1
|
Cong X, Chen T, Li S, Wang Y, Zhou L, Li X, Zhang P, Sun X, Zhao S. [Dihydroartemisinin enhances sensitivity of nasopharyngeal carcinoma HNE1/DDP cells to cisplatin-induced apoptosis by promoting ROS production]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1553-1560. [PMID: 39276051 PMCID: PMC11378052 DOI: 10.12122/j.issn.1673-4254.2024.08.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
OBJECTIVE To investigate the effect of dihydroartemisinin (DHA) for enhancing the inhibitory effect of cisplatin (DDP) on DDP-resistant nasopharyngeal carcinoma cell line HNE1/DDP and explore the mechanism. METHODS CCK-8 method was used to assess the survival rate of HNE1/DDP cells treated with DHA (0, 5, 10, 20, 40, 80, and 160 μmol/L) and DDP (0, 4, 8, 16, 32, 64, 128 μmol/L) for 24 or 48 h, and the combination index of DHA and DDP was calculated using Compusyn software. HNE1/DDP cells treated with DHA, DDP, or their combination for 24 h were examined for cell viability, proliferation and colony formation ability using CCK-8, EdU and colony-forming assays. Flow cytometry was used to detect cell apoptosis and intracellular reactive oxygen species (ROS). The expression levels of apoptosis-related proteins cleaved PARP, cleaved caspase-9 and cleaved caspase-3 were detected by Western blotting. The effects of N-acetyl-cysteine (a ROS inhibitor) on proliferation and apoptosis of HNE1/DDP cells with combined treatment with DHA and DDP were analyzed. RESULTS Different concentrations of DHA and DDP alone both significantly inhibited the viability of HNE1/DDP cells. The combination index of DHA (5 μmol/L) combined with DDP (8, 16, 32, 64, 128 μmol/L) were all below 1. Compared with DHA or DDP alone, their combined treatment more potently decreased the cell viability, colony-forming ability and the number of EdU-positive cells, and significantly increased the apoptotic rate, intracellular ROS level, and the expression levels of cleaved PARP, cleaved caspase-9 and cleaved caspase-3 in HNE1/DDP cells. N-acetyl-cysteine pretreatment obviously attenuated the inhibitory effect on proliferation and apoptosis-inducing effect of DHA combined with DDP in HNE1/DDP cells (P<0.01). CONCLUSION DHA enhances the growth-inhibitory and apoptosis-inducing effect of DDP on HNE1/DDP cells possibly by promoting accumulation of intracellular ROS.
Collapse
Affiliation(s)
- X Cong
- School of Pharmacy, Bengbu Medical University//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - T Chen
- School of Pharmacy, Bengbu Medical University//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - S Li
- School of Pharmacy, Bengbu Medical University//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - Y Wang
- School of Pharmacy, Bengbu Medical University//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - L Zhou
- School of Pharmacy, Bengbu Medical University//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - X Li
- School of Pharmacy, Bengbu Medical University//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - P Zhang
- School of Pharmacy, Bengbu Medical University//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - X Sun
- School of Pharmacy, Bengbu Medical University//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - S Zhao
- School of Pharmacy, Bengbu Medical University//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| |
Collapse
|
2
|
Kim MJ, Lim SG, Cho DH, Lee JY, Suk K, Lee WH. Regulation of inflammatory response by LINC00346 via miR-25-3p-mediated modulation of the PTEN/PI3K/AKT/NF-κB pathway. Biochem Biophys Res Commun 2024; 709:149828. [PMID: 38537596 DOI: 10.1016/j.bbrc.2024.149828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/16/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Long intergenic non-coding RNA 346 (LINC00346) has been reported to be involved in the development of atherosclerosis and specific cancers by affecting signaling pathways. However, its function in inflammation has not been thoroughly studied. Therefore, its expression pattern and function were determined in the human macrophage-like cell line THP-1. Lipopolysaccharide (LPS) treatment induced the expression of LINC00346. LPS-induced NF-κB activation and proinflammatory cytokine expression were suppressed or enhanced by the overexpression or knockdown of LINC00346, respectively. Analyses using dual luciferase assay and decoy RNAs that could block RNA-RNA interactions indicated that LINC00346 improves phosphatase and tensin homolog (PTEN) expression by sponging miR-25-3p. Subsequently, PTEN suppresses phosphoinositide-3 kinase (PI3K)-mediated conversion of phosphatidylinositol-4,5-bisphosphate (PIP2) into phosphatidylinositol-3,4,5-trisphosphate (PIP3) as well as consequent activation of protein kinase B (AKT) and NF-κB. Interestingly, database analysis revealed that the expression levels of LINC00346 and PTEN were simultaneously decreased in breast cancer tissues. Further analyses conducted using a breast cancer cell line, MDA-MB-231, confirmed the functional relationship among LINC00346, miR-25-3p, and PTEN in LPS-induced activation of NF-κB. These results indicate that miR-25-3p-sponging activity of LINC00346 affects the balance between PTEN and PI3K as well as the downstream activation of AKT/NF-κB pathway in inflammatory conditions.
