a single typical deuterostomian luqin-like neuropeptide AjLQ with an xFxRWamide motif. AjLQ was identified as the ligand for a luqin-type neuropeptide receptor AjLQR, that was previously predicted to be a tachykinin-type receptor, and triggers a rapid intracellular mobilization of Ca2+, followed by receptor internalization and a transient increase in ERK1/2 phosphorylation. In situ hybridization, immunohistochemistry and qRT-PCR analysis revealed extensive expression of AjLQP and AjLQ in A. japonicus tissues, especially in locomotion-related organs. In vitro pharmacological tests revealed that AjLQ caused 12.69% ± 1.99% (p < 0.01) relaxation of longitudinal muscle preparations at 10-7 M concentration. Furthermore, we observed significantly increased expression of AjLQP (about 17.63 fold, p < 0.01) in intestine of deeply aestivating sea cucumbers, which suggests that AjLQ might be involved in feeding inhibition during aestivation. The present study provides a first insight into the experimental characterization of luqin-type neuropeptide signaling in a sea cucumber. The results will broaden our understanding of the potential function of neuropeptides during important biological processes in marine invertebrates and provide theoretical support for optimizing sea cucumber aquaculture technology.
Collapse
Affiliation(s)
- Chenyi Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Xiao Cong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Huachen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China.
| |
Collapse
|
11
|
Escudero Castelán N, Semmens DC, Guerra LAY, Zandawala M, Dos Reis M, Slade SE, Scrivens JH, Zampronio CG, Jones AM, Mirabeau O, Elphick MR. Receptor deorphanization in an echinoderm reveals kisspeptin evolution and relationship with SALMFamide neuropeptides. BMC Biol 2022; 20:187. [PMID: 36002813 PMCID: PMC9400282 DOI: 10.1186/s12915-022-01387-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kisspeptins are neuropeptides that regulate reproductive maturation in mammals via G-protein-coupled receptor-mediated stimulation of gonadotropin-releasing hormone secretion from the hypothalamus. Phylogenetic analysis of kisspeptin-type receptors indicates that this neuropeptide signaling system originated in a common ancestor of the Bilateria, but little is known about kisspeptin signaling in invertebrates. RESULTS Contrasting with the occurrence of a single kisspeptin receptor in mammalian species, here, we report the discovery of an expanded family of eleven kisspeptin-type receptors in a deuterostome invertebrate - the starfish Asterias rubens (phylum Echinodermata). Furthermore, neuropeptides derived from four precursor proteins were identified as ligands for six of these receptors. One or more kisspeptin-like neuropeptides derived from two precursor proteins (ArKPP1, ArKPP2) act as ligands for four A. rubens kisspeptin-type receptors (ArKPR1,3,8,9). Furthermore, a family of neuropeptides that act as muscle relaxants in echinoderms (SALMFamides) are ligands for two A. rubens kisspeptin-type receptors (ArKPR6,7). The SALMFamide neuropeptide S1 (or ArS1.4) and a 'cocktail' of the seven neuropeptides derived from the S1 precursor protein (ArS1.1-ArS1.7) act as ligands for ArKPR7. The SALMFamide neuropeptide S2 (or ArS2.3) and a 'cocktail' of the eight neuropeptides derived from the S2 precursor protein (ArS2.1-ArS2.8) act as ligands for ArKPR6. CONCLUSIONS Our findings reveal a remarkable diversity of neuropeptides that act as ligands for kisspeptin-type receptors in starfish and provide important new insights into the evolution of kisspeptin signaling. Furthermore, the discovery of the hitherto unknown relationship of kisspeptins with SALMFamides, neuropeptides that were discovered in starfish prior to the identification of kisspeptins in mammals, presents a radical change in perspective for research on kisspeptin signaling.
Collapse
Affiliation(s)
- Nayeli Escudero Castelán
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
| | - Dean C Semmens
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present address: Institute of Medical and Biomedical Education, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Luis Alfonso Yañez Guerra
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present Address: Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Meet Zandawala
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present Address: Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Mario Dos Reis
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
| | - Susan E Slade
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Present address: Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, UK
| | - James H Scrivens
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Present address: School of Science, Engineering & Design, Stephenson Street, Teesside University, Middlesbrough, TS1 3BX, TS1 3BA, Tees Valley, UK
| | | | - Alexandra M Jones
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK.
| |
Collapse
|
12
|
Abstract
Neuropeptides are a diverse class of signaling molecules in metazoans. They occur in all animals with a nervous system and also in neuron-less placozoans. However, their origin has remained unclear because no neuropeptide shows deep homology across lineages, and none have been found in sponges. Here, we identify two neuropeptide precursors, phoenixin (PNX) and nesfatin, with broad evolutionary conservation. By database searches, sequence alignments, and gene-structure comparisons, we show that both precursors are present in bilaterians, cnidarians, ctenophores, and sponges. We also found PNX and a secreted nesfatin precursor homolog in the choanoflagellate Salpingoeca rosetta. PNX, in particular, is highly conserved, including its cleavage sites, suggesting that prohormone processing occurs also in choanoflagellates. In addition, based on phyletic patterns and negative pharmacological assays, we question the originally proposed GPR-173 (SREB3) as a PNX receptor. Our findings revealed that secreted neuropeptide homologs derived from longer precursors have premetazoan origins and thus evolved before neurons.
Collapse
Affiliation(s)
| | - Daniel Thiel
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| |
Collapse
|
13
|
Somatostatin-type and allatostatin-C-type neuropeptides are paralogous and have opposing myoregulatory roles in an echinoderm. Proc Natl Acad Sci U S A 2022; 119:2113589119. [PMID: 35145030 PMCID: PMC8851493 DOI: 10.1073/pnas.2113589119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Somatostatin (SS) and allatostatin-C (ASTC) are related neuropeptide hormones that act as inhibitory regulators of physiological processes in chordates (e.g., humans) and protostome invertebrates (e.g., insects), respectively. We have discovered that echinoderms (e.g., starfish) uniquely have both SS-type and ASTC-type neuropeptides, which act as inhibitory and excitatory regulators of muscle activity, respectively. Our findings suggest that SS-type and ASTC-type neuropeptides evolved by duplication of a common ancestral encoding gene. Then, one of the neuropeptides was lost in protostomes and chordates, probably because of their functional redundancy as inhibitory regulators. Conversely, the unique retention of both neuropeptide types in echinoderms may be explained by evolution of an excitatory role for ASTC-type neuropeptides mediated by yet-to-be-determined signaling mechanisms. Somatostatin (SS) and allatostatin-C (ASTC) are inhibitory neuropeptides in chordates and protostomes, respectively, which hitherto were identified as orthologs. However, echinoderms have two SS/ASTC-type neuropeptides (SS1 and SS2), and here, our analysis of sequence data indicates that SS1 is an ortholog of ASTC and SS2 is an ortholog of SS. The occurrence of both SS-type and ASTC-type neuropeptides in echinoderms provides a unique context to compare their physiological roles. Investigation of the expression and actions of the ASTC-type neuropeptide ArSS1 in the starfish Asterias rubens revealed that it causes muscle contraction (myoexcitation), contrasting with myoinhibitory effects of the SS-type neuropeptide ArSS2. Our findings suggest that SS-type and ASTC-type neuropeptides are paralogous and originated by gene duplication in a common ancestor of the Bilateria, with only one type being retained in chordates (SS) and protostomes (ASTC) but with both types being retained in echinoderms. Loss of ASTC-type and SS-type neuropeptides in chordates and protostomes, respectively, may have been due to their functional redundancy as inhibitory regulators of physiological processes. Conversely, the retention of both neuropeptide types in echinoderms may be a consequence of the evolution of a myoexcitatory role for ASTC-type neuropeptides mediated by as yet unknown signaling mechanisms.
Collapse
|
14
|
Tinoco AB, Barreiro-Iglesias A, Yañez Guerra LA, Delroisse J, Zhang Y, Gunner EF, Zampronio CG, Jones AM, Egertová M, Elphick MR. Ancient role of sulfakinin/cholecystokinin-type signalling in inhibitory regulation of feeding processes revealed in an echinoderm. eLife 2021; 10:e65667. [PMID: 34488941 PMCID: PMC8428848 DOI: 10.7554/elife.65667] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/18/2021] [Indexed: 01/04/2023] Open
Abstract
Sulfakinin (SK)/cholecystokinin (CCK)-type neuropeptides regulate feeding and digestion in protostomes (e.g. insects) and chordates. Here, we characterised SK/CCK-type signalling for the first time in a non-chordate deuterostome - the starfish Asterias rubens (phylum Echinodermata). In this species, two neuropeptides (ArSK/CCK1, ArSK/CCK2) derived from the precursor protein ArSK/CCKP act as ligands for an SK/CCK-type receptor (ArSK/CCKR) and these peptides/proteins are expressed in the nervous system, digestive system, tube feet, and body wall. Furthermore, ArSK/CCK1 and ArSK/CCK2 cause dose-dependent contraction of cardiac stomach, tube foot, and apical muscle preparations in vitro, and injection of these neuropeptides in vivo triggers cardiac stomach retraction and inhibition of the onset of feeding in A. rubens. Thus, an evolutionarily ancient role of SK/CCK-type neuropeptides as inhibitory regulators of feeding-related processes in the Bilateria has been conserved in the unusual and unique context of the extra-oral feeding behaviour and pentaradial body plan of an echinoderm.
