1
|
Blumenstiel JP, Kingan SB, Garrigan D, Hill T, Vedanayagam J. Nested likelihood-ratio testing of the nonsynonymous:synonymous ratio suggests greater adaptation in the piRNA machinery of Drosophila melanogaster compared with Drosophila ananassae and Drosophila willistoni, two species with higher repeat content. G3 (BETHESDA, MD.) 2025:jkaf017. [PMID: 39982380 DOI: 10.1093/g3journal/jkaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/19/2025] [Indexed: 02/22/2025]
Abstract
Numerous studies have revealed a signature of strong adaptive evolution in the piwi-interacting RNA (piRNA) machinery of Drosophila melanogaster, but the cause of this pattern is not understood. Several hypotheses have been proposed. One hypothesis is that transposable element (TE) families and the piRNA machinery are co-evolving under an evolutionary arms race, perhaps due to antagonism by TEs against the piRNA machinery. A related, though not co-evolutionary, hypothesis is that recurrent TE invasion drives the piRNA machinery to adapt to novel TE strategies. A third hypothesis is that ongoing fluctuation in TE abundance leads to adaptation in the piRNA machinery that must constantly adjust between sensitivity for detecting new elements and specificity to avoid the cost of off-target gene silencing. Rapid evolution of the piRNA machinery may also be driven independently of TEs, and instead from other functions such as the role of piRNAs in suppressing sex-chromosome meiotic drive. We sought to evaluate the impact of TE abundance on adaptive evolution of the piRNA machinery in D. melanogaster and 2 species with higher repeat content-Drosophila ananassae and Drosophila willistoni. This comparison was achieved by employing a likelihood-based hypothesis testing framework based on the McDonald-Kreitman test. We show that we can reject a faster rate of adaptive evolution in the piRNA machinery of these 2 species. We propose that the high rate of adaptation in D. melanogaster is either driven by a recent influx of TEs that have occurred during range expansion or selection on other functions of the piRNA machinery.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Sarah B Kingan
- Pacific Biosciences, Long Read DNA Applications, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | | | - Tom Hill
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
- Axle Informatics, 6116 Executive Blvd, Suite 400, Bethesda, MD 20852, USA
| | - Jeffrey Vedanayagam
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
2
|
Suyama R, Kai T. piRNA processing within non-membrane structures is governed by constituent proteins and their functional motifs. FEBS J 2024. [PMID: 39739617 DOI: 10.1111/febs.17360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/23/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025]
Abstract
Discovered two decades ago, PIWI-interacting RNAs (piRNAs) are crucial for silencing transposable elements (TEs) in animal gonads, thereby protecting the germline genome from harmful transposition, and ensuring species continuity. Silencing of TEs is achieved through transcriptional and post-transcriptional suppression by piRNAs and the PIWI clade of Argonaute proteins within non-membrane structured organelle. These structures are composed of proteins involved in piRNA processing, including PIWIs and other proteins by distinct functional motifs such as the Tudor domain, LOTUS, and intrinsic disordered regions (IDRs). This review highlights recent advances in understanding the roles of these conserved proteins and structural motifs in piRNA biogenesis. We explore the molecular mechanisms of piRNA biogenesis, with a primary focus on Drosophila as a model organism, identifying common themes and species-specific variations. Additionally, we extend the discussion to the roles of these components in nongonadal tissues.
Collapse
Affiliation(s)
- Ritsuko Suyama
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Toshie Kai
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
3
|
Patel MZ, Jiang Y, Kakumani PK. Somatic piRNA and PIWI-mediated post-transcriptional gene regulation in stem cells and disease. Front Cell Dev Biol 2024; 12:1495035. [PMID: 39717847 PMCID: PMC11663942 DOI: 10.3389/fcell.2024.1495035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small non-coding RNAs that bind to the PIWI subclass of the Argonaute protein family and are essential for maintaining germline integrity. Initially discovered in Drosophila, PIWI proteins safeguard piRNAs, forming ribonucleoprotein (RNP) complexes, crucial for regulating gene expression and genome stability, by suppressing transposable elements (TEs). Recent insights revealed that piRNAs and PIWI proteins, known for their roles in germline maintenance, significantly influence mRNA stability, translation and retrotransposon silencing in both stem cells and bodily tissues. In the current review, we explore the multifaceted roles of piRNAs and PIWI proteins in numerous biological contexts, emphasizing their involvement in stem cell maintenance, differentiation, and the development of human diseases. Additionally, we discussed the up-and-coming animal models, beyond the classical fruit fly and earthworm systems, for studying piRNA-PIWIs in self-renewal and cell differentiation. Further, our review offers new insights and discusses the emerging roles of piRNA-dependent and independent functions of PIWI proteins in the soma, especially the mRNA regulation at the post-transcriptional level, governing stem cell characteristics, tumor development, and cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Pavan Kumar Kakumani
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
4
|
Koga Y, Hirakata S, Negishi M, Yamazaki H, Fujisawa T, Siomi MC. Dipteran-specific Daedalus controls Zucchini endonucleolysis in piRNA biogenesis independent of exonucleases. Cell Rep 2024; 43:114923. [PMID: 39487988 DOI: 10.1016/j.celrep.2024.114923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs) protect germline genomes and maintain fertility by repressing transposons. Daedalus and Gasz act together as a mitochondrial scaffold for Armitage, a necessary factor for Zucchini-dependent piRNA processing. However, the mechanism underlying this function remains unclear. Here, we find that the roles of Daedalus and Gasz in this process are distinct, although both are necessary: Daedalus physically interacts with Armitage, whereas Gasz supports Daedalus to maintain its function. Daedalus binds to Armitage through two distinct regions, an extended coiled coil identified in this study and a sterile α motif (SAM). The former tethers Armitage to mitochondria, while the latter controls Zucchini endonucleolysis to define the length of piRNAs in an exonuclease-independent manner. piRNAs produced in the absence of the Daedalus SAM do not exhibit full transposon silencing functionality. Daedalus is Dipteran specific. Unlike Drosophila and mosquitoes, other species, such as mice, rely on exonucleases after Zucchini processing to specify the length of piRNAs.
Collapse
Affiliation(s)
- Yuica Koga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Shigeki Hirakata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Mayu Negishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hiroya Yamazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Tatsuya Fujisawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
5
|
Hashemi M, Khoushab S, Aghmiuni MH, Anaraki SN, Alimohammadi M, Taheriazam A, Farahani N, Entezari M. Non-coding RNAs in oral cancer: Emerging biomarkers and therapeutic frontier. Heliyon 2024; 10:e40096. [PMID: 39583806 PMCID: PMC11582460 DOI: 10.1016/j.heliyon.2024.e40096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Around the world, oral cancer (OC) is a major public health problem, resulting in a significant number of deaths each year. Early detection and treatment are crucial for improving patient outcomes. Recent progress in DNA sequencing and transcriptome profiling has revealed extensive non-coding RNAs (ncRNAs) transcription, underscoring their regulatory importance. NcRNAs influence genomic transcription and translation and molecular signaling pathways, making them valuable for various clinical applications. Combining spatial transcriptomics (ST) and spatial metabolomics (SM) with single-cell RNA sequencing provides deeper insights into tumor microenvironments, enhancing diagnostic and therapeutic precision for OC. Additionally, the exploration of salivary biomarkers offers a non-invasive diagnostic avenue. This article explores the potential of ncRNAs as diagnostic and therapeutic tools for OC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeid Nemati Anaraki
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Operative, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University,Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Li Z, Li Z, Zhang Y, Zhou L, Xu Q, Li L, Zeng L, Xue J, Niu H, Zhong J, Yu Q, Li D, Gui M, Huang Y, Tu S, Zhang Z, Song CQ, Wu J, Shen EZ. Mammalian PIWI-piRNA-target complexes reveal features for broad and efficient target silencing. Nat Struct Mol Biol 2024; 31:1222-1231. [PMID: 38658622 DOI: 10.1038/s41594-024-01287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
The PIWI-interacting RNA (piRNA) pathway is an adaptive defense system wherein piRNAs guide PIWI family Argonaute proteins to recognize and silence ever-evolving selfish genetic elements and ensure genome integrity. Driven by this intensive host-pathogen arms race, the piRNA pathway and its targeted transposons have coevolved rapidly in a species-specific manner, but how the piRNA pathway adapts specifically to target silencing in mammals remains elusive. Here, we show that mouse MILI and human HILI piRNA-induced silencing complexes (piRISCs) bind and cleave targets more efficiently than their invertebrate counterparts from the sponge Ephydatia fluviatilis. The inherent functional differences comport with structural features identified by cryo-EM studies of piRISCs. In the absence of target, MILI and HILI piRISCs adopt a wider nucleic-acid-binding channel and display an extended prearranged piRNA seed as compared with EfPiwi piRISC, consistent with their ability to capture targets more efficiently than EfPiwi piRISC. In the presence of target, the seed gate-which enforces seed-target fidelity in microRNA RISC-adopts a relaxed state in mammalian piRISC, revealing how MILI and HILI tolerate seed-target mismatches to broaden the target spectrum. A vertebrate-specific lysine distorts the piRNA seed, shifting the trajectory of the piRNA-target duplex out of the central cleft and toward the PAZ lobe. Functional analyses reveal that this lysine promotes target binding and cleavage. Our study therefore provides a molecular basis for the piRNA targeting mechanism in mice and humans, and suggests that mammalian piRNA machinery can achieve broad target silencing using a limited supply of piRNA species.