Collapse
Affiliation(s)
- Min-Ji Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Su-Geun Lim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jun-Yeong Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 FOUR KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
Li T, Zhang G, Li W, Xiao J, Zhou Z, Tan G, Ai J. MicroRNA-101-3p inhibits nasopharyngeal carcinoma cell proliferation and cisplatin resistance through ZIC5 down-regulation by targeting SOX2. Biol Chem 2023; 404:961-975. [PMID: 36752150 DOI: 10.1515/hsz-2022-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023]
Abstract
This study aims to explore the mechanism of microRNA (miR)-101-3p-mediated SOX2/ZIC5 axis in the progression of cisplatin resistance of nasopharyngeal carcinoma (NPC). ZIC5 expression was analyzed with a bioinformatics database and detected in NPC cell lines. Cisplatin-resistant cells (HNE-1/DDP and C666-1/DDP) were transfected with sh-ZIC5, sh-SOX2, sh-SOX2 + pcDNA3.1-ZIC5, or miR-101-3p Agomir + pcDNA3.1-SOX2. MiR-101-3p, SOX2, and ZIC5 expression was assessed after transfection, and cancer associated phenotypes were evaluated after cisplatin treatment. The potential relationships among miR-101-3p, SOX2, and ZIC5 were analyzed. A xenograft mouse model of NPC was established with HNE-1 cells stably transfected or not transfected with oe-ZIC5 and subjected to tail vein injection of miR-101-3p Agomir and intraperitoneal injection of cisplatin. Overexpression of ZIC5 was found in cisplatin-resistant NPC cells. Downregulating ZIC5 in NPC cells decreased cell viability, promoted apoptosis, and reduced cisplatin resistance. SOX2 had a binding site on ZIC5, and SOX2 promoted proliferation, migration, and cisplatin resistance and inhibited cell apoptosis by up-regulating ZIC5. Mechanistically, miR-101-3p was decreased in cisplatin-resistant NPC cells and negatively targeted SOX2. Overexpression of miR-101-3p inhibited tumor growth and cisplatin resistance in xenograft mouse model, which was reversed by ZIC5 overexpression. In conclusion, the miR-101-3p/SOX2/ZIC5 axis was implicated in cancer associated phenotypes and cisplatin resistance in NPC.
Collapse
Affiliation(s)
- Tieqi Li
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Gehou Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Wei Li
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Jian Xiao
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Zheng Zhou
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Guolin Tan
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Jingang Ai
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| |
Collapse
|
4
|
Peng Y, Zhang Y, Liu Y, Dong Z, Wang T, Peng F, Di W, Zong D, Du M, Zhou H, He X. LINC01376 promotes nasopharyngeal carcinoma tumorigenesis by competitively binding to the SP1/miR-4757/IGF1 axis. IUBMB Life 2023; 75:702-716. [PMID: 36973940 DOI: 10.1002/iub.2721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/07/2023] [Indexed: 03/29/2023]
Abstract
The long non-coding RNA (lncRNA)-microRNA (miRNA) interaction network plays a crucial part in the pathogenesis of nasopharyngeal carcinoma (NPC). Here, we discovered a relationship between LINC01376 and miR-4757 in NPC tumor development. First, LINC01376 was abnormally overexpressed in NPC tissues and cells, and its elevated expression was associated with advanced clinical stage and shorter distant metastasis-free survival time. Moreover, biological experiments showed that LINC01376 facilitated the proliferative, invasive, and migratory abilities of NPC cells in vitro and in vivo. Mechanistically, bioinformatics and RT-qPCR assays revealed that LINC01376 knockdown upregulated the expression level of downstream miR-4757, including miR-4757 primary transcript (pri-miR-4757) and mature miR-4757. Furthermore, LINC01376 competitively sponged the transcription factor SP1 and reduced its enrichment in the upstream promoter region of miR-4757 to repress miR-4757 expression. Finally, insulin-like growth factor 1(IGF1) was identified as the target of miR-4757. Rescue experiments indicated that LINC01376 accelerated NPC cell proliferation, migration, and invasion through the miR-4757-5p/IGF1 axis. In conclusion, the SP1/miR-4757/IGF1 axis, which is regulated by LINC01376 in NPC deterioration and metastasis, is expected to provide new insights into the molecular mechanism of NPC carcinogenesis.