Collapse
Affiliation(s)
- Ana B Tinoco
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | - Antón Barreiro-Iglesias
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | | | - Jérôme Delroisse
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | - Ya Zhang
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | - Elizabeth F Gunner
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics, Research Technology Platform, University of WarwickCoventryUnited Kingdom
| | - Alexandra M Jones
- School of Life Sciences and Proteomics, Research Technology Platform, University of WarwickCoventryUnited Kingdom
| | - Michaela Egertová
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| |
Collapse
|
15
|
Transcriptome Profiling of the Pacific Oyster Crassostrea gigas Visceral Ganglia over a Reproduction Cycle Identifies Novel Regulatory Peptides. Mar Drugs 2021; 19:md19080452. [PMID: 34436291 PMCID: PMC8398477 DOI: 10.3390/md19080452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
The neuropeptides involved in the regulation of reproduction in the Pacific oyster (Crassostrea gigas) are quite diverse. To investigate this diversity, a transcriptomic survey of the visceral ganglia (VG) was carried out over an annual reproductive cycle. RNA-seq data from 26 samples corresponding to VG at different stages of reproduction were de novo assembled to generate a specific reference transcriptome of the oyster nervous system and used to identify differentially expressed transcripts. Transcriptome mining led to the identification of novel neuropeptide precursors (NPPs) related to the bilaterian Eclosion Hormone (EH), crustacean female sex hormone/Interleukin 17, Nesfatin, neuroparsin/IGFBP, prokineticins, and urotensin I; to the protostome GNQQN, pleurin, prohormones 3 and 4, prothoracotropic hormones (PTTH), and QSamide/PXXXamide; to the lophotrochozoan CCWamide, CLCCY, HFAamide, and LXRX; and to the mollusk-specific NPPs CCCGS, clionin, FYFY, GNamide, GRWRN, GSWN, GWE, IWMPxxGYxx, LXRYamide, RTLFamide, SLRFamide, and WGAGamide. Among the complete repertoire of NPPs, no sex-biased expression was observed. However, 25 NPPs displayed reproduction stage-specific expression, supporting their involvement in the control of gametogenesis or associated metabolisms.
Collapse
|
16
|
Gershkovich MM, Groß VE, Vu O, Schoeder CT, Meiler J, Prömel S, Kaiser A. Structural Perspective on Ancient Neuropeptide Y-like System reveals Hallmark Features for Peptide Recognition and Receptor Activation. J Mol Biol 2021; 433:166992. [PMID: 33865871 PMCID: PMC8380825 DOI: 10.1016/j.jmb.2021.166992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 11/30/2022]
Abstract
The neuropeptide Y (NPY) family is a peptide-activated G protein-coupled receptor system conserved across all bilaterians, and is involved in food intake, learning, and behavior. We hypothesized that comparing the NPY system in evolutionarily ancient organisms can reveal structural determinants of peptide recognition and receptor activation conserved in evolution. To test this hypothesis, we investigated the homologous FLP/NPR system of the protostome C.elegans. For three prototypic peptide-receptor complexes representing different ligand types, we integrate extensive functional data into structural models of the receptors. Common features include acidic patches in the extracellular loops (ECLs) of the receptors that cooperatively 'draw' the peptide into the binding pocket, which was functionally validated in vivo. A structurally conserved glutamate in the ECL2 anchors the peptides by a conserved salt bridge to the arginine of the RFamide motif. Beyond this conserved interaction, peptide binding show variability enabled by receptor-specific interactions. The family-conserved residue Q3.32 is a key player for peptide binding and receptor activation. Altered interaction patterns at Q3.32 may drastically increase the efficacy to activate the receptor.
Collapse
Affiliation(s)
- Miron Mikhailowitsch Gershkovich
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany; Department of Chemistry, Center for Structural Biology, Vanderbilt University, 465 21st Ave South, BIOSCI/MRBIII, Nashville, TN 37235, USA
| | - Victoria Elisabeth Groß
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Oanh Vu
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, 465 21st Ave South, BIOSCI/MRBIII, Nashville, TN 37235, USA
| | - Clara Tabea Schoeder
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, 465 21st Ave South, BIOSCI/MRBIII, Nashville, TN 37235, USA; Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, 465 21st Ave South, BIOSCI/MRBIII, Nashville, TN 37235, USA; Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Anette Kaiser
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany.
| |
Collapse
|
17
|
Sobrido-Cameán D, Yáñez-Guerra LA, Deber A, Freire-Delgado M, Cacheiro-Vázquez R, Rodicio MC, Tostivint H, Anadón R, Barreiro-Iglesias A. Differential expression of somatostatin genes in the central nervous system of the sea lamprey. Brain Struct Funct 2021; 226:1031-1052. [PMID: 33532926 DOI: 10.1007/s00429-021-02224-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 01/29/2023]
Abstract
The identification of three somatostatin (SST) genes (SSTa, SSTb, and SSTc) in lampreys (Tostivint et al. Gen Comp Endocrinol 237:89-97 https://doi.org/10.1016/j.ygcen.2016.08.006 , 2016) prompted us to study their expression in the brain and spinal cord of the sea lamprey by in situ hybridization. These three genes were only expressed in equivalent neuronal populations in the hypothalamus. In other regions, SST transcripts showed clear differential expression. In the telencephalon, SSTc-positive cells were observed in the medial pallium, ventral part of the lateral pallium, striatum, subhippocampal lobe, and preoptic region. In the diencephalon, SSTa-positive cells were observed in the thalamus and SSTc-positive cells in the prethalamus, posterior tubercle, pretectal area, and nucleus of the medial longitudinal fascicle. In the midbrain, SSTc-positive cells were observed in the torus semicircularis, lateral reticular area, and perioculomotor tegmentum. Different SSTa- and SSTc-positive populations were observed in the isthmus. SSTc neurons were also observed in the rostral octavolateralis area and caudal rhombencephalon. In the spinal cord, SSTa was expressed in cerebrospinal-fluid-contacting (CSF-c) neurons and SSTc in non-CSF-c interneurons. Comparison with previous immunohistochemical studies using anti-SST-14 antibodies strongly suggests that SST-14-like neurons correspond with the SSTa populations. Thus, the SSTc populations were not reported previously in immunohistochemical studies. Cluster-based analyses and alignments of mature peptides suggested that SSTa is an ortholog of SST1 and that SSTb is closely related to SST2 and SST6. These results provide important new insights into the evolution of the somatostatinergic system in vertebrates.
Collapse
Affiliation(s)
- D Sobrido-Cameán
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain.,Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - A Deber
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - M Freire-Delgado
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - R Cacheiro-Vázquez
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - M C Rodicio
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - H Tostivint
- Molecular Physiology and Adaptation, UMR7221, CNRS and Muséum National D'Histoire Naturelle, Paris, France
| | - R Anadón
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - A Barreiro-Iglesias
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
18
|
Birgül Iyison N, Shahraki A, Kahveci K, Düzgün MB, Gün G. Are insect GPCRs ideal next‐generation pesticides: opportunities and challenges. FEBS J 2021; 288:2727-2745. [DOI: 10.1111/febs.15708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/27/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Necla Birgül Iyison
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| | - Aida Shahraki
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| | - Kübra Kahveci
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| | - Mustafa Barbaros Düzgün
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| | - Gökhan Gün
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| |
Collapse
|
19
|
Hou X, Qin Z, Wei M, Fu Z, Liu R, Lu L, Bai S, Ma Y, Zhang Z. Identification of the neuropeptide precursor genes potentially involved in the larval settlement in the Echiuran worm Urechis unicinctus. BMC Genomics 2020; 21:892. [PMID: 33317448 PMCID: PMC7737342 DOI: 10.1186/s12864-020-07312-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In marine invertebrate life cycles, which often consist of planktonic larval and benthonic adult stages, settlement of the free-swimming larva to the sea floor in response to environmental cues is a key life cycle transition. Settlement is regulated by a specialized sensory-neurosecretory system, the larval apical organ. The neuroendocrine mechanisms through which the apical organ transduces environmental cues into behavioral responses during settlement are not fully understood yet. RESULTS In this study, a total of 54 neuropeptide precursors (pNPs) were identified in the Urechis unicinctus larva and adult transcriptome databases using local BLAST and NpSearch prediction, of which 10 pNPs belonging to the ancient eumetazoa, 24 pNPs belonging to the ancient bilaterian, 3 pNPs belonging to the ancient protostome, 9 pNPs exclusive in lophotrochozoa, 3 pNPs exclusive in annelid, and 5 pNPs only found in U. unicinctus. Furthermore, four pNPs (MIP, FRWamide, FxFamide and FILamide) which may be associated with the settlement and metamorphosis of U. unicinctus larvae were analysed by qRT-PCR. Whole-mount in situ hybridization results showed that all the four pNPs were expressed in the region of the apical organ of the larva, and the positive signals were also detected in the ciliary band and abdomen chaetae. We speculated that these pNPs may regulate the movement of larval cilia and chaeta by sensing external attachment signals. CONCLUSIONS This study represents the first comprehensive identification of neuropeptides in Echiura, and would contribute to a complete understanding on the roles of various neuropeptides in larval settlement of most marine benthonic invertebrates.
Collapse
Affiliation(s)
- Xitan Hou
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhong Fu
- Hebei Research Institute of Marine and Fishery Science, Qinhuangdao, 066002, China
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining, 272067, China
| | - Li Lu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shumiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China.
| |
Collapse
|
20
|
Zhang Y, Yañez Guerra LA, Egertová M, Zampronio CG, Jones AM, Elphick MR. Molecular and functional characterization of somatostatin-type signalling in a deuterostome invertebrate. Open Biol 2020; 10:200172. [PMID: 32898470 PMCID: PMC7536072 DOI: 10.1098/rsob.200172] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Somatostatin (SS) and allatostatin-C (ASTC) are structurally and evolutionarily related neuropeptides that act as inhibitory regulators of physiological processes in mammals and insects, respectively. Here, we report the first molecular and functional characterization of SS/ASTC-type signalling in a deuterostome invertebrate—the starfish Asterias rubens (phylum Echinodermata). Two SS/ASTC-type precursors were identified in A. rubens (ArSSP1 and ArSSP2) and the structures of neuropeptides derived from these proteins (ArSS1 and ArSS2) were analysed using mass spectrometry. Pharmacological characterization of three cloned A. rubens SS/ASTC-type receptors (ArSSR1–3) revealed that ArSS2, but not ArSS1, acts as a ligand for all three receptors. Analysis of ArSS2 expression in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed stained cells/fibres in the central nervous system, the digestive system (e.g. cardiac stomach) and the body wall and its appendages (e.g. tube feet). Furthermore, in vitro pharmacological tests revealed that ArSS2 causes dose-dependent relaxation of tube foot and cardiac stomach preparations, while injection of ArSS2 in vivo causes partial eversion of the cardiac stomach. Our findings provide new insights into the molecular evolution of SS/ASTC-type signalling in the animal kingdom and reveal an ancient role of SS-type neuropeptides as inhibitory regulators of muscle contractility.