Collapse
Affiliation(s)
- Zhiqing Li
- School of Basic Medical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zhenzhen Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuqi Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lunni Zhou
- School of Basic Medical Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Qikui Xu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lili Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Lin Zeng
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai, China
| | - Junchao Xue
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Huilin Niu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jing Zhong
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Qilu Yu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Dengfeng Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Miao Gui
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of Sciences, Shanghai, China
| | - Shikui Tu
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai, China
| | - Zhao Zhang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Chun-Qing Song
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Jianping Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
| | - En-Zhi Shen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
7
|
McQuarrie DWJ, Alizada A, Nicholson BC, Soller M. Rapid evolution of promoters from germline-specifically expressed genes including transposon silencing factors. BMC Genomics 2024; 25:678. [PMID: 38977960 PMCID: PMC11229233 DOI: 10.1186/s12864-024-10584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The piRNA pathway in animal gonads functions as an 'RNA-based immune system', serving to silence transposable elements and prevent inheritance of novel invaders. In Drosophila, this pathway relies on three gonad-specific Argonaute proteins (Argonaute-3, Aubergine and Piwi) that associate with 23-28 nucleotide piRNAs, directing the silencing of transposon-derived transcripts. Transposons constitute a primary driver of genome evolution, yet the evolution of piRNA pathway factors has not received in-depth exploration. Specifically, channel nuclear pore proteins, which impact piRNA processing, exhibit regions of rapid evolution in their promoters. Consequently, the question arises whether such a mode of evolution is a general feature of transposon silencing pathways. RESULTS By employing genomic analysis of coding and promoter regions within genes that function in transposon silencing in Drosophila, we demonstrate that the promoters of germ cell-specific piRNA factors are undergoing rapid evolution. Our findings indicate that rapid promoter evolution is a common trait among piRNA factors engaged in germline silencing across insect species, potentially contributing to gene expression divergence in closely related taxa. Furthermore, we observe that the promoters of genes exclusively expressed in germ cells generally exhibit rapid evolution, with some divergence in gene expression. CONCLUSION Our results suggest that increased germline promoter evolution, in partnership with other factors, could contribute to transposon silencing and evolution of species through differential expression of genes driven by invading transposons.
Collapse
Affiliation(s)
- David W J McQuarrie
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Azad Alizada
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Benjamin Czech Nicholson
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
8
|
Kotov AA, Adashev VE, Kombarov IA, Bazylev SS, Shatskikh AS, Olenina LV. Molecular Insights into Female Hybrid Sterility in Interspecific Crosses between Drosophila melanogaster and Drosophila simulans. Int J Mol Sci 2024; 25:5681. [PMID: 38891872 PMCID: PMC11172174 DOI: 10.3390/ijms25115681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Species of the genus Drosophila have served as favorite models in speciation studies; however, genetic factors of interspecific reproductive incompatibility are under-investigated. Here, we performed an analysis of hybrid female sterility by crossing Drosophila melanogaster females and Drosophila simulans males. Using transcriptomic data analysis and molecular, cellular, and genetic approaches, we analyzed differential gene expression, transposable element (TE) activity, piRNA biogenesis, and functional defects of oogenesis in hybrids. Premature germline stem cell loss was the most prominent defect of oogenesis in hybrid ovaries. Because of the differential expression of genes encoding piRNA pathway components, rhino and deadlock, the functional RDCmel complex in hybrid ovaries was not assembled. However, the activity of the RDCsim complex was maintained in hybrids independent of the genomic origin of piRNA clusters. Despite the identification of a cohort of overexpressed TEs in hybrid ovaries, we found no evidence that their activity can be considered the main cause of hybrid sterility. We revealed a complicated pattern of Vasa protein expression in the hybrid germline, including partial AT-chX piRNA targeting of the vasasim allele and a significant zygotic delay in vasamel expression. We arrived at the conclusion that the hybrid sterility phenotype was caused by intricate multi-locus differences between the species.
Collapse
Affiliation(s)
- Alexei A. Kotov
- Department of Molecular Mechanisms for Realization of Genetic Information, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (A.A.K.); (V.E.A.); (S.S.B.)
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| | - Vladimir E. Adashev
- Department of Molecular Mechanisms for Realization of Genetic Information, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (A.A.K.); (V.E.A.); (S.S.B.)
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| | - Ilia A. Kombarov
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| | - Sergei S. Bazylev
- Department of Molecular Mechanisms for Realization of Genetic Information, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (A.A.K.); (V.E.A.); (S.S.B.)
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| | - Aleksei S. Shatskikh
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| | - Ludmila V. Olenina
- Department of Molecular Mechanisms for Realization of Genetic Information, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (A.A.K.); (V.E.A.); (S.S.B.)
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (I.A.K.); (A.S.S.)
| |
Collapse
|
9
|
Bence M, Jankovics F, Kristó I, Gyetvai Á, Vértessy BG, Erdélyi M. Direct interaction of Su(var)2-10 via the SIM-binding site of the Piwi protein is required for transposon silencing in Drosophila melanogaster. FEBS J 2024; 291:1759-1779. [PMID: 38308815 DOI: 10.1111/febs.17073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/30/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Nuclear Piwi/Piwi-interacting RNA complexes mediate co-transcriptional silencing of transposable elements by inducing local heterochromatin formation. In Drosophila, sumoylation plays an essential role in the assembly of the silencing complex; however, the molecular mechanism by which the sumoylation machinery is recruited to the transposon loci is poorly understood. Here, we show that the Drosophila E3 SUMO-ligase Su(var)2-10 directly binds to the Piwi protein. This interaction is mediated by the SUMO-interacting motif-like (SIM-like) structure in the C-terminal domain of Su(var)2-10. We demonstrated that the SIM-like structure binds to a special region found in the MID domain of the Piwi protein, the structure of which is highly similar to the SIM-binding pocket of SUMO proteins. Abrogation of the Su(var)2-10-binding surface of the Piwi protein resulted in transposon derepression in the ovary of adult flies. Based on our results, we propose a model in which the Piwi protein initiates local sumoylation in the silencing complex by recruiting Su(var)2-10 to the transposon loci.
Collapse
Affiliation(s)
- Melinda Bence
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ferenc Jankovics
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Medical Biology, University of Szeged, Hungary
| | - Ildikó Kristó
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ákos Gyetvai
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Beáta G Vértessy
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Hungary
- Institute of Enzymology, HUN-REN Research Centre of Natural Sciences, Budapest, Hungary
| | - Miklós Erdélyi
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
10
|
Sarkies P. The curious case of the disappearing piRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1849. [PMID: 38629193 DOI: 10.1002/wrna.1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Small non-coding RNAs are key regulators of gene expression across eukaryotes. Piwi-interacting small RNAs (piRNAs) are a specific type of small non-coding RNAs, conserved across animals, which are best known as regulators of genome stability through their ability to target transposable elements for silencing. Despite the near ubiquitous presence of piRNAs in animal lineages, there are some examples where the piRNA pathway has been lost completely, most dramatically in nematodes where loss has occurred in at least four independent lineages. In this perspective I will provide an evaluation of the presence of piRNAs across animals, explaining how it is known that piRNAs are missing from certain organisms. I will then consider possible explanations for why the piRNA pathway might have been lost and evaluate the evidence in favor of each possible mechanism. While it is still impossible to provide definitive answers, these theories will prompt further investigations into why such a highly conserved pathway can nevertheless become dispensable in certain lineages. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Wang K, Perera BPU, Morgan RK, Sala-Hamrick K, Geron V, Svoboda LK, Faulk C, Dolinoy DC, Sartor MA. piOxi database: a web resource of germline and somatic tissue piRNAs identified by chemical oxidation. Database (Oxford) 2024; 2024:baad096. [PMID: 38204359 PMCID: PMC10782149 DOI: 10.1093/database/baad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that are highly expressed and extensively studied from the germline. piRNAs associate with PIWI proteins to maintain DNA methylation for transposon silencing and transcriptional gene regulation for genomic stability. Mature germline piRNAs have distinct characteristics including a 24- to 32-nucleotide length and a 2'-O-methylation signature at the 3' end. Although recent studies have identified piRNAs in somatic tissues, they remain poorly characterized. For example, we recently demonstrated notable expression of piRNA in the murine soma, and while overall expression was lower than that of the germline, unique characteristics suggested tissue-specific functions of this class. While currently available databases commonly use length and association with PIWI proteins to identify piRNA, few have included a chemical oxidation method that detects piRNA based on its 3' modification. This method leads to reproducible and rigorous data processing when coupled with next-generation sequencing and bioinformatics analysis. Here, we introduce piOxi DB, a user-friendly web resource that provides a comprehensive analysis of piRNA, generated exclusively through sodium periodate treatment of small RNA. The current version of piOxi DB includes 435 749 germline and 9828 somatic piRNA sequences robustly identified from M. musculus, M. fascicularis and H. sapiens. The database provides species- and tissue-specific data that are further analyzed according to chromosome location and correspondence to gene and repetitive elements. piOxi DB is an informative tool to assist broad research applications in the fields of RNA biology, cancer biology, environmental toxicology and beyond. Database URL: https://pioxidb.dcmb.med.umich.edu/.
Collapse
Affiliation(s)
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Kimberley Sala-Hamrick
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Viviana Geron
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Laurie K Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Department of Pharmacology, School of Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Christopher Faulk
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, 1988 Fitch Avenue, Saint Paul, MN 55108, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, 100 Washtenaw Ave, Ann Arbor, MI 48109, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, 100 Washtenaw Ave, Ann Arbor, MI 48109, USA
- Department of Biostatistics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Novel roles of PIWI proteins and PIWI-interacting RNAs in human health and diseases. Cell Commun Signal 2023; 21:343. [PMID: 38031146 PMCID: PMC10685540 DOI: 10.1186/s12964-023-01368-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
13
|
Olotu O, Ahmedani A, Kotaja N. Small Non-Coding RNAs in Male Reproduction. Semin Reprod Med 2023; 41:213-225. [PMID: 38346711 DOI: 10.1055/s-0044-1779726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Male reproductive functions are strictly regulated in order to maintain sperm production and fertility. All processes are controlled by precise regulation of gene expression, which creates specific gene expression programs for different developmental stages and cell types, and forms the functional basis for the reproductive system. Small non-coding RNAs (sncRNAs) are involved in gene regulation by targeting mRNAs for translational repression and degradation through complementary base pairing to recognize their targets. This review article summarizes the current knowledge on the function of different classes of sncRNAs, in particular microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), during male germ cell differentiation, with the focus on sncRNAs expressed in the germline. Although transcriptionally inactive, mature spermatozoa contain a complex population of sncRNAs, and we also discuss the recently identified role of sperm sncRNAs in the intergenerational transmission of epigenetic information on father's environmental and lifestyle exposures to offspring. Finally, we summarize the current information on the utility of sncRNAs as potential biomarkers of infertility that may aid in the diagnosis and prediction of outcomes of medically assisted reproduction.