Collapse
Affiliation(s)
- Yi Peng
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yujie Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yatian Liu
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhen Dong
- Department of Radiotherapy, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Wang
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Fanyu Peng
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Wenyi Di
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Dan Zong
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Mingyu Du
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Hongping Zhou
- Department of Radiotherapy, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Xia He
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
5
|
Taghehchian N, Samsami Y, Maharati A, Zangouei AS, Boroumand-Noughabi S, Moghbeli M. Molecular biology of microRNA-342 during tumor progression and invasion. Pathol Res Pract 2023; 248:154672. [PMID: 37413875 DOI: 10.1016/j.prp.2023.154672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Cancer is considered as one of the main causes of human deaths and health challenges in the world. Various factors are involved in the high death rate of cancer patients, including late diagnosis and drug resistance that result in treatment failure and tumor recurrence. Invasive diagnostic methods are one of the main reasons of late tumor detection in cancer patients. Therefore, it is necessary to investigate the molecular tumor biology to introduce efficient non-invasive markers. MicroRNAs (miRNAs) are involved in regulation of the cellular mechanisms such as cell proliferation, apoptosis, and migration. MiRNAs deregulations have been also frequently shown in different tumor types. Here, we discussed the molecular mechanisms of miR-342 during tumor growth. MiR-342 mainly functions as a tumor suppressor by the regulation of transcription factors and signaling pathways such as WNT, PI3K/AKT, NF-kB, and MAPK. Therefore, miR-342 mimics can be used as a reliable therapeutic strategy to inhibit the tumor cells growth. The present review can also pave the way to introduce the miR-342 as a non-invasive diagnostic/prognostic marker in cancer patients.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Boroumand-Noughabi
- Department of Hematology and Blood Bank, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Li T, Li Y. Quercetin acts as a novel anti-cancer drug to suppress cancer aggressiveness and cisplatin-resistance in nasopharyngeal carcinoma (NPC) through regulating the yes-associated protein/Hippo signaling pathway. Immunobiology 2023; 228:152324. [PMID: 36608594 DOI: 10.1016/j.imbio.2022.152324] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Quercetin has been proven to be effective for cancer treatment, including nasopharyngeal carcinoma (NPC). Also, Quercetin sensitizes cancer cells to current chemical drugs to improve their therapeutic efficacy. However, up until now, the molecular mechanisms that quercetin exerted its therapeutic effects on NPC have not been fully delineated. METHODS Cell proliferation abilities were examined by CCK-8 assay and colony formation assay. Real-Time qPCR and Western Blot analysis were used to detect gene expressions at RNA and protein levels. Cell mobility was determined by wound scratch assay and transwell assay. Cell death was detected using flow cytometry (FCM). Tumorigenesis of the NPC cells was determined by in vivo tumor-bearing mice models. Hematoxylin and eosin (H&E) and TUNEL staining were used to detect the tumor metastasis to lung tissues and dead cells, respectively. RESULTS Here, we validated that quercetin exerted its anti-tumor effects and increased cisplatin-sensitivity in NPC in vitro and in vivo. Specifically, quercetin inhibited NPC cell proliferation, viability, mobility, epithelial-mesenchymal transition (EMT), and tumorigenesis, and induced cell death, resulting in the inhibition of NPC progression. In addition, the NPC cells were subjected to a continuously increasing doses of cisplatin to generate cisplatin-resistant NPC (NPC/CDDP) cells. Interestingly, quercetin significantly enhanced the cytotoxic effects of high-dose cisplatin on NPC/CDDP cells. Furthermore, the potential underlying mechanisms were uncovered, and the results evidenced that quercetin inhibited Yes-associated protein (YAP) expression and its translocation to the nucleus, leading to the recovery of the Hippo pathway, inhibition of cancer progression, and increase in cisplatin-resistance. Mechanistically, upregulation of YAP by its gene manipulating vectors abrogated the inhibiting effects of quercetin on NPC malignant phenotypes, which also made NCP/CDDP cells irresponsive to high-dose cisplatin-quercetin co-treatments. CONCLUSION Collectively, our data evidenced that quercetin inhibited YAP to recover the Hippo pathway, which further inhibited NPC pathogenesis and increased susceptibility of NCP/CDDP cells to cisplatin treatment.