Collapse
Affiliation(s)
- Ya Zhang
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | | | - Michaela Egertová
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry CV4 7AL, UK
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry CV4 7AL, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
21
|
Hyde CJ, Nguyen T, Fitzgibbon QP, Elizur A, Smith GG, Ventura T. Neural remodelling in spiny lobster larvae is characterized by broad neuropeptide suppression. Gen Comp Endocrinol 2020; 294:113496. [PMID: 32360560 DOI: 10.1016/j.ygcen.2020.113496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 02/05/2023]
Abstract
Neuropeptides are ancient endocrine components which have evolved to regulate many aspects of biology across the animal kingdom including behaviour, development and metabolism. To supplement current knowledge, we have utilized a transcriptome series describing larval development in the ornate spiny lobster, Panulirus ornatus. The biology of this animal has been leveraged to provide insights into the roles of molting, metamorphosis and metabolism across the neuropeptide family. We report an extensive list of neuropeptides across three distinct life phases of the animal. We show distinct groups of neuropeptides with differential expression between larval phases, indicating phase-specific roles for these peptides. For selected neuropeptides, we describe and discuss expression profiles throughout larval development and report predicted peptide cleavage sites and mature peptide sequences. We also report the neuropeptide nesfatin for the first time in a crustacean, and report secondary peptide products with a level of evolutionary conservation similar to the conventional mature peptide nesfatin-1, indicating a conserved role in these secondary products which are widely regarded as biologically inactive. In addition, we report a trend of downregulation in the neuropeptides as the animal undergoes extensive neural remodelling in fulfillment of metamorphosis. We suggest that this downregulation in neuropeptides relates to the brief, yet dramatic changes in morphology experienced by the central nervous system in the process of metamorphosis.
Collapse
Affiliation(s)
- Cameron J Hyde
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| | - Tuan Nguyen
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| | - Quinn P Fitzgibbon
- Institute for Marine & Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| | - Gregory G Smith
- Institute for Marine & Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Tomer Ventura
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia.
| |
Collapse
|
22
|
Yañez-Guerra LA, Zhong X, Moghul I, Butts T, Zampronio CG, Jones AM, Mirabeau O, Elphick MR. Echinoderms provide missing link in the evolution of PrRP/sNPF-type neuropeptide signalling. eLife 2020; 9:57640. [PMID: 32579512 PMCID: PMC7314547 DOI: 10.7554/elife.57640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022] Open
Abstract
Neuropeptide signalling systems comprising peptide ligands and cognate receptors are evolutionarily ancient regulators of physiology and behaviour. However, there are challenges associated with determination of orthology between neuropeptides in different taxa. Orthologs of vertebrate neuropeptide-Y (NPY) known as neuropeptide-F (NPF) have been identified in protostome invertebrates, whilst prolactin-releasing peptide (PrRP) and short neuropeptide-F (sNPF) have been identified as paralogs of NPY/NPF in vertebrates and protostomes, respectively. Here we investigated the occurrence of NPY/NPF/PrRP/sNPF-related signalling systems in a deuterostome invertebrate phylum - the Echinodermata. Analysis of transcriptome/genome sequence data revealed loss of NPY/NPF-type signalling, but orthologs of PrRP-type neuropeptides and sNPF/PrRP-type receptors were identified in echinoderms. Furthermore, experimental studies revealed that the PrRP-type neuropeptide pQDRSKAMQAERTGQLRRLNPRF-NH2 is a potent ligand for a sNPF/PrRP-type receptor in the starfish Asterias rubens. Our findings indicate that PrRP-type and sNPF-type signalling systems are orthologous and originated as a paralog of NPY/NPF-type signalling in Urbilateria.
Collapse
Affiliation(s)
| | - Xingxing Zhong
- Queen Mary University of London, School of Biological and Chemical Sciences, London, United Kingdom
| | - Ismail Moghul
- Queen Mary University of London, School of Biological and Chemical Sciences, London, United Kingdom
| | - Thomas Butts
- Queen Mary University of London, School of Biological and Chemical Sciences, London, United Kingdom
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, United Kingdom
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, United Kingdom
| | | | - Maurice R Elphick
- Queen Mary University of London, School of Biological and Chemical Sciences, London, United Kingdom
| |
Collapse
|
23
|
Wang T, Cao Z, Shen Z, Yang J, Chen X, Yang Z, Xu K, Xiang X, Yu Q, Song Y, Wang W, Tian Y, Sun L, Zhang L, Guo S, Zhou N. Existence and functions of a kisspeptin neuropeptide signaling system in a non-chordate deuterostome species. eLife 2020; 9:53370. [PMID: 32513385 PMCID: PMC7282810 DOI: 10.7554/elife.53370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
The kisspeptin system is a central modulator of the hypothalamic-pituitary-gonadal axis in vertebrates. Its existence outside the vertebrate lineage remains largely unknown. Here, we report the identification and characterization of the kisspeptin system in the sea cucumber Apostichopus japonicus. The gene encoding the kisspeptin precursor generates two mature neuropeptides, AjKiss1a and AjKiss1b. The receptors for these neuropeptides, AjKissR1 and AjKissR2, are strongly activated by synthetic A. japonicus and vertebrate kisspeptins, triggering a rapid intracellular mobilization of Ca2+, followed by receptor internalization. AjKissR1 and AjKissR2 share similar intracellular signaling pathways via Gαq/PLC/PKC/MAPK cascade, when activated by C-terminal decapeptide. The A. japonicus kisspeptin system functions in multiple tissues that are closely related to seasonal reproduction and metabolism. Overall, our findings uncover for the first time the existence and function of the kisspeptin system in a non-chordate species and provide new evidence to support the ancient origin of intracellular signaling and physiological functions that are mediated by this molecular system.
Collapse
Affiliation(s)
- Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China.,Programs in Human Genetics and Biological Sciences, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Zheng Cao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Zhangfei Shen
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingwen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China.,Programs in Human Genetics and Biological Sciences, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Xu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Zhen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Ke Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Xiaowei Xiang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Qiuhan Yu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Yimin Song
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Weiwei Wang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yanan Tian
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Lina Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Libin Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Su Guo
- Programs in Human Genetics and Biological Sciences, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Tran KK, Jayawardena BM, Elphick MR, Jones CE. A gonadotropin-releasing hormone type neuropeptide with a high affinity binding site for copper(ii) and nickel(ii). Metallomics 2020; 11:404-414. [PMID: 30564813 DOI: 10.1039/c8mt00279g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vertebrates gonadotropin-releasing hormone I (GnRH-I) is a key regulator of reproductive development and function. The receptor-binding activity of human GnRH-I can be modified by the presence of divalent copper. Thus, copper binding to N-terminal amino acids in GnRH-I induces structural changes that influence receptor interactions and downstream intracellular signalling cascades. It is not known if copper-binding is restricted to human GnRH-I or if it is also a feature of GnRH-type peptides that have been identified in other taxa. To investigate this, we have characterised copper binding to a recently discovered GnRH-type peptide from the starfish Asterias rubens (ArGnRH). Using a range of spectroscopic and biophysical techniques we show that this peptide can bind copper(ii) and nickel(ii). Copper(ii) is bound in a square-planar, high-affinity (Kd ∼ 10-12 M) site incorporating four nitrogen donor atoms from a histidine imidazole group, two amides and the N-terminal amine group. The ArGnRH copper affinity and geometry are quite different to GnRH-I suggesting the copper sites have evolved to suit the environment the peptides are exposed to. By comparing the copper binding sites in ArGnRH and human GnRH-I and conducting a phylogenetic analysis of GnRH-type peptide sequences from a range of species, we predict that copper-binding is an evolutionarily ancient feature of GnRH-type peptides that has been retained, modified or lost in different lineages.
Collapse
Affiliation(s)
- Kevin K Tran
- The School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, 2759, NSW, Australia.
| | | | | | | |
Collapse
|
25
|
Odekunle EA, Elphick MR. Comparative and Evolutionary Physiology of Vasopressin/ Oxytocin-Type Neuropeptide Signaling in Invertebrates. Front Endocrinol (Lausanne) 2020; 11:225. [PMID: 32362874 PMCID: PMC7181382 DOI: 10.3389/fendo.2020.00225] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
The identification of structurally related hypothalamic hormones that regulate blood pressure and diuresis (vasopressin, VP; CYFQNCPRG-NH2) or lactation and uterine contraction (oxytocin, OT; CYIQNCPLG-NH2) was a major advance in neuroendocrinology, recognized in the award of the Nobel Prize for Chemistry in 1955. Furthermore, the discovery of central actions of VP and OT as regulators of reproductive and social behavior in humans and other mammals has broadened interest in these neuropeptides beyond physiology into psychology. VP/OT-type neuropeptides and their G-protein coupled receptors originated in a common ancestor of the Bilateria (Urbilateria), with invertebrates typically having a single VP/OT-type neuropeptide and cognate receptor. Gene/genome duplications followed by gene loss gave rise to variety in the number of VP/OT-type neuropeptides and receptors in different vertebrate lineages. Recent advances in comparative transcriptomics/genomics have enabled discovery of VP/OT-type neuropeptides in an ever-growing diversity of invertebrate taxa, providing new opportunities to gain insights into the evolution of VP/OT-type neuropeptide function in the Bilateria. Here we review the comparative physiology of VP/OT-type neuropeptides in invertebrates, with roles in regulation of reproduction, feeding, and water/salt homeostasis emerging as common themes. For example, we highlight recent reports of roles in regulation of oocyte maturation in the sea-squirt Ciona intestinalis, extraoral feeding behavior in the starfish Asterias rubens and energy status and dessication resistance in ants. Thus, VP/OT-type neuropeptides are pleiotropic regulators of physiological processes, with evolutionarily conserved roles that can be traced back to Urbilateria. To gain a deeper understanding of the evolution of VP/OT-type neuropeptide function it may be necessary to not only determine the actions of the peptides but also to characterize the transcriptomic/proteomic/metabolomic profiles of cells expressing VP/OT-type precursors and/or VP/OT-type receptors within the framework of anatomically and functionally identified neuronal networks. Furthermore, investigation of VP/OT-type neuropeptide function in a wider range of invertebrate species is now needed if we are to determine how and when this ancient signaling system was recruited to regulate diverse physiological and behavioral processes in different branches of animal phylogeny and in contrasting environmental contexts.