Collapse
Affiliation(s)
- Opeyemi Olotu
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ammar Ahmedani
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Noora Kotaja
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Iyer SS, Sun Y, Seyfferth J, Manjunath V, Samata M, Alexiadis A, Kulkarni T, Gutierrez N, Georgiev P, Shvedunova M, Akhtar A. The NSL complex is required for piRNA production from telomeric clusters. Life Sci Alliance 2023; 6:e202302194. [PMID: 37399316 PMCID: PMC10313855 DOI: 10.26508/lsa.202302194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
The NSL complex is a transcriptional activator. Germline-specific knockdown of NSL complex subunits NSL1, NSL2, and NSL3 results in reduced piRNA production from a subset of bidirectional piRNA clusters, accompanied by widespread transposon derepression. The piRNAs most transcriptionally affected by NSL2 and NSL1 RNAi map to telomeric piRNA clusters. At the chromatin level, these piRNA clusters also show decreased levels of H3K9me3, HP1a, and Rhino after NSL2 depletion. Using NSL2 ChIP-seq in ovaries, we found that this protein specifically binds promoters of telomeric transposons HeT-A, TAHRE, and TART Germline-specific depletion of NSL2 also led to a reduction in nuclear Piwi in nurse cells. Our findings thereby support a role for the NSL complex in promoting the transcription of piRNA precursors from telomeric piRNA clusters and in regulating Piwi levels in the Drosophila female germline.
Collapse
Affiliation(s)
- Shantanu S Iyer
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Yidan Sun
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Janine Seyfferth
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Vinitha Manjunath
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Maria Samata
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Anastasios Alexiadis
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Tanvi Kulkarni
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Noel Gutierrez
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Plamen Georgiev
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Maria Shvedunova
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
15
|
Chary S, Hayashi R. The absence of core piRNA biogenesis factors does not impact efficient transposon silencing in Drosophila. PLoS Biol 2023; 21:e3002099. [PMID: 37279192 DOI: 10.1371/journal.pbio.3002099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/30/2023] [Indexed: 06/08/2023] Open
Abstract
Organisms require mechanisms to distinguish self and non-self-RNA. This distinction is crucial to initiate the biogenesis of Piwi-interacting RNAs (piRNAs). In Drosophila ovaries, PIWI-guided slicing and the recognition of piRNA precursor transcripts by the DEAD-box RNA helicase Yb are the 2 known mechanisms to licence an RNA for piRNA biogenesis in the germline and the soma, respectively. Both the PIWI proteins and Yb are highly conserved across most Drosophila species and are thought to be essential to the piRNA pathway and for silencing transposons. However, we find that species closely related to Drosophila melanogaster have lost the yb gene, as well as the PIWI gene Ago3. We show that the precursor RNA is still selected in the absence of Yb to abundantly generate transposon antisense piRNAs in the soma. We further demonstrate that Drosophila eugracilis, which lacks Ago3, is completely devoid of ping-pong piRNAs and exclusively produces phased piRNAs in the absence of slicing. Thus, core piRNA pathway genes can be lost in evolution while still maintaining efficient transposon silencing.
Collapse
Affiliation(s)
- Shashank Chary
- John Curtin School of Medical Research, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Rippei Hayashi
- John Curtin School of Medical Research, The Australian National University, Acton, Australian Capital Territory, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
16
|
Srivastav S, Feschotte C, Clark AG. Rapid evolution of piRNA clusters in the Drosophila melanogaster ovary. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539910. [PMID: 37214865 PMCID: PMC10197564 DOI: 10.1101/2023.05.08.539910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Animal genomes are parasitized by a horde of transposable elements (TEs) whose mutagenic activity can have catastrophic consequences. The piRNA pathway is a conserved mechanism to repress TE activity in the germline via a specialized class of small RNAs associated with effector Piwi proteins called piwi-associated RNAs (piRNAs). piRNAs are produced from discrete genomic regions called piRNA clusters (piCs). While piCs are generally enriched for TE sequences and the molecular processes by which they are transcribed and regulated are relatively well understood in Drosophila melanogaster, much less is known about the origin and evolution of piCs in this or any other species. To investigate piC evolution, we use a population genomics approach to compare piC activity and sequence composition across 8 geographically distant strains of D. melanogaster with high quality long-read genome assemblies. We perform extensive annotations of ovary piCs and TE content in each strain and test predictions of two proposed models of piC evolution. The 'de novo' model posits that individual TE insertions can spontaneously attain the status of a small piC to generate piRNAs silencing the entire TE family. The 'trap' model envisions large and evolutionary stable genomic clusters where TEs tend to accumulate and serves as a long-term "memory" of ancient TE invasions and produce a great variety of piRNAs protecting against related TEs entering the genome. It remains unclear which model best describes the evolution of piCs. Our analysis uncovers extensive variation in piC activity across strains and signatures of rapid birth and death of piCs in natural populations. Most TE families inferred to be recently or currently active show an enrichment of strain-specific insertions into large piCs, consistent with the trap model. By contrast, only a small subset of active LTR retrotransposon families is enriched for the formation of strain-specific piCs, suggesting that these families have an inherent proclivity to form de novo piCs. Thus, our findings support aspects of both 'de novo' and 'trap' models of piC evolution. We propose that these two models represent two extreme stages along an evolutionary continuum, which begins with the emergence of piCs de novo from a few specific LTR retrotransposon insertions that subsequently expand by accretion of other TE insertions during evolution to form larger 'trap' clusters. Our study shows that piCs are evolutionarily labile and that TEs themselves are the major force driving the formation and evolution of piCs.
Collapse
Affiliation(s)
- Satyam Srivastav
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, USA
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, USA
| |
Collapse
|
17
|
Yamazaki H, Namba Y, Kuriyama S, Nishida KM, Kajiya A, Siomi MC. Bombyx Vasa sequesters transposon mRNAs in nuage via phase separation requiring RNA binding and self-association. Nat Commun 2023; 14:1942. [PMID: 37029111 PMCID: PMC10081994 DOI: 10.1038/s41467-023-37634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Bombyx Vasa (BmVasa) assembles non-membranous organelle, nuage or Vasa bodies, in germ cells, known as the center for Siwi-dependent transposon silencing and concomitant Ago3-piRISC biogenesis. However, details of the body assembly remain unclear. Here, we show that the N-terminal intrinsically disordered region (N-IDR) and RNA helicase domain of BmVasa are responsible for self-association and RNA binding, respectively, but N-IDR is also required for full RNA-binding activity. Both domains are essential for Vasa body assembly in vivo and droplet formation in vitro via phase separation. FAST-iCLIP reveals that BmVasa preferentially binds transposon mRNAs. Loss of Siwi function derepresses transposons but has marginal effects on BmVasa-RNA binding. This study shows that BmVasa assembles nuage by phase separation via its ability to self-associate and bind newly exported transposon mRNAs. This unique property of BmVasa allows transposon mRNAs to be sequestered and enriched in nuage, resulting in effective Siwi-dependent transposon repression and Ago3-piRISC biogenesis.
Collapse
Affiliation(s)
- Hiroya Yamazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yurika Namba
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Shogo Kuriyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Kazumichi M Nishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Asako Kajiya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan.
| |
Collapse
|
18
|
Santos D, Feng M, Kolliopoulou A, Taning CNT, Sun J, Swevers L. What Are the Functional Roles of Piwi Proteins and piRNAs in Insects? INSECTS 2023; 14:insects14020187. [PMID: 36835756 PMCID: PMC9962485 DOI: 10.3390/insects14020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/01/2023]
Abstract
Research on Piwi proteins and piRNAs in insects has focused on three experimental models: oogenesis and spermatogenesis in Drosophila melanogaster, the antiviral response in Aedes mosquitoes and the molecular analysis of primary and secondary piRNA biogenesis in Bombyx mori-derived BmN4 cells. Significant unique and complementary information has been acquired and has led to a greater appreciation of the complexity of piRNA biogenesis and Piwi protein function. Studies performed in other insect species are emerging and promise to add to the current state of the art on the roles of piRNAs and Piwi proteins. Although the primary role of the piRNA pathway is genome defense against transposons, particularly in the germline, recent findings also indicate an expansion of its functions. In this review, an extensive overview is presented of the knowledge of the piRNA pathway that so far has accumulated in insects. Following a presentation of the three major models, data from other insects were also discussed. Finally, the mechanisms for the expansion of the function of the piRNA pathway from transposon control to gene regulation were considered.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
19
|
Horjales S, Li Calzi M, Francia ME, Cayota A, Garcia-Silva MR. piRNA pathway evolution beyond gonad context: Perspectives from apicomplexa and trypanosomatids. Front Genet 2023; 14:1129194. [PMID: 36816026 PMCID: PMC9935688 DOI: 10.3389/fgene.2023.1129194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
piRNAs function as genome defense mechanisms against transposable elements insertions within germ line cells. Recent studies have unraveled that piRNA pathways are not limited to germ cells as initially reckoned, but are instead also found in non-gonadal somatic contexts. Moreover, these pathways have also been reported in bacteria, mollusks and arthropods, associated with safeguard of genomes against transposable elements, regulation of gene expression and with direct consequences in axon regeneration and memory formation. In this Perspective we draw attention to early branching parasitic protozoa, whose genome preservation is an essential function as in late eukaryotes. However, little is known about the defense mechanisms of these genomes. We and others have described the presence of putative PIWI-related machinery members in protozoan parasites. We have described the presence of a PIWI-like protein in Trypanosoma cruzi, bound to small non-coding RNAs (sRNAs) as cargo of secreted extracellular vesicles relevant in intercellular communication and host infection. Herein, we put forward the presence of members related to Argonaute pathways in both Trypanosoma cruzi and Toxoplasma gondii. The presence of PIWI-like machinery in Trypansomatids and Apicomplexa, respectively, could be evidence of an ancestral piRNA machinery that evolved to become more sophisticated and complex in multicellular eukaryotes. We propose a model in which ancient PIWI proteins were expressed broadly and had functions independent of germline maintenance. A better understanding of current and ancestral PIWI/piRNAs will be relevant to better understand key mechanisms of genome integrity conservation during cell cycle progression and modulation of host defense mechanisms by protozoan parasites.