Collapse
Affiliation(s)
- Tao Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province 450052, China
| | - Yujie Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province 450052, China.
| |
Collapse
|
7
|
Zhu H, Zhang Y, Zhu Y. MiR-342-5p protects neurons from cerebral ischemia induced-apoptosis through regulation of Akt/NF-κB pathways by targeting CCAR2. J Stroke Cerebrovasc Dis 2023; 32:106901. [PMID: 36434857 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Ischemic stroke causes high morbidity, mortality and health burden in the world. MiR-342-5p was associated with Alzheimer's disease and cardio-protection. Herein, we aimed to reveal effects of miR-342-5p on cerebral ischemia injury as well as novel targets for stroke. MATERIALS AND METHODS AgomiR-342-5p was intracerebroventricularly injected into the middle cerebral artery occlusion (MCAO) mouse models to evaluate functions of miR-342-5p on cerebral ischemia. RT-qPCR and western blot assays were used to evaluate genes expression. Oxygen-glucose deprivation (OGD) was used as an in vitro model for ischemia. Viability and apoptosis ratio of neurons was evaluated by CCK-8, LDH release detection, and flow cytometry. The potential targets of miR-342-5p were predicted by Targetscan, and their interaction was confirmed by luciferase assay. RESULTS The intervention of miR-342-5p effectively attenuated ischemic injury in MCAO mice. MiR-342-5p overexpression could protect neurons against OGD-induced injury, as revealed by increased cell viability and BCL2 expression, and decreased LDH release, apoptosis ratio, and BAX expression in OGD-induced neurons. Mechanically, miR-342-5p could directly bound with CCAR2 to inhibit its expression. Overexpressing CARR2 aggravated the OGD-induced injury of neurons, which was partly restrained by overexpressing miR-342-5p reversed. Furthermore, miR-342-5p/CARR2 axis regulates Akt/NF-κB signaling pathway in vitro as well as in vivo cerebral ischemia models. CONCLUSIONS MiR-342-5p inhibited neuron apoptosis by regulating Akt/NF-kB signaling pathway via CCAR2 suppression. Our findings revealed the neuroprotection of miR-342-5p in cerebral ischemia.
Collapse
Affiliation(s)
- Haochun Zhu
- Department of Neurology, General Hospital of Hebi Coal Industry Group Co., Ltd., No. 84, Hongqi Street, Hebi, Henan 458000, China.
| | - Yanhua Zhang
- Department of Neurology, General Hospital of Hebi Coal Industry Group Co., Ltd., No. 84, Hongqi Street, Hebi, Henan 458000, China.
| | - Yanling Zhu
- Department of Neurology, General Hospital of Hebi Coal Industry Group Co., Ltd., No. 84, Hongqi Street, Hebi, Henan 458000, China.