Collapse
Affiliation(s)
| | - Maurice R. Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
26
|
Yañez-Guerra LA, Elphick MR. Evolution and Comparative Physiology of Luqin-Type Neuropeptide Signaling. Front Neurosci 2020; 14:130. [PMID: 32132900 PMCID: PMC7041311 DOI: 10.3389/fnins.2020.00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/31/2020] [Indexed: 02/01/2023] Open
Abstract
Luqin is a neuropeptide that was discovered and named on account of its expression in left upper quadrant cells of the abdominal ganglion in the mollusc Aplysia californica. Subsequently, luqin-type peptides were identified as cardio-excitatory neuropeptides in other molluscs and a cognate receptor was discovered in the pond snail Lymnaea stagnalis. Phylogenetic analyses have revealed that orthologs of molluscan luqin-type neuropeptides occur in other phyla; these include neuropeptides in ecdysozoans (arthropods, nematodes) that have a C-terminal RYamide motif (RYamides) and neuropeptides in ambulacrarians (echinoderms, hemichordates) that have a C-terminal RWamide motif (RWamides). Furthermore, precursors of luqin-type neuropeptides typically have a conserved C-terminal motif containing two cysteine residues, although the functional significance of this is unknown. Consistent with the orthology of the neuropeptides and their precursors, phylogenetic and pharmacological studies have revealed that orthologous G-protein coupled receptors (GPCRs) mediate effects of luqin-type neuropeptides in spiralians, ecdysozoans, and ambulacrarians. Luqin-type signaling originated in a common ancestor of the Bilateria as a paralog of tachykinin-type signaling but, unlike tachykinin-type signaling, luqin-type signaling was lost in chordates. This may largely explain why luqin-type signaling has received less attention than many other neuropeptide signaling systems. However, insights into the physiological actions of luqin-type neuropeptides (RYamides) in ecdysozoans have been reported recently, with roles in regulation of feeding and diuresis revealed in insects and roles in regulation of feeding, egg laying, locomotion, and lifespan revealed in the nematode Caenorhabditis elegans. Furthermore, characterization of a luqin-type neuropeptide in the starfish Asterias rubens (phylum Echinodermata) has provided the first insights into the physiological roles of luqin-type signaling in a deuterostome. In conclusion, although luqin was discovered in Aplysia over 30 years ago, there is still much to be learnt about luqin-type neuropeptide signaling. This will be facilitated in the post-genomic era by the emerging opportunities for experimental studies on a variety of invertebrate taxa.
Collapse
Affiliation(s)
- Luis Alfonso Yañez-Guerra
- School of Biological and Chemical Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
27
|
A G protein-coupled receptor mediates neuropeptide-induced oocyte maturation in the jellyfish Clytia. PLoS Biol 2020; 18:e3000614. [PMID: 32126082 PMCID: PMC7053711 DOI: 10.1371/journal.pbio.3000614] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
The reproductive hormones that trigger oocyte meiotic maturation and release from the ovary vary greatly between animal species. Identification of receptors for these maturation-inducing hormones (MIHs) and understanding how they initiate the largely conserved maturation process remain important challenges. In hydrozoan cnidarians including the jellyfish Clytia hemisphaerica, MIH comprises neuropeptides released from somatic cells of the gonad. We identified the receptor (MIHR) for these MIH neuropeptides in Clytia using cell culture–based “deorphanization” of candidate oocyte-expressed G protein–coupled receptors (GPCRs). MIHR mutant jellyfish generated using CRISPR-Cas9 editing had severe defects in gamete development or in spawning both in males and females. Female gonads, or oocytes isolated from MIHR mutants, failed to respond to synthetic MIH. Treatment with the cAMP analogue Br-cAMP to mimic cAMP rise at maturation onset rescued meiotic maturation and spawning. Injection of inhibitory antibodies to the alpha subunit of the Gs heterodimeric protein (GαS) into wild-type oocytes phenocopied the MIHR mutants. These results provide the molecular links between MIH stimulation and meiotic maturation initiation in hydrozoan oocytes. Molecular phylogeny grouped Clytia MIHR with a subset of bilaterian neuropeptide receptors, including neuropeptide Y, gonadotropin inhibitory hormone (GnIH), pyroglutamylated RFamide, and luqin, all upstream regulators of sexual reproduction. This identification and functional characterization of a cnidarian peptide GPCR advances our understanding of oocyte maturation initiation and sheds light on the evolution of neuropeptide-hormone systems. A study of jellyfish oocytes identifies the receptor for Maturation-Inducing Hormone, the neuropeptide hormone that triggers oocyte maturation and spawning via GαS and cyclic AMP. This receptor defines a superfamily of hormone-receptor systems involved in regulating sexual reproduction across animal species.
Collapse
|
28
|
Barredo CG, Gil-Marti B, Deveci D, Romero NM, Martin FA. Timing the Juvenile-Adult Neurohormonal Transition: Functions and Evolution. Front Endocrinol (Lausanne) 2020; 11:602285. [PMID: 33643219 PMCID: PMC7909313 DOI: 10.3389/fendo.2020.602285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
Puberty and metamorphosis are two major developmental transitions linked to the reproductive maturation. In mammals and vertebrates, the central brain acts as a gatekeeper, timing the developmental transition through the activation of a neuroendocrine circuitry. In addition to reproduction, these neuroendocrine axes and the sustaining genetic network play additional roles in metabolism, sleep and behavior. Although neurohormonal axes regulating juvenile-adult transition have been classically considered the result of convergent evolution (i.e., analogous) between mammals and insects, recent findings challenge this idea, suggesting that at least some neuroendocrine circuits might be present in the common bilaterian ancestor Urbilateria. The initial signaling pathways that trigger the transition in different species appear to be of a single evolutionary origin and, consequently, many of the resulting functions are conserved with a few other molecular players being co-opted during evolution.