Collapse
Affiliation(s)
- S. Horjales
- Apicomplexa Biology Laboratory, Institute Pasteur Montevideo, Montevideo, Uruguay
| | - M Li Calzi
- Functional Genomics Laboratory, Institute Pasteur Montevideo, Montevideo, Uruguay
| | - M. E. Francia
- Apicomplexa Biology Laboratory, Institute Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - A. Cayota
- Functional Genomics Laboratory, Institute Pasteur Montevideo, Montevideo, Uruguay
- Departmento Basico de Medicina, Facultad de Medicina, Hospital de Clinicas, Universidad de la República, Montevideo, Uruguay
| | - M. R. Garcia-Silva
- Functional Genomics Laboratory, Institute Pasteur Montevideo, Montevideo, Uruguay
| |
Collapse
|
20
|
Wang J, Yuan L, Tang J, Liu J, Sun C, Itgen MW, Chen G, Sessions SK, Zhang G, Mueller RL. Transposable element and host silencing activity in gigantic genomes. Front Cell Dev Biol 2023; 11:1124374. [PMID: 36910142 PMCID: PMC9998948 DOI: 10.3389/fcell.2023.1124374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Transposable elements (TEs) and the silencing machinery of their hosts are engaged in a germline arms-race dynamic that shapes TE accumulation and, therefore, genome size. In animal species with extremely large genomes (>10 Gb), TE accumulation has been pushed to the extreme, prompting the question of whether TE silencing also deviates from typical conditions. To address this question, we characterize TE silencing via two pathways-the piRNA pathway and KRAB-ZFP transcriptional repression-in the male and female gonads of Ranodon sibiricus, a salamander species with a ∼21 Gb genome. We quantify 1) genomic TE diversity, 2) TE expression, and 3) small RNA expression and find a significant relationship between the expression of piRNAs and TEs they target for silencing in both ovaries and testes. We also quantified TE silencing pathway gene expression in R. sibiricus and 14 other vertebrates with genome sizes ranging from 1 to 130 Gb and find no association between pathway expression and genome size. Taken together, our results reveal that the gigantic R. sibiricus genome includes at least 19 putatively active TE superfamilies, all of which are targeted by the piRNA pathway in proportion to their expression levels, suggesting comprehensive piRNA-mediated silencing. Testes have higher TE expression than ovaries, suggesting that they may contribute more to the species' high genomic TE load. We posit that apparently conflicting interpretations of TE silencing and genomic gigantism in the literature, as well as the absence of a correlation between TE silencing pathway gene expression and genome size, can be reconciled by considering whether the TE community or the host is currently "on the attack" in the arms race dynamic.
Collapse
Affiliation(s)
- Jie Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Liang Yuan
- School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Jiaxing Tang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China.,College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Jiongyu Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Michael W Itgen
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Guiying Chen
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | | | - Guangpu Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China.,College of Life Sciences, Sichuan Normal University, Chengdu, China
| | | |
Collapse
|
21
|
Sato K, Takayama KI, Inoue S. Role of piRNA biogenesis and its neuronal function in the development of neurodegenerative diseases. Front Aging Neurosci 2023; 15:1157818. [PMID: 37207075 PMCID: PMC10191213 DOI: 10.3389/fnagi.2023.1157818] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are caused by neuronal loss and dysfunction. Despite remarkable improvements in our understanding of these pathogeneses, serious worldwide problems with significant public health burdens are remained. Therefore, new efficient diagnostic and therapeutic strategies are urgently required. PIWI-interacting RNAs (piRNAs) are a major class of small non-coding RNAs that silence gene expression through transcriptional and post-transcriptional processes. Recent studies have demonstrated that piRNAs, originally found in the germ line, are also produced in non-gonadal somatic cells, including neurons, and further revealed the emerging roles of piRNAs, including their roles in neurodevelopment, aging, and neurodegenerative diseases. In this review, we aimed to summarize the current knowledge regarding the piRNA roles in the pathophysiology of neurodegenerative diseases. In this context, we first reviewed on recent updates on neuronal piRNA functions, including biogenesis, axon regeneration, behavior, and memory formation, in humans and mice. We also discuss the aberrant expression and dysregulation of neuronal piRNAs in neurodegenerative diseases, such as AD, PD, and ALS. Moreover, we review pioneering preclinical studies on piRNAs as biomarkers and therapeutic targets. Elucidation of the mechanisms underlying piRNA biogenesis and their functions in the brain would provide new perspectives for the clinical diagnosis and treatment of AD and various neurodegenerative diseases.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
- Integrated Research Initiative for Living Well with Dementia (IRIDE), Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
| | - Ken-ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
- *Correspondence: Satoshi Inoue,
| |
Collapse
|
22
|
Wang W, Liu J, Mishra B, Mukhtar MS, McDowell JM. Sparking a sulfur war between plants and pathogens. TRENDS IN PLANT SCIENCE 2022; 27:1253-1265. [PMID: 36028431 DOI: 10.1016/j.tplants.2022.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/03/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The biochemical versatility of sulfur (S) lends itself to myriad roles in plant-pathogen interactions. This review evaluates the current understanding of mechanisms by which pathogens acquire S from their plant hosts and highlights new evidence that plants can limit S availability during the immune responses. We discuss the discovery of host disease-susceptibility genes related to S that can be genetically manipulated to create new crop resistance. Finally, we summarize future research challenges and propose a research agenda that leverages systems biology approaches for a holistic understanding of this important element's diverse roles in plant disease resistance and susceptibility.
Collapse
Affiliation(s)
- Wei Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jinbao Liu
- Department of Biology, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - Bharat Mishra
- Department of Biology, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
23
|
Abstract
Small RNAs are ubiquitous regulators of gene expression that participate in nearly all aspects of physiology in a wide range of organisms. There are many different classes of eukaryotic small RNAs that play regulatory roles at every level of gene expression, including transcription, RNA stability, and translation. While eukaryotic small RNAs display diverse functions across and within classes, they are generally grouped functionally based on the machinery required for their biogenesis, the effector proteins they associate with, and their molecular characteristics. The development of techniques to clone and sequence small RNAs has been critical for their identification, yet the ligation-dependent addition of RNA adapters and the use of reverse transcriptase to generate cDNA in traditional library preparation protocols can be unsuitable to detect certain small RNA subtypes. In particular, 3' or 5' chemical modifications that are characteristic of specific types of small RNAs can impede the ligation-dependent addition of RNA adapters, while internal RNA modifications can interfere with accurate reverse transcription. The inability to clone certain small RNA subtypes with traditional protocols results in an inaccurate assessment of small RNA abundance and diversity, where some RNAs appear over-represented and others are not detected. This overview aims to guide users on how to design small RNA cloning workflows in eukaryotes to more accurately capture specific small RNAs of interest. Hence, we discuss the molecular biology underlying the identification and quantitation of small RNAs, explore the limitations of commonly used protocols, and detail the alternative approaches that can be used to enrich specific small RNA classes. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Olivia J Crocker
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Natalie A Trigg
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Colin C Conine
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Unraveling mitochondrial piRNAs in mouse embryonic gonadal cells. Sci Rep 2022; 12:10730. [PMID: 35750721 PMCID: PMC9232517 DOI: 10.1038/s41598-022-14414-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Although mitochondria are widely studied organelles, the recent interest in the role of mitochondrial small noncoding RNAs (sncRNAs), miRNAs, and more recently, piRNAs, is providing new functional perspectives in germ cell development and differentiation. piRNAs (PIWI-interacting RNAs) are single-stranded sncRNAs of mostly about 20-35 nucleotides, generated from the processing of pre-piRNAs. We leverage next-generation sequencing data obtained from mouse primordial germ cells and somatic cells purified from early-differentiating embryonic ovaries and testis from 11.5 to 13.5 days postcoitum. Using bioinformatic tools, we elucidate (i) the origins of piRNAs as transcribed from mitochondrial DNA fragments inserted in the nucleus or from the mitochondrial genome; (ii) their levels of expression; and (iii) their potential roles, as well as their association with genomic regions encoding other sncRNAs (such as tRNAs and rRNAs) and the mitochondrial regulatory region (D-loop). Finally, our results suggest how nucleo-mitochondrial communication, both anterograde and retrograde signaling, may be mediated by mitochondria-associated piRNAs.
Collapse
|
25
|
Davis MB, Jash E, Chawla B, Haines RA, Tushman LE, Troll R, Csankovszki G. Dual roles for nuclear RNAi Argonautes in Caenorhabditis elegans dosage compensation. Genetics 2022; 221:iyac033. [PMID: 35234908 PMCID: PMC9071528 DOI: 10.1093/genetics/iyac033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 11/14/2022] Open
Abstract
Dosage compensation involves chromosome-wide gene regulatory mechanisms which impact higher order chromatin structure and are crucial for organismal health. Using a genetic approach, we identified Argonaute genes which promote dosage compensation in Caenorhabditis elegans. Dosage compensation in C. elegans hermaphrodites is initiated by the silencing of xol-1 and subsequent activation of the dosage compensation complex which binds to both hermaphrodite X chromosomes and reduces transcriptional output by half. A hallmark phenotype of dosage compensation mutants is decondensation of the X chromosomes. We characterized this phenotype in Argonaute mutants using X chromosome paint probes and fluorescence microscopy. We found that while nuclear Argonaute mutants hrde-1 and nrde-3, as well as mutants for the piRNA Argonaute prg-1, exhibit derepression of xol-1 transcripts, they also affect X chromosome condensation in a xol-1-independent manner. We also characterized the physiological contribution of Argonaute genes to dosage compensation using genetic assays and found that hrde-1 and nrde-3 contribute to healthy dosage compensation both upstream and downstream of xol-1.