| |
Collapse
|
8
|
Tian J, Cheng L, Kong E, Gu W, Jiang Y, Hao Q, Kong B, Sun L. linc00958/miR-185-5p/RSF-1 modulates cisplatin resistance and angiogenesis through AKT1/GSK3β/VEGFA pathway in cervical cancer. Reprod Biol Endocrinol 2022; 20:132. [PMID: 36056431 PMCID: PMC9438131 DOI: 10.1186/s12958-022-00995-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/26/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Chemoresistance is one of the major obstacles that lead to poor prognosis in cervical cancer. linc00958 was reported to be an oncogene in cervical cancer. However, its role in mediating chemoresistance remains to be revealed. PURPOSE To explore the regulatory mechanisms of linc00958 in cisplatin-resistant cervical cancer cells and further validate in xenograft mice. METHODS Online bioinformatic tools were used to conduct the pre-investigation of linc00958/miR-185-5p/RSF-1 and predict the associations between RSF-1 and AKT1/GSK3β/VEGFA in cervical cancer. RT-qPCR measured the RNA expression levels of linc00958/miR-185-5p/RSF-1 in SiHa and SiHa/DDP. Cell survival rates were evaluated by CCK8 methods after cells were exposed to differential concentrations of DDP. Dual-luciferase reporter methods were used to measure luciferase activity. Western blot measured RSF-1 protein and phosphorylated changes of AKT1/GSK3β. Immunofluorescence was employed to observe VEGFA secretion in vitro. Tube formation was applied to evaluate the in-vitro changes of angiogenesis. The SiHa/DDP cells stably transfected with pLKO-sh-NC or pLKO-sh-linc00958 plasmids, were injected into mice, establishing xenograft models. The changes in mice weight and tumor volumes were recorded. H&E staining and Immunohistochemistry (IHC) method was further performed. RESULTS linc00958 expression was higher in SiHa/DDP cells. High linc00958 expression was associated with low overall survival. In SiHa/DDP cells linc00958/miR-185-5p/RSF-1 axis inhibited the cellular resistance to cisplatin and suppressed VEGFA and the tube formation through AKT1/GSK3β/VEGFA pathway. The knockdown of linc00958 inhibited RSF-1 and Ki67, curbing tumor growth; it also inhibited VEGFA and CD34, decreasing angiogenesis in mice. CONCLUSION linc00958/miR-185-5p/RSF-1 modulates cisplatin resistance and angiogenesis through AKT1/GSK3β/VEGFA pathway in cervical cancer.
Collapse
Affiliation(s)
- Jing Tian
- grid.411918.40000 0004 1798 6427Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People’s Republic of China
- grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, TianjinTianjin, 300060 China
| | - Lei Cheng
- Department of Gynecology Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035 China
| | - Enqi Kong
- grid.410587.fShandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021 China
| | - Wenjin Gu
- grid.415468.a0000 0004 1761 4893Department of Gynecological Oncology, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042 China
| | - Yuanyuan Jiang
- grid.415468.a0000 0004 1761 4893Department of Gynecological Oncology, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042 China
| | - Quan Hao
- grid.411918.40000 0004 1798 6427Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People’s Republic of China
- grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, TianjinTianjin, 300060 China
| | - Beihua Kong
- grid.27255.370000 0004 1761 1174Department of Obstetrics and Gynecology, Cheeloo College of Medicine, Shandong University, Qilu hospital, Jinan, 250012 China
| | - Li Sun
- grid.415468.a0000 0004 1761 4893Department of Gynecological Oncology, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042 China
| |
Collapse
|
9
|
Peña-Flores JA, Bermúdez M, Ramos-Payán R, Villegas-Mercado CE, Soto-Barreras U, Muela-Campos D, Álvarez-Ramírez A, Pérez-Aguirre B, Larrinua-Pacheco AD, López-Camarillo C, López-Gutiérrez JA, Garnica-Palazuelos J, Estrada-Macías ME, Cota-Quintero JL, Barraza-Gómez AA. Emerging role of lncRNAs in drug resistance mechanisms in head and neck squamous cell carcinoma. Front Oncol 2022; 12:965628. [PMID: 35978835 PMCID: PMC9376329 DOI: 10.3389/fonc.2022.965628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates in the squamous cell lining the mucosal surfaces of the head and neck region, including the oral cavity, nasopharynx, tonsils, oropharynx, larynx, and hypopharynx. The heterogeneity, anatomical, and functional characteristics of the patient make the HNSCC a complex and difficult-to-treat disease, leading to a poor survival rate and a decreased quality of life due to the loss of important physiologic functions and aggressive surgical injury. Alteration of driver-oncogenic and tumor-suppressing lncRNAs has recently been recently in HNSCC to obtain possible biomarkers for diagnostic, prognostic, and therapeutic approaches. This review provides