Collapse
Affiliation(s)
- Celia G. Barredo
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Beatriz Gil-Marti
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Derya Deveci
- Sartorius Netherlands BV, Amersfoor, Netherlands
| | - Nuria M. Romero
- Developmental Timing, Environment and Behaviors Laboratory, Institut Sophia Agrobiotech, Université Côte d’Azur-INRAE-CNRS-INSERM, Sophia Antipolis, France
- *Correspondence: Nuria M. Romero, ; Francisco A. Martin,
| | - Francisco A. Martin
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- *Correspondence: Nuria M. Romero, ; Francisco A. Martin,
| |
Collapse
|
29
|
Nässel DR, Zandawala M, Kawada T, Satake H. Tachykinins: Neuropeptides That Are Ancient, Diverse, Widespread and Functionally Pleiotropic. Front Neurosci 2019; 13:1262. [PMID: 31824255 PMCID: PMC6880623 DOI: 10.3389/fnins.2019.01262] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022] Open
Abstract
Tachykinins (TKs) are ancient neuropeptides present throughout the bilaterians and are, with some exceptions, characterized by a conserved FX1GX2Ramide carboxy terminus among protostomes and FXGLMamide in deuterostomes. The best-known TK is the vertebrate substance P, which in mammals, together with other TKs, has been implicated in health and disease with important roles in pain, inflammation, cancer, depressive disorder, immune system, gut function, hematopoiesis, sensory processing, and hormone regulation. The invertebrate TKs are also known to have multiple functions in the central nervous system and intestine and these have been investigated in more detail in the fly Drosophila and some other arthropods. Here, we review the protostome and deuterostome organization and evolution of TK precursors, peptides and their receptors, as well as their functions, which appear to be partly conserved across Bilateria. We also outline the distribution of TKs in the brains of representative organisms. In Drosophila, recent studies have revealed roles of TKs in early olfactory processing, neuromodulation in circuits controlling locomotion and food search, nociception, aggression, metabolic stress, and hormone release. TK signaling also regulates lipid metabolism in the Drosophila intestine. In crustaceans, TK is an important neuromodulator in rhythm-generating motor circuits in the stomatogastric nervous system and a presynaptic modulator of photoreceptor cells. Several additional functional roles of invertebrate TKs can be inferred from their distribution in various brain circuits. In addition, there are a few interesting cases where invertebrate TKs are injected into prey animals as vasodilators from salivary glands or paralyzing agents from venom glands. In these cases, the peptides are produced in the glands of the predator with sequences mimicking the prey TKs. Lastly, the TK-signaling system appears to have duplicated in Panarthropoda (comprising arthropods, onychophores, and tardigrades) to give rise to a novel type of peptides, natalisins, with a distinct receptor. The distribution and functions of natalisins are distinct from the TKs. In general, it appears that TKs are widely distributed and act in circuits at short range as neuromodulators or cotransmitters.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Meet Zandawala
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|
30
|
de Oliveira AL, Calcino A, Wanninger A. Ancient origins of arthropod moulting pathway components. eLife 2019; 8:46113. [PMID: 31266593 PMCID: PMC6660194 DOI: 10.7554/elife.46113] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/27/2019] [Indexed: 12/25/2022] Open
Abstract
Ecdysis (moulting) is the defining character of Ecdysoza (arthropods, nematodes and related phyla). Despite superficial similarities, the signalling cascade underlying moulting differs between Panarthropoda and the remaining ecdysozoans. Here, we reconstruct the evolution of major components of the ecdysis pathway. Its key elements evolved much earlier than previously thought and are present in non-moulting lophotrochozoans and deuterostomes. Eclosion hormone (EH) and bursicon originated prior to the cnidarian-bilaterian split, whereas ecdysis-triggering hormone (ETH) and crustacean cardioactive peptide (CCAP) evolved in the bilaterian last common ancestor (LCA). Identification of EH, CCAP and bursicon in Onychophora and EH, ETH and CCAP in Tardigrada suggests that the pathway was present in the panarthropod LCA. Trunk, an ancient extracellular signalling molecule and a well-established paralog of the insect peptide prothoracicotropic hormone (PTTH), is present in the non-bilaterian ctenophore Mnemiopsis leidyi. This constitutes the first case of a ctenophore signalling peptide with homology to a neuropeptide. Animals such as insects, crabs and spiders belong to one of the most species-rich animal groups, called the arthropods. These animals have exoskeletons, which are hard, external coverings that support their bodies. Arthropods shed their exoskeletons as they grow, a process called ecdysis or moulting, and this behaviour is controlled by a set of hormones and small protein-like molecules called neuropeptides that allow communication between neurons. Other animals, such as roundworms, also moult; and together with arthropods they are classified into a group called the Ecdysozoa. Since moulting is a common behaviour in ecdysozoans, it was previously assumed that its signalling components had evolved in the common ancestor of roundworms and arthropods, although differences in the moulting machinery between both groups exist. Here, De Oliveira et al. investigate the evolutionary origins of the arthropod moulting machinery and find that some of the hormones and neuropeptides involved appeared long before the arthropods themselves. Database searches showed that important hormones and neuropeptides involved in arthropod moulting can be found in diverse animal groups, such as jellyfish, molluscs and starfish, confirming that these molecules evolved before the last common ancestor of roundworms and arthropods. These animals must therefore use the hormones and neuropeptides in many processes unrelated to moulting. De Oliveira et al. also found that roundworms have lost most of these molecules, and that moulting in these animals must be driven by a different complement of hormones and neuropeptides. These results invite research into the role of moulting hormones and neuropeptides in animals outside the Ecdysozoa. They also show that signalling pathways and the processes they regulate are highly adaptable: two animals can use the same hormone in entirely different processes, but conversely, the same behaviour may be regulated by different molecules depending on the animal. This means that the evolution of a process and the evolution of its regulation can be decoupled, a finding that has important implications for the study of signalling pathways and their evolution.
Collapse
Affiliation(s)
- André Luiz de Oliveira
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Andrew Calcino
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Andreas Wanninger
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Chen M, Talarovicova A, Zheng Y, Storey KB, Elphick MR. Neuropeptide precursors and neuropeptides in the sea cucumber Apostichopus japonicus: a genomic, transcriptomic and proteomic analysis. Sci Rep 2019; 9:8829. [PMID: 31222106 PMCID: PMC6586643 DOI: 10.1038/s41598-019-45271-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
The sea cucumber Apostichopus japonicus is a foodstuff with very high economic value in China, Japan and other countries in south-east Asia. It is at the heart of a multibillion-dollar industry and to meet demand for this product, aquaculture methods and facilities have been established. However, there are challenges associated with optimization of reproduction, feeding and growth in non-natural environments. Therefore, we need to learn more about the biology of A. japonicus, including processes such as aestivation, evisceration, regeneration and albinism. One of the major classes of molecules that regulate physiology and behaviour in animals are neuropeptides, and a few bioactive peptides have already been identified in A. japonicus. To facilitate more comprehensive investigations of neuropeptide function in A. japonicus, here we have analysed genomic and transcriptomic sequence data and proteomic data to identify neuropeptide precursors and neuropeptides in this species. We identified 44 transcripts encoding neuropeptide precursors or putative neuropeptide precursors, and in some instances neuropeptides derived from these precursors were confirmed by mass spectrometry. Furthermore, analysis of genomic sequence data enabled identification of the location of neuropeptide precursor genes on genomic scaffolds and linkage groups (chromosomes) and determination of gene structure. Many of the precursors identified contain homologs of neuropeptides that have been identified in other bilaterian animals. Precursors of neuropeptides that have thus far only been identified in echinoderms were identified, including L- and F-type SALMFamides, AN peptides and others. Precursors of several peptides that act as modulators of neuromuscular activity in A. japonicus were also identified. The discovery of a large repertoire of neuropeptide precursors and neuropeptides provides a basis for experimental studies that investigate the physiological roles of neuropeptide signaling systems in A. japonicus. Looking ahead, some of these neuropeptides may have effects that could be harnessed to enable improvements in the aquaculture of this economically important species.
Collapse
Affiliation(s)
- Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR, China.
| | - Alzbeta Talarovicova
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR, China
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
32
|
García-Arrarás JE, Lefebre-Rivera M, Qi-Huang S. Enteroendocrine cells in the Echinodermata. Cell Tissue Res 2019; 377:459-467. [PMID: 31222501 DOI: 10.1007/s00441-019-03053-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/24/2019] [Indexed: 12/24/2022]
Abstract
Enteroendocrine cells are endocrine-like cells found in the luminal epithelia of the digestive tract. These cells have been described in most animal phyla. In echinoderms, the cells have been described mainly in organisms of the class Asteroidea (sea stars) and Holothuroidea (sea cucumbers). Here, we describe what is known about the enteroendocrine cells of the Echinodermata, including the cell types, their distribution in the digestive tract, their neuropeptide content and their regeneration and compare them to what has been found in other animal species, mainly in vertebrates. We also discuss the newly described view of enteroendocrine cells as chemical sensors of the intestinal lumen and provide some histological evidence that similar functions might be found within the echinoderms. Finally, we describe the temporal regeneration of the enteroendocrine cells in the holothurian intestine.
Collapse
|
33
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
34
|
Fadda M, Hasakiogullari I, Temmerman L, Beets I, Zels S, Schoofs L. Regulation of Feeding and Metabolism by Neuropeptide F and Short Neuropeptide F in Invertebrates. Front Endocrinol (Lausanne) 2019; 10:64. [PMID: 30837946 PMCID: PMC6389622 DOI: 10.3389/fendo.2019.00064] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Numerous neuropeptide systems have been implicated to coordinately control energy homeostasis, both centrally and peripherally. However, the vertebrate neuropeptide Y (NPY) system has emerged as the best described one regarding this biological process. The protostomian ortholog of NPY is neuropeptide F, characterized by an RXRF(Y)amide carboxyterminal motif. A second neuropeptide system is short NPF, characterized by an M/T/L/FRF(W)amide carboxyterminal motif. Although both short and long NPF neuropeptide systems display carboxyterminal sequence similarities, they are evolutionary distant and likely already arose as separate signaling systems in the common ancestor of deuterostomes and protostomes, indicating the functional importance of both. Both NPF and short-NPF systems seem to have roles in the coordination of feeding across bilaterian species, but during chordate evolution, the short NPF system appears to have been lost or evolved into the prolactin releasing peptide signaling system, which regulates feeding and has been suggested to be orthologous to sNPF. Here we review the roles of both NPF and sNPF systems in the regulation of feeding and metabolism in invertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | - Liliane Schoofs
- Department of Biology, Functional Genomics and Proteomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
36
|
Schwartz J, Réalis-Doyelle E, Dubos MP, Lefranc B, Leprince J, Favrel P. Characterization of an evolutionarily conserved calcitonin signaling system in a lophotrochozoan, the Pacific oyster (Crassostrea gigas). J Exp Biol 2019; 222:jeb.201319. [DOI: 10.1242/jeb.201319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022]
Abstract
In Protostoma, the diuretic hormone 31 (DH31) signaling system was long considered as the orthologue of the chordate calcitonin (CT) signaling system. Using the Pacific oyster (Crassostrea gigas) transcriptomic database GigaTON (http://ngspipelines-sigenae.toulouse.inra.fr/), we characterized seven G-protein-coupled receptors (GPCRs) named Cragi-CTR1/7 and phylogenetically related to chordate CT receptors (CTRs) and to protostome DH31 receptors. Two CT Precursors (Cragi-CTP1 and Cragi-CTP2) containing two CT-type peptides and encoded by two distinct genes with a similar organization were also characterized. These oyster neuropeptides (Cragi-CT1/2) exhibit the two N-terminal paired cysteine residues and except CTP2 derived peptide (Cragi-CTP2dp) the C-terminal proline-amide motif typical of deuterostome CT-type peptides. All mature Cragi-CTs but Cragi-CTP2dp were detected in visceral ganglion (VG) extracts using mass spectrometry. Cell-based assays revealed that the formerly characterized oyster receptors Cg-CTR and Cragi-CTR2 were specifically activated by Cragi-CT1b and Cragi-CT2, respectively. This activation does not require the co-expression of receptor activity-modifying proteins (RAMPs). Thus, the oyster CT signaling appears functionally more closely related to the vertebrate CT/CTR signaling than to the (Calcitonin Gene Related Peptide) CGRP/CLR signaling. Gene expression profiles in different adult tissues and in oysters acclimated to brackish water suggest the potential implication of both Cg-CT-R/Cragi-CT1b and Cragi-CTR2/Cragi-CT2 in water and ionic regulations, though with apparently opposite effects. The present study represents the first comprehensive characterization of a functional CT-type signaling system in a protostome and provides evidence for its evolutionarily ancient origin and its early role in osmotic homeostasis.