Collapse
Affiliation(s)
- Michael B Davis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eshna Jash
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bahaar Chawla
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca A Haines
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lillian E Tushman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan Troll
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Wei KHC, Mai D, Chatla K, Bachtrog D. Dynamics and Impacts of Transposable Element Proliferation in the Drosophila nasuta Species Group Radiation. Mol Biol Evol 2022; 39:msac080. [PMID: 35485457 PMCID: PMC9075770 DOI: 10.1093/molbev/msac080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transposable element (TE) mobilization is a constant threat to genome integrity. Eukaryotic organisms have evolved robust defensive mechanisms to suppress their activity, yet TEs can escape suppression and proliferate, creating strong selective pressure for host defense to adapt. This genomic conflict fuels a never-ending arms race that drives the rapid evolution of TEs and recurrent positive selection of genes involved in host defense; the latter has been shown to contribute to postzygotic hybrid incompatibility. However, how TE proliferation impacts genome and regulatory divergence remains poorly understood. Here, we report the highly complete and contiguous (N50 = 33.8-38.0 Mb) genome assemblies of seven closely related Drosophila species that belong to the nasuta species group-a poorly studied group of flies that radiated in the last 2 My. We constructed a high-quality de novo TE library and gathered germline RNA-seq data, which allowed us to comprehensively annotate and compare TE insertion patterns between the species, and infer the evolutionary forces controlling their spread. We find a strong negative association between TE insertion frequency and expression of genes nearby; this likely reflects survivor bias from reduced fitness impact of TEs inserting near lowly expressed, nonessential genes, with limited TE-induced epigenetic silencing. Phylogenetic analyses of insertions of 147 TE families reveal that 53% of them show recent amplification in at least one species. The most highly amplified TE is a nonautonomous DNA element (Drosophila INterspersed Element; DINE) which has gone through multiple bouts of expansions with thousands of full-length copies littered throughout each genome. Across all TEs, we find that TEs expansions are significantly associated with high expression in the expanded species consistent with suppression escape. Thus, whereas horizontal transfer followed by the invasion of a naïve genome has been highlighted to explain the long-term survival of TEs, our analysis suggests that evasion of host suppression of resident TEs is a major strategy to persist over evolutionary times. Altogether, our results shed light on the heterogenous and context-dependent nature in which TEs affect gene regulation and the dynamics of rampant TE proliferation amidst a recently radiated species group.
Collapse
Affiliation(s)
- Kevin H.-C. Wei
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Dat Mai
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Kamalakar Chatla
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
27
|
Almeida MV, Vernaz G, Putman AL, Miska EA. Taming transposable elements in vertebrates: from epigenetic silencing to domestication. Trends Genet 2022; 38:529-553. [DOI: 10.1016/j.tig.2022.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022]
|
28
|
McEnany J, Meir Y, Wingreen NS. piRNAs of Caenorhabditis elegans broadly silence nonself sequences through functionally random targeting. Nucleic Acids Res 2022; 50:1416-1429. [PMID: 35037068 PMCID: PMC8860604 DOI: 10.1093/nar/gkab1290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/07/2021] [Accepted: 12/18/2021] [Indexed: 01/22/2023] Open
Abstract
Small noncoding RNAs such as piRNAs are guides for Argonaute proteins, enabling sequence-specific, post-transcriptional regulation of gene expression. The piRNAs of Caenorhabditis elegans have been observed to bind targets with high mismatch tolerance and appear to lack specific transposon targets, unlike piRNAs in Drosophila melanogaster and other organisms. These observations support a model in which C. elegans piRNAs provide a broad, indiscriminate net of silencing, competing with siRNAs associated with the CSR-1 Argonaute that specifically protect self-genes from silencing. However, the breadth of piRNA targeting has not been subject to in-depth quantitative analysis, nor has it been explained how piRNAs are distributed across sequence space to achieve complete coverage. Through a bioinformatic analysis of piRNA sequences, incorporating an original data-based metric of piRNA-target distance, we demonstrate that C. elegans piRNAs are functionally random, in that their coverage of sequence space is comparable to that of random sequences. By possessing a sufficient number of distinct, essentially random piRNAs, C. elegans is able to target arbitrary nonself sequences with high probability. We extend this approach to a selection of other nematodes, finding results which elucidate the mechanism by which nonself mRNAs are silenced, and have implications for piRNA evolution and biogenesis.
Collapse
Affiliation(s)
- John McEnany
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Yigal Meir
- Department of Physics, Ben-Gurion University, Be’er Sheva, 84105, Israel
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
29
|
Liu Z, Liu S, Guo S, Lu W, Zhang Q, Cheng J. Evolutionary dynamics and conserved function of the Tudor domain-containing (TDRD) proteins in teleost fish. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:18-30. [PMID: 37073353 PMCID: PMC10077171 DOI: 10.1007/s42995-021-00118-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
Tudor domain-containing (TDRD) proteins, the germline enriched protein family, play essential roles in the process of gametogenesis and genome stability through their interaction with the PIWI-interacting RNA (piRNA) pathway. Several studies have suggested the rapid evolution of the piRNA pathway in teleost lineages with striking reproductive diversity. However, there is still limited information about the function and evolution of Tdrd genes in teleost species. In this study, through genome wide screening, 13 Tdrd family genes were identified in economically important aquaculture fish, including spotted sea bass (Lateolabrax maculatus), Asian sea bass (Lates calcarifer), and tongue sole (Cynoglossus semilaevis). With copy number, structure, phylogeny, and synteny analysis, duplication of Tdrd6 and Tdrd7, as well as loss of Stk31 and Tdrd10, were characterized in teleost lineages. Codon based molecular evolution analysis indicated faster evolution of teleost Tdrd genes than that in mammals, potentially associated with the accelerated evolution of the piRNA pathway in teleost lineages. The evolutionary diversity of Tdrd genes was also detected between different teleost lineages. RNA-seq analysis showed that most teleost Tdrd genes were dominantly expressed in gonads, particularly highly expressed in testis, such as Tdrd6, Tdrd7a, Tdrd9, Ecat8, and Tdrd15. The varied expression and evolutionary pattern between the duplicated Tdrd6 and Tdrd7 in teleosts may indicate their functional diversification. All these results suggest a conserved function of teleost Tdrd family in gametogenesis and the piRNA pathway, which could lay a foundation for the evolution of Tdrd genes and be helpful for further deciphering of Tdrd functions in teleosts. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00118-7.
Collapse
Affiliation(s)
- Zeyu Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Saisai Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Shiyang Guo
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000 China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000 China
| |
Collapse
|
30
|
Hanusek K, Poletajew S, Kryst P, Piekiełko-Witkowska A, Bogusławska J. piRNAs and PIWI Proteins as Diagnostic and Prognostic Markers of Genitourinary Cancers. Biomolecules 2022; 12:biom12020186. [PMID: 35204687 PMCID: PMC8869487 DOI: 10.3390/biom12020186] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
piRNAs (PIWI-interacting RNAs) are small non-coding RNAs capable of regulation of transposon and gene expression. piRNAs utilise multiple mechanisms to affect gene expression, which makes them potentially more powerful regulators than microRNAs. The mechanisms by which piRNAs regulate transposon and gene expression include DNA methylation, histone modifications, and mRNA degradation. Genitourinary cancers (GC) are a large group of neoplasms that differ by their incidence, clinical course, biology, and prognosis for patients. Regardless of the GC type, metastatic disease remains a key therapeutic challenge, largely affecting patients’ survival rates. Recent studies indicate that piRNAs could serve as potentially useful biomarkers allowing for early cancer detection and therapeutic interventions at the stage of non-advanced tumour, improving patient’s outcomes. Furthermore, studies in prostate cancer show that piRNAs contribute to cancer progression by affecting key oncogenic pathways such as PI3K/AKT. Here, we discuss recent findings on biogenesis, mechanisms of action and the role of piRNAs and the associated PIWI proteins in GC. We also present tools that may be useful for studies on the functioning of piRNAs in cancers.
Collapse
Affiliation(s)
- Karolina Hanusek
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
| | - Sławomir Poletajew
- Centre of Postgraduate Medical Education, II Department of Urology, 01-813 Warsaw, Poland; (S.P.); (P.K.)
| | - Piotr Kryst
- Centre of Postgraduate Medical Education, II Department of Urology, 01-813 Warsaw, Poland; (S.P.); (P.K.)
| | - Agnieszka Piekiełko-Witkowska
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
- Correspondence: (A.P.-W.); (J.B.)
| | - Joanna Bogusławska
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
- Correspondence: (A.P.-W.); (J.B.)
| |
Collapse
|
31
|
Shining Light on the Dark Side of the Genome. Cells 2022; 11:cells11030330. [PMID: 35159140 PMCID: PMC8834555 DOI: 10.3390/cells11030330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Heterochromatin has historically been considered the dark side of the genome. In part, this reputation derives from its concentration near centromeres and telomeres, regions of the genome repressive to nuclear functions such as DNA replication and transcription. The repetitive nature of heterochromatic DNA has only added to its “darkness”, as sequencing of these DNA regions has been only recently achieved. Despite such obstacles, research on heterochromatin blossomed over the past decades. Success in this area benefitted from efforts of Sergio Pimpinelli and colleagues who made landmark discoveries and promoted the growth of an international community of researchers. They discovered complexities of heterochromatin, demonstrating that a key component, Heterochromatin Protein 1a (HP1a), uses multiple mechanisms to associate with chromosomes and has positive and negative effects on gene expression, depending on the chromosome context. In addition, they updated the work of Carl Waddington using molecular tools that revealed how environmental stress promotes genome change due to transposable element movement. Collectively, their research and that of many others in the field have shined a bright light on the dark side of the genome and helped reveal many mysteries of heterochromatin.