current knowledge about the implication of lncRNAs in drug resistance mechanisms in HNSCC. Chemotherapy resistance is a major therapeutic challenge in HNSCC in which lncRNAs are implicated. Lately, it has been shown that lncRNAs involved in autophagy induced by chemotherapy and epithelial–mesenchymal transition (EMT) can act as mechanisms of resistance to anticancer drugs. Conversely, lncRNAs involved in mesenchymal–epithelial transition (MET) are related to chemosensitivity and inhibition of invasiveness of drug-resistant cells. In this regard, long non-coding RNAs (lncRNAs) play a pivotal role in both processes and are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. As the involvement of more lncRNAs is elucidated in chemoresistance mechanisms, an improvement in diagnostic and prognostic tools could promote an advance in targeted and specific therapies in precision oncology.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
- *Correspondence: Mercedes Bermúdez,
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | - Uriel Soto-Barreras
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | | | | | | | | | | | - Jorge A. López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | | | - Juan L. Cota-Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Odontology , Autonomous University of Sinaloa, Culiacán, Mexico
| | | |
Collapse
|
10
|
Lu J, Xiao Z, Xu M, Li L. New Insights into LINC00346 and its Role in Disease. Front Cell Dev Biol 2022; 9:819785. [PMID: 35096842 PMCID: PMC8794746 DOI: 10.3389/fcell.2021.819785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has shown that long intergenic non-protein-coding RNA 346 (LINC00346) functions as an oncogene in the tumorigenesis of several cancers. The expression level of LINC00346 has been shown to be obviously correlated with prognosis, lymphoma metastasis, histological grade, TNM stage, tumor size and pathologic stage. LINC00346 has been found to regulate specific cellular functions by interacting with several molecules and signaling pathways. In this review, we summarize recent evidence concerning the role of LINC00346 in the occurrence and development of diseases. We also discuss the potential clinical utility of LINC00346, thereby providing new insight into the diagnosis and treatment of diseases. In addition, we further discuss the potential clinical utility of LINC00346 in the diagnosis, prognostication, and treatment of diseases.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoying Xiao
- Department of Infectious Diseases Shengzhou People' Hospital, Shengzhou Branch, The Fisrt Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Mengqiu Xu
- Department of Infectious Diseases Shengzhou People' Hospital, Shengzhou Branch, The Fisrt Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Hou R, Liu X, Yang H, Deng S, Cheng C, Liu J, Li Y, Zhang Y, Jiang J, Zhu Z, Su Y, Wu L, Xie Y, Li X, Li W, Liu Z, Fang W. Chemically synthesized cinobufagin suppresses nasopharyngeal carcinoma metastasis by inducing ENKUR to stabilize p53 expression. Cancer Lett 2022; 531:57-70. [PMID: 35114328 DOI: 10.1016/j.canlet.2022.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 01/01/2022] [Accepted: 01/19/2022] [Indexed: 02/09/2023]
Abstract
Clinically, the metastasis of tumor cells is the key factor of death in patients with cancer. In this study, we used a model of metastatic nasopharyngeal carcinoma (NPC) to explore the effects of a new chemical, cinobufagin (CB), combined with cisplatin (DDP). We observed that chemically synthesized CB strongly decreased the metastasis of NPC. Furthermore, a better therapeutic effect was shown when CB was combined with DDP. Molecular analysis revealed that CB induced ENKUR expression by deregulating the PI3K/AKT pathway and suppressing c-Jun, an oncogenic transcriptional factor that binds to the ENKUR promoter and negatively modulated its expression in NPC. ENKUR as a tumor suppressor binds to MYH9 and decreases its expression by recruiting β-catenin via its enkurin domain to prevent its nuclear accumulation, which therefore suppresses c-Jun-induced MYH9 expression. Subsequently, downregulated MYH9 reduces the enlistment of E3 ligase UBE3A and thus decreases the UBE3A-mediated ubiquitination degradation of p53, a key tumor suppressor that decreases epithelial-mesenchymal transition (EMT). Clinical sample analysis demonstrated that the ENKUR expression level was significantly reduced in NPC tissues. Its decreased expression substantially promoted clinical progression and reflected poor prognosis for patients with NPC. This study demonstrated that CB induced ENKUR to repress the β-catenin/c-Jun/MYH9 signal and thus decreased UBE3A-mediated p53 ubiquitination degradation. As a result, the EMT signal was inactivated to suppress NPC metastasis.