Collapse
Affiliation(s)
- Julie Schwartz
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032 CAEN, Cedex 5, France
| | - Emilie Réalis-Doyelle
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032 CAEN, Cedex 5, France
| | - Marie-Pierre Dubos
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032 CAEN, Cedex 5, France
| | - Benjamin Lefranc
- Normandie Université, UNIROUEN, INSERM, U1239, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, F-76000 Rouen, France
| | - Jérôme Leprince
- Normandie Université, UNIROUEN, INSERM, U1239, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, F-76000 Rouen, France
| | - Pascal Favrel
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032 CAEN, Cedex 5, France
| |
Collapse
|
37
|
Wood NJ, Mattiello T, Rowe ML, Ward L, Perillo M, Arnone MI, Elphick MR, Oliveri P. Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple" Nervous System. Front Endocrinol (Lausanne) 2018; 9:628. [PMID: 30410468 PMCID: PMC6209648 DOI: 10.3389/fendo.2018.00628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
The nervous system of the free-living planktonic larvae of sea urchins is relatively "simple," but sufficiently complex to enable sensing of the environment and control of swimming and feeding behaviors. At the pluteus stage of development, the nervous system comprises a central ganglion of serotonergic neurons located in the apical organ and sensory and motor neurons associated with the ciliary band and the gut. Neuropeptides are key mediators of neuronal signaling in nervous systems but currently little is known about neuropeptidergic systems in sea urchin larvae. Analysis of the genome sequence of the sea urchin Strongylocentrotus purpuratus has enabled the identification of 38 genes encoding neuropeptide precursors (NP) in this species. Here we characterize for the first time the expression of nine of these NP genes in S. purpuratus larvae, providing a basis for a functional understanding of the neurochemical organization of the larval nervous system. In order to accomplish this we used single and double in situ hybridization, coupled with immunohistochemistry, to investigate NP gene expression in comparison with known markers (e.g., the neurotransmitter serotonin). Several sub-populations of cells that express one or more NP genes were identified, which are located in the apica organ, at the base of the arms, around the mouth, in the ciliary band and in the mid- and fore-gut. Furthermore, high levels of cell proliferation were observed in neurogenic territories, consistent with an increase in the number of neuropeptidergic cells at late larval stages. This study has revealed that the sea urchin larval nervous system is far more complex at a neurochemical level than was previously known. Our NP gene expression map provides the basis for future work, aimed at understanding the role of diverse neuropeptides in control of various aspects of embryonic and larval behavior.
Collapse
Affiliation(s)
- Natalie J. Wood
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Teresa Mattiello
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Matthew L. Rowe
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Lizzy Ward
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | | | | - Maurice R. Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Paola Oliveri
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
38
|
Koziol U. Precursors of neuropeptides and peptide hormones in the genomes of tardigrades. Gen Comp Endocrinol 2018; 267:116-127. [PMID: 29935140 DOI: 10.1016/j.ygcen.2018.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Tardigrades are a key group for understanding the evolution of the Ecdysozoa, a large clade of molting animals that also includes arthropods and nematodes. However, little is known about most aspects of their basic biology. Neuropeptide and peptide hormone signaling has been extensively studied in arthropods and nematodes (particularly regarding their roles in molting in arthropods), but very little is known about neuropeptide signaling in other ecdysozoans. In this work, different strategies were used to search for neuropeptide and peptide hormone precursors in the genomes of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. In general, there is a remarkable similarity in the complement of neuropeptides and their sequences between tardigrades and arthropods. The precursors found in tardigrades included homologs of achatin, allatostatins A, B and C, allatotropin, calcitonin, CCHamide, CCRFa, corazonin, crustacean cardioactive peptide, diuretic hormone 31, diuretic hormone 44, ecdysis triggering hormone, eclosion hormone, gonadotropin-releasing hormone (GnRH), GSEFLamide, insulin-like peptides, ion transport peptide, kinin, neuropeptide F, orcokinin, pigment dispersing hormone, proctolin, pyrokinin, RYamide, short neuropeptide F, sulfakinin, tachykinin, trissin and vasopressin. In most cases, homologs of known cognate receptors for each neuropeptide family could only be identified when the precursors were also present in the genome, further supporting their identification. Some neuropeptide precursor genes have undergone several duplications in tardigrades, including allatostatin A and C, corazonin, GnRH, eclosion hormone, sulfakinin and trissin. Furthermore, four novel families of candidate neuropeptide precursors were identified (two of which could also be found in several arthropods). To the best of my knowledge, this work represents the first genome-wide search for neuropeptide precursors in any ecdysozoan species outside arthropods and nematodes, and is a necessary first step towards understanding neuropeptide function in tardigrades.
Collapse
Affiliation(s)
- Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP11400 Montevideo, Uruguay.
| |
Collapse
|
39
|
Wang Q, Hong X, Chen H, Yuan L, Zha J. The neuropeptides of Asian freshwater clam (Corbicula fluminea) as new molecular biomarker basing on the responses of organophosphate chemicals exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:52-59. [PMID: 29783112 DOI: 10.1016/j.ecoenv.2018.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
In the present study, to discover new biomarker of Asian freshwater clam (Corbicula fluminea) to assess impact of environmental pollutions, cholecystokinin (CCK), conopressin, and Neuropeptide FF (FFamide) in C. fluminea were selected as potent biomarkers. Therefore, their full-length cDNAs were cloned and characterized to investigate the molecular characteristics and expression patterns of neuropeptides in C. fluminea. According to the sequence analysis, CCK, conopressin, and FFamide encoded proteins of 173, 152, and 90 amino acids, respectively. Moreover, the multiple sequence alignment revealed that the bioactive regions of these neuropeptides were well conserved among different invertebrates. In addition, under basal conditions, CCK, conopressin and FFamide mRNA were mainly expressed in the visceral mass, whereas the FFamide mRNA was rarely detected in the foot and mantle. Exposure to 20 and 200 μg/L Tris (2-butoxyethyl) phosphate (TBOEP) and tri-butyl-phosphate (TBP) exposure significantly up-regulated the expression of the CCK and FFamide mRNAs in the visceral mass (p < 0.05), whereas no significant changes in conopressin mRNA levels were observed in response to any treatment. Therefore, CCK and FFamide of C. fluminea neuropeptides are feasible new biomarkers for screening and assessing responses to organophosphate chemicals.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Huihui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
40
|
Cai W, Kim CH, Go HJ, Egertová M, Zampronio CG, Jones AM, Park NG, Elphick MR. Biochemical, Anatomical, and Pharmacological Characterization of Calcitonin-Type Neuropeptides in Starfish: Discovery of an Ancient Role as Muscle Relaxants. Front Neurosci 2018; 12:382. [PMID: 29937709 PMCID: PMC6002491 DOI: 10.3389/fnins.2018.00382] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022] Open
Abstract
Calcitonin (CT) is a peptide hormone released by the thyroid gland that regulates blood Ca2+ levels in mammals. The CT gene is alternatively spliced, with one transcript encoding CT and another transcript encoding the CT-like neuropeptide calcitonin-gene related peptide (α-CGRP), which is a powerful vasodilator. Other CT-related peptides in vertebrates include adrenomedullin, amylin, and intermedin, which also act as smooth muscle relaxants. The evolutionary origin of CT-type peptides has been traced to the bilaterian common ancestor of protostomes and deuterostomes and a CT-like peptide (DH31) has been identified as a diuretic hormone in some insect species. However, little is known about the physiological roles of CT-type peptides in other invertebrates. Here we characterized a CT-type neuropeptide in a deuterostomian invertebrate—the starfish Asterias rubens (Phylum Echinodermata). A CT-type precursor cDNA (ArCTP) was sequenced and the predicted structure of the peptide (ArCT) derived from ArCTP was confirmed using mass spectrometry. The distribution of ArCTP mRNA and the ArCT peptide was investigated using in situ hybridization and immunohistochemistry, respectively, revealing stained cells/processes in the nervous system, digestive system, and muscular organs, including the apical muscle and tube feet. Investigation of the effects of synthetic ArCT on in vitro preparations of the apical muscle and tube feet revealed that it acts as a relaxant, causing dose-dependent reversal of acetylcholine-induced contraction. Furthermore, a muscle relaxant present in whole-animal extracts of another starfish species, Patiria pectinifera, was identified as an ortholog of ArCT and named PpCT. Consistent with the expression pattern of ArCTP in A. rubens, RT-qPCR revealed that in P. pectinifera the PpCT precursor transcript is more abundant in the radial nerve cords than in other tissues/organs analyzed. In conclusion, our findings indicate that the physiological action of CT-related peptides as muscle relaxants in vertebrates may reflect an evolutionarily ancient role of CT-type neuropeptides that can be traced back to the common ancestor of deuterostomes.