Collapse
|
32
|
Wang H, Liu J, Gao J, Yan W, Rehan VK. Perinatal Exposure to Nicotine Alters Sperm RNA Profiles in Rats. Front Endocrinol (Lausanne) 2022; 13:893863. [PMID: 35600600 PMCID: PMC9114732 DOI: 10.3389/fendo.2022.893863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 01/31/2023] Open
Abstract
Perinatal exposure to smoking has been associated with childhood asthma, one of the most common pediatric conditions affecting millions of children globally. Of great interest, this disease phenotype appears heritable as it can persist across multiple generations even in the absence of persistent exposure to smoking in subsequent generations. Although the molecular mechanisms underlying childhood asthma induced by perinatal exposure to smoking or nicotine remain elusive, an epigenetic mechanism has been proposed, which is supported by the data from our earlier analyses on germline DNA methylation (5mC) and histone marks (H3 and H4 acetylation). To further investigate the potential epigenetic inheritance of childhood asthma induced by perinatal nicotine exposure, we profiled both large and small RNAs in the sperm of F1 male rats. Our data revealed that perinatal exposure to nicotine leads to alterations in the profiles of sperm-borne RNAs, including mRNAs and small RNAs, and that rosiglitazone, a PPARγ agonist, can attenuate the effect of nicotine and reverse the sperm-borne RNA profiles of F1 male rats to close to placebo control levels.
Collapse
Affiliation(s)
- Hetan Wang
- Department of Medical Genetics, China Medical University, Shenyang, China
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jie Liu
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jianjun Gao
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan, ; Virender K. Rehan,
| | - Virender K. Rehan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan, ; Virender K. Rehan,
| |
Collapse
|
33
|
Lawlor MA, Cao W, Ellison CE. A transposon expression burst accompanies the activation of Y-chromosome fertility genes during Drosophila spermatogenesis. Nat Commun 2021; 12:6854. [PMID: 34824217 PMCID: PMC8617248 DOI: 10.1038/s41467-021-27136-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/04/2021] [Indexed: 11/09/2022] Open
Abstract
Transposable elements (TEs) must replicate in germline cells to pass novel insertions to offspring. In Drosophila melanogaster ovaries, TEs can exploit specific developmental windows of opportunity to evade host silencing and increase their copy numbers. However, TE activity and host silencing in the distinct cell types of Drosophila testis are not well understood. Here, we reanalyze publicly available single-cell RNA-seq datasets to quantify TE expression in the distinct cell types of the Drosophila testis. We develop a method for identification of TE and host gene expression modules and find that a distinct population of early spermatocytes expresses a large number of TEs at much higher levels than other germline and somatic components of the testes. This burst of TE expression coincides with the activation of Y chromosome fertility factors and spermatocyte-specific transcriptional regulators, as well as downregulation of many components of the piRNA pathway. The TEs expressed by this cell population are specifically enriched on the Y chromosome and depleted on the X chromosome, relative to other active TEs. These data suggest that some TEs may achieve high insertional activity in males by exploiting a window of opportunity for mobilization created by the activation of spermatocyte-specific and Y chromosome-specific transcriptional programs.
Collapse
Affiliation(s)
- Matthew A Lawlor
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Weihuan Cao
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Christopher E Ellison
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
34
|
Genzor P, Konstantinidou P, Stoyko D, Manzourolajdad A, Marlin Andrews C, Elchert AR, Stathopoulos C, Haase AD. Cellular abundance shapes function in piRNA-guided genome defense. Genome Res 2021; 31:2058-2068. [PMID: 34667116 PMCID: PMC8559710 DOI: 10.1101/gr.275478.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022]
Abstract
Defense against genome invaders universally relies on RNA-guided immunity. Prokaryotic CRISPR-Cas and eukaryotic RNA interference pathways recognize targets by complementary base-pairing, which places the sequences of their guide RNAs at the center of self/nonself discrimination. Here, we explore the sequence space of PIWI-interacting RNAs (piRNAs), the genome defense of animals, and establish functional priority among individual sequences. Our results reveal that only the topmost abundant piRNAs are commonly present in every cell, whereas rare sequences generate cell-to-cell diversity in flies and mice. We identify a skewed distribution of sequence abundance as a hallmark of piRNA populations and show that quantitative differences of more than a 1000-fold are established by conserved mechanisms of biogenesis. Finally, our genomics analyses and direct reporter assays reveal that abundance determines function in piRNA-guided genome defense. Taken together, we identify an effective sequence space and untangle two classes of piRNAs that differ in complexity and function. The first class represents the topmost abundant sequences and drives silencing of genomic parasites. The second class sparsely covers an enormous sequence space. These rare piRNAs cannot function in every cell, every individual, or every generation but create diversity with potential for adaptation in the ongoing arms race with genome invaders.
Collapse
Affiliation(s)
- Pavol Genzor
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Parthena Konstantinidou
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Daniel Stoyko
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Amirhossein Manzourolajdad
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Celine Marlin Andrews
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexandra R Elchert
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | - Astrid D Haase
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
35
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
36
|
Drews F, Karunanithi S, Götz U, Marker S, deWijn R, Pirritano M, Rodrigues-Viana AM, Jung M, Gasparoni G, Schulz MH, Simon M. Two Piwis with Ago-like functions silence somatic genes at the chromatin level. RNA Biol 2021; 18:757-769. [PMID: 34663180 DOI: 10.1080/15476286.2021.1991114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Most sRNA biogenesis mechanisms involve either RNAse III cleavage or ping-pong amplification by different Piwi proteins harbouring slicer activity. Here, we follow the question why the mechanism of transgene-induced silencing in the ciliate Paramecium needs both Dicer activity and two Ptiwi proteins. This pathway involves primary siRNAs produced from non-translatable transgenes and secondary siRNAs from targeted endogenous loci. Our data does not indicate any signatures from ping-pong amplification but Dicer cleavage of long dsRNA. Ptiwi13 and 14 prefer different sub-cellular localizations and different preferences for primary and secondary siRNAs but do not load them mutually exclusive. Both Piwis enrich for antisense RNAs and show a general preference for uridine-rich sRNAs along the entire sRNA length. In addition, Ptiwi14-loaded siRNAs show a 5´-U signature. Our data indicates both Ptiwis and 2´-O-methylation contributing to strand selection of Dicer cleaved siRNAs. This unexpected function of the two distinct vegetative Piwis extends the increasing knowledge of the diversity of Piwi functions in diverse silencing pathways. We describe an unusual mode of action of Piwi proteins extending not only the great variety of Piwi-associated RNAi pathways but moreover raising the question whether this could have been the primordial one.
Collapse
Affiliation(s)
- Franziska Drews
- Molecular Cell Biology and Microbiology, Wuppertal University, Wuppertal, Germany.,Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, Saarbrücken, Germany
| | - Sivarajan Karunanithi
- Cluster of Excellence, Multimodal Computing and Interaction, Saarland University and Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.,Institute for Cardiovascular Regeneration, Goethe-University Hospital, Frankfurt, Germany
| | - Ulrike Götz
- Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, Saarbrücken, Germany
| | - Simone Marker
- Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, Saarbrücken, Germany
| | - Raphael deWijn
- Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, Saarbrücken, Germany
| | - Marcello Pirritano
- Molecular Cell Biology and Microbiology, Wuppertal University, Wuppertal, Germany.,Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, Saarbrücken, Germany
| | - Angela M Rodrigues-Viana
- Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, Saarbrücken, Germany
| | - Martin Jung
- School of Medicine, Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Gilles Gasparoni
- Genetics/Epigenetics, Centre for Human and Molecular Biology, Saarland University, Saarbrücken, Germany
| | - Marcel H Schulz
- Cluster of Excellence, Multimodal Computing and Interaction, Saarland University and Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.,Institute for Cardiovascular Regeneration, Goethe-University Hospital, Frankfurt, Germany
| | - Martin Simon
- Molecular Cell Biology and Microbiology, Wuppertal University, Wuppertal, Germany.,Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
37
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|
38
|
Zhang G, Yu T, Parhad SS, Ho S, Weng Z, Theurkauf WE. piRNA-independent transposon silencing by the Drosophila THO complex. Dev Cell 2021; 56:2623-2635.e5. [PMID: 34547226 DOI: 10.1016/j.devcel.2021.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/18/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
piRNAs guide Piwi/Panoramix-dependent H3K9me3 chromatin modification and transposon silencing during Drosophila germline development. The THO RNA export complex is composed of Hpr1, Tho2, and Thoc5-7. Null thoc7 mutations, which displace Thoc5 and Thoc6 from a Tho2-Hpr1 subcomplex, reduce expression of a subset of germline piRNAs and increase transposon expression, suggesting that THO silences transposons by promoting piRNA biogenesis. Here, we show that the thoc7-null mutant combination increases transposon transcription but does not reduce anti-sense piRNAs targeting half of the transcriptionally activated transposon families. These mutations also fail to reduce piRNA-guided H3K9me3 chromatin modification or block Panoramix-dependent silencing of a reporter transgene, and unspliced transposon transcripts co-precipitate with THO through a Piwi- and Panoramix-independent mechanism. Mutations in piwi also dominantly enhance germline defects associated with thoc7-null alleles. THO thus functions in a piRNA-independent transposon-silencing pathway, which acts cooperatively with Piwi to support germline development.
Collapse
Affiliation(s)
- Gen Zhang
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA; Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Swapnil S Parhad
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Samantha Ho
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
39
|
Zhou Y, Fang Y, Dai C, Wang Y. PiRNA pathway in the cardiovascular system: a novel regulator of cardiac differentiation, repair and regeneration. J Mol Med (Berl) 2021; 99:1681-1690. [PMID: 34533602 DOI: 10.1007/s00109-021-02132-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 07/18/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are a novel group of small non-coding RNA molecules with lengths of 21-35 nucleotides, first identified from the germline. PiRNAs and their associated PIWI clade Argonaute proteins constitute a key part of the piRNA pathway, with the best-known biological function to silence transposable elements in germ cells. The piRNA pathway, in fact, is not exclusive to the germline. Somatic functions of piRNAs have been recorded since their first discovery. To date, involvement of the piRNA pathway has been identified within the biological functions of genome rearrangement, epigenetic regulation, protein regulation in the germline and/or the soma transcriptionally or post-transcriptionally. Emerging evidence has shown that the piRNA pathway is essential for the normal function of the cardiovascular system and that its abnormal expression is correlated with cardiovascular dysfunction, although comprehensive roles of the piRNA pathway in the cardiovascular system and underlying mechanisms remain unclear. In this review, we discuss current findings of piRNA pathway expression in cardiac cell types and their potential functions in cardiac differentiation, repair and regeneration, thus providing new insights into cardiovascular disease development associated with the piRNA pathway.
Collapse
Affiliation(s)
- Yuling Zhou
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital Xiamen University, Xiamen, China
- The School of Economics, Xiamen University, Xiamen, China
| | - Ya Fang
- School of Public Health, Key Laboratory of Health Technology Assessment of Fujian Province University, Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian, China
| | - Cuilian Dai
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital Xiamen University, Xiamen, China
| | - Yan Wang
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital Xiamen University, Xiamen, China.
| |
Collapse
|
40
|
Lite C, Sridhar VV, Sriram S, Juliet M, Arshad A, Arockiaraj J. Functional role of piRNAs in animal models and its prospects in aquaculture. REVIEWS IN AQUACULTURE 2021; 13:2038-2052. [DOI: 10.1111/raq.12557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/01/2021] [Indexed: 10/16/2023]
Abstract
AbstractThe recent advances in the field of aquaculture over the last decade has helped the cultured‐fish industry production sector to identify problems and choose the best approaches to achieve high‐volume production. Understanding the emerging roles of non‐coding RNA (ncRNA) in the regulation of fish physiology and health will assist in gaining knowledge on the possible applications of ncRNAs for the advancement of aquaculture. There is information available on the practical considerations of epigenetic mechanisms like DNA methylation, histone modification and ncRNAs, such as microRNA in aquaculture, for both fish and shellfish. Among the non‐coding RNAs, PIWI‐interacting RNA (piRNA) is 24–31 bp long transcripts, which is primarily involved in silencing the germline transposons. Besides, the burgeoning reports and studies establish piRNAs' role in various aspects of biology. Till date, there are no reviews that summarize the recent findings available on piRNAs in animal models, especially on piRNAs biogenesis and biological action. To gain a better understanding and get an overview on the process of piRNA genesis among the different animals, this work reviews the literature available on the processes of piRNA biogenesis in animal models with special reference to aquatic animal model zebrafish. This review also presents a short discussion and prospects of piRNA’s application in relevance to the aquaculture industry.
Collapse
Affiliation(s)
- Christy Lite
- Endocrine and Exposome (E2) Laboratory Department of Zoology Madras Christian College Chennai India
| | - Vasisht Varsh Sridhar
- Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Chennai India
| | - Swati Sriram
- Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Chennai India
| | - Melita Juliet
- Department of Oral and Maxillofacial Surgery SRM Dental College and Hospital, SRM Institute of Science and Technology Chennai India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Malaysia
- Department of Aquaculture Faculty of Agriculture Universiti Putra Malaysia Serdang Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai India
- Department of Biotechnology, Faculty of Science and Humanities SRM Institute of Science and Technology Chennai India
| |
Collapse
|
41
|
Ow MC, Hall SE. piRNAs and endo-siRNAs: Small molecules with large roles in the nervous system. Neurochem Int 2021; 148:105086. [PMID: 34082061 PMCID: PMC8286337 DOI: 10.1016/j.neuint.2021.105086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 04/23/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023]
Abstract
Since their discovery, small non-coding RNAs have emerged as powerhouses in the regulation of numerous cellular processes. In addition to guarding the integrity of the reproductive system, small non-coding RNAs play critical roles in the maintenance of the soma. Accumulating evidence indicates that small non-coding RNAs perform vital functions in the animal nervous system such as restricting the activity of deleterious transposable elements, regulating nerve regeneration, and mediating learning and memory. In this review, we provide an overview of the current understanding of the contribution of two major classes of small non-coding RNAs, piRNAs and endo-siRNAs, to the nervous system development and function, and present highlights on how the dysregulation of small non-coding RNA pathways can assist in understanding the neuropathology of human neurological disorders.
Collapse
Affiliation(s)
- Maria C Ow
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| | - Sarah E Hall
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
42
|
Burton NO, Greer EL. Multigenerational epigenetic inheritance: Transmitting information across generations. Semin Cell Dev Biol 2021; 127:121-132. [PMID: 34426067 DOI: 10.1016/j.semcdb.2021.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023]
Abstract
Inherited epigenetic information has been observed to regulate a variety of complex organismal phenotypes across diverse taxa of life. This continually expanding body of literature suggests that epigenetic inheritance plays a significant, and potentially fundamental, role in inheritance. Despite the important role these types of effects play in biology, the molecular mediators of this non-genetic transmission of information are just now beginning to be deciphered. Here we provide an intellectual framework for interpreting these findings and how they can interact with each other. We also define the different types of mechanisms that have been found to mediate epigenetic inheritance and to regulate whether epigenetic information persists for one or many generations. The field of epigenetic inheritance is entering an exciting phase, in which we are beginning to understand the mechanisms by which non-genetic information is transmitted to, and deciphered by, subsequent generations to maintain essential environmental information without permanently altering the genetic code. A more complete understanding of how and when epigenetic inheritance occurs will advance our understanding of numerous different aspects of biology ranging from how organisms cope with changing environments to human pathologies influenced by a parent's environment.
Collapse
Affiliation(s)
- Nicholas O Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Eric L Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Carducci F, Carotti E, Gerdol M, Greco S, Canapa A, Barucca M, Biscotti MA. Investigation of the activity of transposable elements and genes involved in their silencing in the newt Cynops orientalis, a species with a giant genome. Sci Rep 2021; 11:14743. [PMID: 34285310 PMCID: PMC8292531 DOI: 10.1038/s41598-021-94193-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Caudata is an order of amphibians with great variation in genome size, which can reach enormous dimensions in salamanders. In this work, we analysed the activity of transposable elements (TEs) in the transcriptomes obtained from female and male gonads of the Chinese fire-bellied newt, Cynops orientalis, a species with a genome about 12-fold larger than the human genome. We also compared these data with genomes of two basal sarcopterygians, coelacanth and lungfish. In the newt our findings highlighted a major impact of non-LTR retroelements and a greater total TE activity compared to the lungfish Protopterus annectens, an organism also characterized by a giant genome. This difference in TE activity might be due to the presence of young copies in newt in agreement also with the increase in the genome size, an event that occurred independently and later than lungfish. Moreover, the activity of 33 target genes encoding proteins involved in the TE host silencing mechanisms, such as Ago/Piwi and NuRD complex, was evaluated and compared between the three species analysed. These data revealed high transcriptional levels of the target genes in both newt and lungfish and confirmed the activity of NuRD complex genes in adults. Finally, phylogenetic analyses performed on PRDM9 and TRIM28 allowed increasing knowledge about the evolution of these two key genes of the NuRD complex silencing mechanism in vertebrates. Our results confirmed that the gigantism of the newt genomes may be attributed to the activity and accumulation of TEs.
Collapse
Affiliation(s)
- Federica Carducci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Elisa Carotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Marco Gerdol
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via L. Giorgieri, 5, 34127, Trieste, Italy
| | - Samuele Greco
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via L. Giorgieri, 5, 34127, Trieste, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
44
|
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are regulatory small non-coding RNAs that participate in transposon inactivation, chromatin regulation, and endogenous gene regulation. Numerous genetic and epigenetic factors regulate cell proliferation and tumor metastasis. PIWI proteins and piRNAs have been revealed to function in regulating upstream or downstream of oncogenes or tumor-suppressor genes in cancer tissues. In the present review, we summarize major recent findings in uncovering the regulation and role of PIWI proteins and piRNAs in tumorigenesis and highlight some of the promising applications of specific piRNAs in cancer therapeutics and as cancer biomarkers.
Collapse
|
45
|
Wei X, Eickbush DG, Speece I, Larracuente AM. Heterochromatin-dependent transcription of satellite DNAs in the Drosophila melanogaster female germline. eLife 2021; 10:e62375. [PMID: 34259629 PMCID: PMC8321551 DOI: 10.7554/elife.62375] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Large blocks of tandemly repeated DNAs-satellite DNAs (satDNAs)-play important roles in heterochromatin formation and chromosome segregation. We know little about how satDNAs are regulated; however, their misregulation is associated with genomic instability and human diseases. We use the Drosophila melanogaster germline as a model to study the regulation of satDNA transcription and chromatin. Here we show that complex satDNAs (>100-bp repeat units) are transcribed into long noncoding RNAs and processed into piRNAs (PIWI interacting RNAs). This satDNA piRNA production depends on the Rhino-Deadlock-Cutoff complex and the transcription factor Moonshiner-a previously described non-canonical pathway that licenses heterochromatin-dependent transcription of dual-strand piRNA clusters. We show that this pathway is important for establishing heterochromatin at satDNAs. Therefore, satDNAs are regulated by piRNAs originating from their own genomic loci. This novel mechanism of satDNA regulation provides insight into the role of piRNA pathways in heterochromatin formation and genome stability.