Collapse
Affiliation(s)
- Weigang Cai
- School of Biological & Chemical Sciences Queen Mary University of London, London, United Kingdom
| | - Chan-Hee Kim
- Department of Biotechnology, College of Fisheries Sciences Pukyong National University, Busan, South Korea
| | - Hye-Jin Go
- Department of Biotechnology, College of Fisheries Sciences Pukyong National University, Busan, South Korea
| | - Michaela Egertová
- School of Biological & Chemical Sciences Queen Mary University of London, London, United Kingdom
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform University of Warwick, Coventry, United Kingdom
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform University of Warwick, Coventry, United Kingdom
| | - Nam Gyu Park
- Department of Biotechnology, College of Fisheries Sciences Pukyong National University, Busan, South Korea
| | - Maurice R Elphick
- School of Biological & Chemical Sciences Queen Mary University of London, London, United Kingdom
| |
Collapse
|
41
|
Discovery and functional characterisation of a luqin-type neuropeptide signalling system in a deuterostome. Sci Rep 2018; 8:7220. [PMID: 29740074 PMCID: PMC5940834 DOI: 10.1038/s41598-018-25606-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/24/2018] [Indexed: 12/25/2022] Open
Abstract
Neuropeptides are diverse and evolutionarily ancient regulators of physiological/behavioural processes in animals. Here we have investigated the evolution and comparative physiology of luqin-type neuropeptide signalling, which has been characterised previously in protostomian invertebrates. Phylogenetic analysis indicates that luqin-type receptors and tachykinin-type receptors are paralogous and probably originated in a common ancestor of the Bilateria. In the deuterostomian lineage, luqin-type signalling has been lost in chordates but interestingly it has been retained in ambulacrarians. Therefore, here we characterised luqin-type signalling for the first time in an ambulacrarian – the starfish Asterias rubens (phylum Echinodermata). A luqin-like neuropeptide with a C-terminal RWamide motif (ArLQ; EEKTRFPKFMRW-NH2) was identified as the ligand for two luqin-type receptors in A. rubens, ArLQR1 and ArLQR2. Furthermore, analysis of the expression of the ArLQ precursor using mRNA in situ hybridisation revealed expression in the nervous system, digestive system and locomotory organs (tube feet) and in vitro pharmacology revealed that ArLQ causes dose-dependent relaxation of tube feet. Accordingly, previous studies have revealed that luqin-type signalling regulates feeding and locomotor activity in protostomes. In conclusion, our phylogenetic analysis combined with characterisation of luqin-type signalling in a deuterostome has provided new insights into neuropeptide evolution and function in the animal kingdom.
Collapse
|
42
|
Elphick MR, Mirabeau O, Larhammar D. Evolution of neuropeptide signalling systems. ACTA ACUST UNITED AC 2018; 221:221/3/jeb151092. [PMID: 29440283 PMCID: PMC5818035 DOI: 10.1242/jeb.151092] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuropeptides are a diverse class of neuronal signalling molecules that regulate physiological processes and behaviour in animals. However, determining the relationships and evolutionary origins of the heterogeneous assemblage of neuropeptides identified in a range of phyla has presented a huge challenge for comparative physiologists. Here, we review revolutionary insights into the evolution of neuropeptide signalling that have been obtained recently through comparative analysis of genome/transcriptome sequence data and by ‘deorphanisation’ of neuropeptide receptors. The evolutionary origins of at least 30 neuropeptide signalling systems have been traced to the common ancestor of protostomes and deuterostomes. Furthermore, two rounds of genome duplication gave rise to an expanded repertoire of neuropeptide signalling systems in the vertebrate lineage, enabling neofunctionalisation and/or subfunctionalisation, but with lineage-specific gene loss and/or additional gene or genome duplications generating complex patterns in the phylogenetic distribution of paralogous neuropeptide signalling systems. We are entering a new era in neuropeptide research where it has become feasible to compare the physiological roles of orthologous and paralogous neuropeptides in a wide range of phyla. Moreover, the ambitious mission to reconstruct the evolution of neuropeptide function in the animal kingdom now represents a tangible challenge for the future. Summary: A review of the revolutionary advances in our knowledge of the evolution of neuropeptide signalling systems that have been enabled by comparative genomics and neuropeptide receptor deorphanisation.
Collapse
Affiliation(s)
- Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Olivier Mirabeau
- Genetics and Biology of Cancers Unit, Institut Curie, INSERM U830, Paris Sciences et Lettres Research University, Paris 75005, France
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, 75124 Uppsala, Sweden
| |
Collapse
|
43
|
Zueva O, Khoury M, Heinzeller T, Mashanova D, Mashanov V. The complex simplicity of the brittle star nervous system. Front Zool 2018; 15:1. [PMID: 29434647 PMCID: PMC5796562 DOI: 10.1186/s12983-017-0247-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022] Open
Abstract
Background Brittle stars (Ophiuroidea, Echinodermata) have been increasingly used in studies of animal behavior, locomotion, regeneration, physiology, and bioluminescence. The success of these studies directly depends on good working knowledge of the ophiuroid nervous system. Results Here, we describe the arm nervous system at different levels of organization, including the microanatomy of the radial nerve cord and peripheral nerves, ultrastructure of the neural tissue, and localization of different cell types using specific antibody markers. We standardize the nomenclature of nerves and ganglia, and provide an anatomically accurate digital 3D model of the arm nervous system as a reference for future studies. Our results helped identify several general features characteristic to the adult echinoderm nervous system, including the extensive anatomical interconnections between the ectoneural and hyponeural components, neuroepithelial organization of the central nervous system, and the supporting scaffold of the neuroepithelium formed by radial glial cells. In addition, we provide further support to the notion that the echinoderm radial glia is a complex and diverse cell population. We also tested the suitability of a range of specific cell-type markers for studies of the brittle star nervous system and established that the radial glial cells are reliably labeled with the ERG1 antibodies, whereas the best neuronal markers are acetylated tubulin, ELAV, and synaptotagmin B. The transcription factor Brn1/2/4 – a marker of neuronal progenitors – is expressed not only in neurons, but also in a subpopulation of radial glia. For the first time, we describe putative ophiuroid proprioceptors associated with the hyponeural part of the central nervous system. Conclusions Together, our data help establish both the general principles of neural architecture common to the phylum Echinodermata and the specific ophiuroid features. Electronic supplementary material The online version of this article (10.1186/s12983-017-0247-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olga Zueva
- 1University of North Florida, FL, Jacksonville, USA
| | | | | | | | | |
Collapse
|
44
|
Sekiguchi T. The Calcitonin/Calcitonin Gene-Related Peptide Family in Invertebrate Deuterostomes. Front Endocrinol (Lausanne) 2018; 9:695. [PMID: 30555412 PMCID: PMC6283891 DOI: 10.3389/fendo.2018.00695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Calcitonin (CT)/CT gene-related peptide (CGRP) family peptides (CT/CGRP family peptides) including CT, CGRP, adrenomedullin, amylin, and CT receptor-stimulating peptide have been identified from various vertebrates and perform a variety of important physiological functions. These peptides bind to two types of receptors including CT receptor (CTR) and CTR-like receptor (CLR). Receptor recognition of CT/CGRP family peptides is determined by the heterodimer between CTR/CLR and receptor activity-modifying protein (RAMP). Comparative studies of the CT/CGRP family have been exclusively performed in vertebrates from teleost fishes to mammals and strongly manifest that the CGRP family system containing peptides, their receptors, and RAMPs was derived from a common ancestor. In addition, CT/CGRP family peptides and their receptors are also identified and inferred from various invertebrate species. However, the evolutionary process of the CT/CGRP family from invertebrates to vertebrates remains enigmatic. In this review, I principally summarize the CT/CGRP family peptides and their receptors in invertebrate deuterostomes, highlighting the study of invertebrate chordates including ascidians and amphioxi. The CT/CGRP family peptide that shows similar molecular structure and function with that of vertebrate CT has been identified from ascidian, Ciona intestinalis. Amphioxus, Branchiostoma floridae also possessed three CT/CGRP family peptides, one CTR/CLR receptor, and three RAMP-like proteins. The molecular function of the receptor complex formed by amphioxus CTR/CLR and a RAMP-like protein was clarified. Moreover, CT/CGRP family peptides have been identified in the superphylum Ambulacraria, which is close to Chordata. Finally, this review provides potential hypotheses of the evolution of CGRP family peptides and their receptors from invertebrates to vertebrates.
Collapse
|
45
|
Suwansa-Ard S, Chaiyamoon A, Talarovicova A, Tinikul R, Tinikul Y, Poomtong T, Elphick MR, Cummins SF, Sobhon P. Transcriptomic discovery and comparative analysis of neuropeptide precursors in sea cucumbers (Holothuroidea). Peptides 2018; 99:231-240. [PMID: 29054501 DOI: 10.1016/j.peptides.2017.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022]
Abstract
Neuropeptides synthesized and released by neuronal cells play important roles in the regulation of many processes, e.g. growth, feeding, reproduction, and behavior. In the past decade, next-generation sequencing technologies have helped to facilitate the identification of multiple neuropeptide genes in a variety of taxa, including arthropods, molluscs and echinoderms. In this study, we extend these studies to Holothuria scabra, a sea cucumber species that is widely cultured for human consumption. In silico analysis of H. scabra neural and gonadal transcriptomes enabled the identification of 28 transcripts that encode a total of 26 bilaterian and echinoderm-specific neuropeptide precursors. Furthermore, publicly available sequence data from another sea cucumber, Holothuria glaberrima, allowed a more in-depth comparative investigation. Interestingly, two isoforms of a calcitonin-type peptide precursor (CTPP) were deduced from the H. scabra transcriptome - HscCTPP-long and HscCTPP-short, likely the result of alternative splicing. We also identified a sea cucumber relaxin-type peptide precursor, which is of interest because relaxin-type peptides have been shown to act as gonadotropic hormones in starfish. Two neuropeptides that appear to be holothurian-specific are GLRFA, and GN-19. In H. scabra, the expression of GLRFA was restricted to neural tissues, while GN-19 expression was additionally found in the longitudinal muscle and intestinal tissues. In conclusion, we have obtained new insights into the neuropeptide signaling systems of holothurians, which will facilitate physiological studies that may enable advances in the aquaculture of sea cucumbers.
Collapse
Affiliation(s)
- Saowaros Suwansa-Ard
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Arada Chaiyamoon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Alzbeta Talarovicova
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | - Tanes Poomtong
- Coastal Fisheries Research and Development Center, Klongwan, Prachuab Khiri Khan 77000, Thailand
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Scott F Cummins
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand.
| |
Collapse
|
46
|
Tinoco AB, Semmens DC, Patching EC, Gunner EF, Egertová M, Elphick MR. Characterization of NGFFYamide Signaling in Starfish Reveals Roles in Regulation of Feeding Behavior and Locomotory Systems. Front Endocrinol (Lausanne) 2018; 9:507. [PMID: 30283399 PMCID: PMC6156427 DOI: 10.3389/fendo.2018.00507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Neuropeptides in deuterostomian invertebrates that have an Asn-Gly motif (NG peptides) have been identified as orthologs of vertebrate neuropeptide-S (NPS)-type peptides and protostomian crustacean cardioactive peptide (CCAP)-type neuropeptides. To obtain new insights into the physiological roles of NG peptides in deuterostomian invertebrates, here we have characterized the NG peptide signaling system in an echinoderm-the starfish Asterias rubens. The neuropeptide NGFFYamide was identified as the ligand for an A. rubens NPS/CCAP-type receptor, providing further confirmation that NG peptides are orthologs of NPS/CCAP-type neuropeptides. Using mRNA in situ hybridization, cells expressing the NGFFYamide precursor transcript were revealed in the radial nerve cords, circumoral nerve ring, coelomic epithelium, apical muscle, body wall, stomach, and tube feet of A. rubens, indicating that NGFFYamide may have a variety of physiological roles in starfish. One of the most remarkable aspects of starfish biology is their feeding behavior, where the stomach is everted out of the mouth over the soft tissue of prey. Previously, we reported that NGFFYamide triggers retraction of the everted stomach in A. rubens and here we show that in vivo injection of NGFFYamide causes a significant delay in the onset of feeding on prey. To investigate roles in regulating other aspects of starfish physiology, we examined the in vitro effects of NGFFYamide and found that it causes relaxation of acetylcholine-contracted apical muscle preparations and induction of tonic and phasic contraction of tube feet. Furthermore, analysis of the effects of in vivo injection of NGFFYamide on starfish locomotor activity revealed that it causes a significant reduction in mean velocity and distance traveled. Interestingly, experimental studies on mammals have revealed that NPS is an anxiolytic that suppresses appetite and induces hyperactivity in mammals. Our characterization of the actions of NGFFYamide in starfish indicates that NPS/NG peptide/CCAP-type signaling is an evolutionarily ancient regulator of feeding and locomotion.
Collapse
|
47
|
Lin M, Egertová M, Zampronio CG, Jones AM, Elphick MR. Functional characterization of a second pedal peptide/orcokinin-type neuropeptide signaling system in the starfish Asterias rubens. J Comp Neurol 2017; 526:858-876. [PMID: 29218721 PMCID: PMC5814872 DOI: 10.1002/cne.24371] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022]
Abstract
Molluscan pedal peptides (PPs) and arthropod orcokinins (OKs) are prototypes of a family of neuropeptides that have been identified in several phyla. Recently, starfish myorelaxant peptide (SMP) was identified as a PP/OK‐type neuropeptide in the starfish Patiria pectinifera (phylum Echinodermata). Furthermore, analysis of transcriptome sequence data from the starfish Asterias rubens revealed two PP/OK‐type precursors: an SMP‐type precursor (A. rubens PP‐like neuropeptide precursor 1; ArPPLNP1) and a second precursor (ArPPLNP2). We reported previously a detailed analysis of ArPPLNP1 expression in A. rubens and here we report the first functional characterization ArPPLNP2‐derived neuropeptides. Sequencing of a cDNA encoding ArPPLNP2 revealed that it comprises eleven related neuropeptides (ArPPLN2a‐k), the structures of several of which were confirmed using mass spectrometry. Analysis of the expression of ArPPLNP2 and neuropeptides derived from this precursor using mRNA in situ hybridization and immunohistochemistry revealed a widespread distribution, including expression in radial nerve cords, circumoral nerve ring, digestive system, tube feet and innervation of interossicular muscles. In vitro pharmacology revealed that the ArPPLNP2‐derived neuropeptide ArPPLN2h has no effect on the contractility of tube feet or the body wall‐associated apical muscle, contrasting with the relaxing effect of ArPPLN1b (ArSMP) on these preparations. ArPPLN2h does, however, cause dose‐dependent relaxation of cardiac stomach preparations, with greater potency/efficacy than ArPPLN1b and with similar potency/efficacy to the SALMFamide neuropeptide S2. In conclusion, there are similarities in the expression patterns of ArPPLNP1 and ArPPLNP2 but our data also indicate specialization in the roles of neuropeptides derived from these two PP/OK‐type precursors in starfish.
Collapse
Affiliation(s)
- Ming Lin
- School of Biological & Chemical Sciences, Mile End Road, Queen Mary University of London, London, United Kingdom
| | - Michaela Egertová
- School of Biological & Chemical Sciences, Mile End Road, Queen Mary University of London, London, United Kingdom
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, United Kingdom
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, United Kingdom
| | - Maurice R Elphick
- School of Biological & Chemical Sciences, Mile End Road, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
48
|
Lin M, Egertová M, Zampronio CG, Jones AM, Elphick MR. Pedal peptide/orcokinin-type neuropeptide signaling in a deuterostome: The anatomy and pharmacology of starfish myorelaxant peptide in Asterias rubens. J Comp Neurol 2017; 525:3890-3917. [PMID: 28880392 PMCID: PMC5656890 DOI: 10.1002/cne.24309] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/15/2017] [Accepted: 08/23/2017] [Indexed: 12/11/2022]
Abstract
Pedal peptide (PP) and orcokinin (OK) are related neuropeptides that were discovered in protostomian invertebrates (mollusks, arthropods). However, analysis of genome/transcriptome sequence data has revealed that PP/OK‐type neuropeptides also occur in a deuterostomian phylum—the echinoderms. Furthermore, a PP/OK‐type neuropeptide (starfish myorelaxant peptide, SMP) was recently identified as a muscle relaxant in the starfish Patiria pectinifera. Here mass spectrometry was used to identify five neuropeptides (ArPPLN1a‐e) derived from the SMP precursor (PP‐like neuropeptide precursor 1; ArPPLNP1) in the starfish Asterias rubens. Analysis of the expression of ArPPLNP1 and neuropeptides derived from this precursor in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed a widespread pattern of expression, with labeled cells and/or processes present in the radial nerve cords, circumoral nerve ring, digestive system (e.g., cardiac stomach) and body wall‐associated muscles (e.g., apical muscle) and appendages (e.g., tube feet and papulae). Furthermore, our data provide the first evidence that neuropeptides are present in the lateral motor nerves and in nerve processes innervating interossicular muscles. In vitro pharmacological tests with SMP (ArPPLN1b) revealed that it causes dose‐dependent relaxation of apical muscle, tube foot and cardiac stomach preparations from A. rubens. Collectively, these anatomical and pharmacological data indicate that neuropeptides derived from ArPPLNP1 act as inhibitory neuromuscular transmitters in starfish, which contrasts with the myoexcitatory actions of PP/OK‐type neuropeptides in protostomian invertebrates. Thus, the divergence of deuterostomes and protostomes may have been accompanied by an inhibitory–excitatory transition in the roles of PP/OK‐type neuropeptides as regulators of muscle activity.
Collapse
Affiliation(s)
- Ming Lin
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London, UK
| | - Michaela Egertová
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London, UK
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London, UK
| |
Collapse
|
49
|
Tian S, Egertová M, Elphick MR. Functional Characterization of Paralogous Gonadotropin-Releasing Hormone-Type and Corazonin-Type Neuropeptides in an Echinoderm. Front Endocrinol (Lausanne) 2017; 8:259. [PMID: 29033898 PMCID: PMC5626854 DOI: 10.3389/fendo.2017.00259] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
Homologs of the vertebrate neuropeptide gonadotropin-releasing hormone (GnRH) have been identified in invertebrates, including the insect neuropeptide corazonin (CRZ). Recently, we reported the discovery of GnRH-type and CRZ-type signaling systems in an echinoderm, the starfish Asterias rubens, demonstrating that the evolutionary origin of paralogous GnRH-type and CRZ-type neuropeptides can be traced back to the common ancestor of protostomes and deuterostomes. Here, we have investigated the physiological roles of the GnRH-type (ArGnRH) and the CRZ-type (ArCRZ) neuropeptides in A. rubens, using mRNA in situ hybridization, immunohistochemistry and in vitro pharmacology. ArGnRH precursor (ArGnRHP)-expressing cells and ArGnRH-immunoreactive cells and/or processes are present in the radial nerve cords, circumoral nerve ring, digestive system (e.g., cardiac stomach and pyloric stomach), body wall-associated muscle (apical muscle), and appendages (tube feet, terminal tentacle). The general distribution of ArCRZ precursor (ArCRZP)-expressing cells is similar to that of ArGnRHP, but with specific local differences. For example, cells expressing ArGnRHP are present in both the ectoneural and hyponeural regions of the radial nerve cords and circumoral nerve ring, whereas cells expressing ArCRZP were only observed in the ectoneural region. In vitro pharmacological experiments revealed that both ArGnRH and ArCRZ cause contraction of cardiac stomach, apical muscle, and tube foot preparations. However, ArGnRH was more potent/effective than ArCRZ as a contractant of the cardiac stomach, whereas ArCRZ was more potent/effective than ArGnRH as a contractant of the apical muscle. These findings demonstrate that both ArGnRH and ArCRZ are myoexcitatory neuropeptides in starfish, but differences in their expression patterns and pharmacological activities are indicative of distinct physiological roles. This is the first study to investigate the physiological roles of both GnRH-type and CRZ-type neuropeptides in a deuterostome, providing new insights into the evolution and comparative physiology of these paralogous neuropeptide signaling systems in the Bilateria.
Collapse
Affiliation(s)
- Shi Tian
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Michaela Egertová
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Maurice R. Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- *Correspondence: Maurice R. Elphick,
| |
Collapse
|