Collapse
Affiliation(s)
- Xiaolu Wei
- Department of Biomedical Genetics, University of Rochester Medical CenterRochesterUnited States
| | - Danna G Eickbush
- Department of Biology, University of RochesterRochesterUnited States
| | - Iain Speece
- Department of Biology, University of RochesterRochesterUnited States
| | | |
Collapse
|
46
|
Kong L, Wu Y, Hu W, Liu L, Xue Y, Liang G. Mechanisms underlying reproductive toxicity induced by nickel nanoparticles identified by comprehensive gene expression analysis in GC-1 spg cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116556. [PMID: 33588191 DOI: 10.1016/j.envpol.2021.116556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/04/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The public around the world is increasingly concerned about male reproductive health. The impact of nickel nanoparticles (Ni NPs) on male reproductive toxicity including sperm production, motility and fertilizing capacity has been confirmed by our previous researches. In the current study of Ni NPs-inducing toxicity, the expression profiles of piRNAs and their predicted target genes associated with male infertility, were obtained. The results showed that piR-mmu-32362259 was the highest differential expression multiples in both the testis tissues of male mice and GC-1 cells similarly. Notably, piR-mmu-32362259 target gene was significantly enriched in the PI3K-AKT signaling pathway. All these results suggest that piR-mmu-32362259 may affect the occurrence and development of injury in the mouse spermatogenesis process by regulating the PI3K-AKT signaling pathway. In order to verify the result, piR-mmu-32362259 low-expression lentivirus was used to transfect GC-1 cells to establish a stable transfected cell model. The effects of piR-mmu-32362259 on the viability, cycle and apoptosis as well as related protein expression levels of GC-1 cells induced by Ni NPs were detected using CCK8, flow cytometry and western blot assay, respectively. The results showed that low expression of piR-mmu-32362259 could not only alleviate the decrease of GC-1 cell viability, affect the cell cycle and reduce the apoptosis rate, but also significantly affect the expression levels of key proteins and their downstream molecules of PI3K/AKT/mTOR signaling pathway. Collectively, our current results provide a theoretical basis for further exploring the molecular regulatory mechanism of male reproductive toxicity induced by Ni NPs.
Collapse
Affiliation(s)
- Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Yongya Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Wangcheng Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Lin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
47
|
Crava CM, Varghese FS, Pischedda E, Halbach R, Palatini U, Marconcini M, Gasmi L, Redmond S, Afrane Y, Ayala D, Paupy C, Carballar‐Lejarazu R, Miesen P, van Rij RP, Bonizzoni M. Population genomics in the arboviral vector Aedes aegypti reveals the genomic architecture and evolution of endogenous viral elements. Mol Ecol 2021; 30:1594-1611. [PMID: 33432714 PMCID: PMC8048955 DOI: 10.1111/mec.15798] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Horizontal gene transfer from viruses to eukaryotic cells is a pervasive phenomenon. Somatic viral integrations are linked to persistent viral infection whereas integrations into germline cells are maintained in host genomes by vertical transmission and may be co-opted for host functions. In the arboviral vector Aedes aegypti, an endogenous viral element from a nonretroviral RNA virus (nrEVE) was shown to produce PIWI-interacting RNAs (piRNAs) to limit infection with a cognate virus. Thus, nrEVEs may constitute a heritable, sequence-specific mechanism for antiviral immunity, analogous to piRNA-mediated silencing of transposable elements. Here, we combine population genomics and evolutionary approaches to analyse the genomic architecture of nrEVEs in A. aegypti. We conducted a genome-wide screen for adaptive nrEVEs and searched for novel population-specific nrEVEs in the genomes of 80 individual wild-caught mosquitoes from five geographical populations. We show a dynamic landscape of nrEVEs in mosquito genomes and identified five novel nrEVEs derived from two currently circulating viruses, providing evidence of the environmental-dependent modification of a piRNA cluster. Overall, our results show that virus endogenization events are complex with only a few nrEVEs contributing to adaptive evolution in A. aegypti.
Collapse
Affiliation(s)
- Cristina M. Crava
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
- Present address:
Institute of Biotechnology and BiomedicineUniversitat de ValènciaBurjassotSpain
| | - Finny S. Varghese
- Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Elisa Pischedda
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Rebecca Halbach
- Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Umberto Palatini
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | | | - Leila Gasmi
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Seth Redmond
- Institute of Vector Borne DiseaseMonash UniversityAustralia
| | - Yaw Afrane
- Department of Medical MicrobiologyUniversity of GhanaAccraGhana
| | - Diego Ayala
- MIVEGECUniv. MontpellierIRDCNRSMontpellierFrance
| | | | - Rebeca Carballar‐Lejarazu
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
- Present address:
Department of Molecular Biology and BiochemistryUniversity of California at IrvineIrvineCAUSA
| | - Pascal Miesen
- Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Ronald P. van Rij
- Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | | |
Collapse
|
48
|
Zhao N, Zhang B, Jia L, He X, Bao B. Extracellular vesicles piwi-interacting RNAs from skin mucus for identification of infected Cynoglossus semilaevis with Vibrio harveyi. FISH & SHELLFISH IMMUNOLOGY 2021; 111:170-178. [PMID: 33561561 DOI: 10.1016/j.fsi.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Extracellular vesicles play a regulatory role in intracellular and intercellular transmission through a variety of biological information molecules, including mRNA, small RNAs and proteins. piRNAs are one kind of regulatory small RNAs in the vesicles at the post transcriptional level. Hereby, we isolated the extracellular vesicles from skin mucus and screened the piRNA profiles of these vesicles, aiming at developing biomarkers related to bacterial infections in Cynoglossus semilaevis. The different profilings of piRNAs in mucous extracellular vesicles of C. semilaevis were compared through small RNA sequencing, between fish infected with Vibrio harveyi and healthy ones. The number of clean reads on the alignment of exosome sick (ES) group was 105, 345 and that of exosome control (EC) group was 455, 144. GO and KEGG pathway enrichment analysis showed that most of the target genes were involved in cellular process, response to stimulus, biological regulation, immune system process and signal transduction, signal molecular and interaction, transport and catabolism. The 45 final candidate piRNAs related to immunity or infectious diseases included 20 piRNAs with high expression in the ES group and 25 piRNAs with a low expression in the ES group. After verification by qRT-PCR, there was significant difference of five piRNAs expression level between infected fish and healthy fish, in line with the sequencing. The expression level of piR-mmu-16401212, piR-mmu-26829319 and piR-gga-244092 in infected fish were significantly lower than that of control group, while piR-gga-71717 and piR-gga-99034 were higher, which implying that these piRNAs in mucous extracellular vesicles can be used to identify diseased fish from normal ones. This work supplied a novel class of biomarker for infection diagnosis in fish, and it will be benefit for screening disease resistant breeding of C. semilaevis.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Tianjin Fisheries Research Institute, Tianjin, China.
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
49
|
Parhad SS, Yu T, Zhang G, Rice NP, Weng Z, Theurkauf WE. Adaptive Evolution Targets a piRNA Precursor Transcription Network. Cell Rep 2021; 30:2672-2685.e5. [PMID: 32101744 PMCID: PMC7061269 DOI: 10.1016/j.celrep.2020.01.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
In Drosophila, transposon-silencing piRNAs are derived from heterochromatic clusters and a subset of euchromatic transposon insertions, which are bound by the Rhino-Deadlock-Cutoff complex. The HP1 homolog Rhino binds to Deadlock, which recruits TRF2 to promote non-canonical transcription from both genomic strands. Cuff function is less well understood, but this Rai1 homolog shows hallmarks of adaptive evolution, which can remodel functional interactions within host defense systems. Supporting this hypothesis, Drosophila simulans Cutoff is a dominant-negative allele when expressed in Drosophila melanogaster, in which it traps Deadlock, TRF2, and the conserved transcriptional co-repressor CtBP in stable complexes. Cutoff functions with Rhino and Deadlock to drive non-canonical transcription. In contrast, CtBP suppresses canonical transcription of transposons and promoters flanking the major germline clusters, and canonical transcription interferes with downstream non-canonical transcription and piRNA production. Adaptive evolution thus targets interactions among Cutoff, TRF2, and CtBP that balance canonical and non-canonical piRNA precursor transcription.
Collapse
Affiliation(s)
- Swapnil S Parhad
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Gen Zhang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nicholas P Rice
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
50
|
Collens AB, Katz LA. Opinion: Genetic Conflict With Mobile Elements Drives Eukaryotic Genome Evolution, and Perhaps Also Eukaryogenesis. J Hered 2021; 112:140-144. [PMID: 33538295 PMCID: PMC7953837 DOI: 10.1093/jhered/esaa060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Through analyses of diverse microeukaryotes, we have previously argued that eukaryotic genomes are dynamic systems that rely on epigenetic mechanisms to distinguish germline (i.e., DNA to be inherited) from soma (i.e., DNA that undergoes polyploidization, genome rearrangement, etc.), even in the context of a single nucleus. Here, we extend these arguments by including two well-documented observations: (1) eukaryotic genomes interact frequently with mobile genetic elements (MGEs) like viruses and transposable elements (TEs), creating genetic conflict, and (2) epigenetic mechanisms regulate MGEs. Synthesis of these ideas leads to the hypothesis that genetic conflict with MGEs contributed to the evolution of a dynamic eukaryotic genome in the last eukaryotic common ancestor (LECA), and may have contributed to eukaryogenesis (i.e., may have been a driver in the evolution of FECA, the first eukaryotic common ancestor). Sex (i.e., meiosis) may have evolved within the context of the development of germline-soma distinctions in LECA, as this process resets the germline genome by regulating/eliminating somatic (i.e., polyploid, rearranged) genetic material. Our synthesis of these ideas expands on hypotheses of the origin of eukaryotes by integrating the roles of MGEs and epigenetics.
Collapse
Affiliation(s)
- Adena B Collens
- Department of Biological Sciences, Smith College, Northampton, MA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA
| |
Collapse
|