Collapse
Affiliation(s)
- Rentao Hou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiong Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Huiling Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Shuting Deng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chao Cheng
- Otolaryngology Department, Shenzhen Hospital, Southern Medical University, Guangzhou, China
| | - Jiahao Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yonghao Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yewei Zhang
- Hepatobiliary Surgery, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jingwen Jiang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Oncology Department, Traditional Chinese Medicine Hospital of Hainan Provincial, Haikou, China
| | - Zhibo Zhu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yun Su
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Liyang Wu
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yingying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoning Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenmin Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China; Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Xiao J, He X. Involvement of Non-Coding RNAs in Chemo- and Radioresistance of Nasopharyngeal Carcinoma. Cancer Manag Res 2021; 13:8781-8794. [PMID: 34849030 PMCID: PMC8627240 DOI: 10.2147/cmar.s336265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022] Open
Abstract
The crucial treatment for nasopharyngeal carcinoma (NPC) is radiation therapy supplemented by chemotherapy. However, long-term radiation therapy can cause some genetic and proteomic changes to produce radiation resistance, leading to tumour recurrence and poor prognosis. Therefore, the search for new markers that can overcome the resistance of tumor cells to drugs and radiotherapy and improve the sensitivity of tumor cells to drugs and radiotherapy is one of the most important goals of pharmacogenomics and cancer research, which is important for predicting treatment response and prognosis. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), may play important roles in regulating chemo- and radiation resistance in nasopharyngeal carcinoma by controlling the cell cycle, proliferation, apoptosis, and DNA damage repair, as well as other signalling pathways. Recent research has suggested that selective modulation of ncRNA activity can improve the response to chemotherapy and radiotherapy, providing an innovative antitumour approach based on ncRNA-related gene therapy. Therefore, ncRNAs can serve as biomarkers for tumour prediction and prognosis, play a role in overcoming drug resistance and radiation resistance in NPC, and can also serve as targets for developing new therapeutic strategies. In this review, we discuss the involvement of ncRNAs in chemotherapy and radiation resistance in NPC. The effects of these molecules on predicting therapeutic cancer are highlighted.
Collapse
Affiliation(s)
- Jiaxin Xiao
- Hunan Province Key Laboratory of Tumour Cellular & Molecular Pathology Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, People’s Republic of China
| | - Xiusheng He
- Hunan Province Key Laboratory of Tumour Cellular & Molecular Pathology Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, People’s Republic of China
| |
Collapse
|
13
|
Wu S, Zhang C, Xie J, Li S, Huang S. A Five-MicroRNA Signature Predicts the Prognosis in Nasopharyngeal Carcinoma. Front Oncol 2021; 11:723362. [PMID: 34568051 PMCID: PMC8459682 DOI: 10.3389/fonc.2021.723362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background There is no effective prognostic signature that could predict the prognosis of nasopharyngeal carcinoma (NPC). Methods We constructed a prognostic signature based on five microRNAs using random forest and Least Absolute Shrinkage And Selection Operator (LASSO) algorithm on the GSE32960 cohort (N = 213). We verified its prognostic value using three independent external validation cohorts (GSE36682, N = 62; GSE70970, N = 246; and TCGA-HNSC, N = 523). Through principal component analysis, receiver operating characteristic curve analysis, and C-index calculation, we confirmed the predictive accuracy of this prognostic signature. Results We calculated the risk score based on the LASSO algorithm and divided the patients into high- and low-risk groups according to the calculated optimal cutoff value. The patients in the high-risk group tended to have a worse prognosis outcome and chemotherapy response. The time-dependent receiver operating characteristic curve showed that the 1-year overall survival rate of the five-microRNA signature had an area under the curve of more than 0.83. A functional annotation analysis of the five-microRNA signature showed that the patients in the high-risk group were usually accompanied by activation of DNA repair and MYC-target pathways, while the patients in the low-risk group had higher immune-related pathway signals. Conclusions We constructed a five-microRNA prognostic signature, which could accurately predict the prognosis of nasopharyngeal carcinoma, and constructed a nomogram that could conveniently predict the overall survival of patients.
Collapse
Affiliation(s)
- Shixiong Wu
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cen Zhang
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Xie
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Li
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuo Huang
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Liguori G, Cerrone M, De Chiara A, Tafuto S, de Bellis MT, Botti G, Di Bonito M, Cantile M. The Role of lncRNAs in Rare Tumors with a Focus on HOX Transcript Antisense RNA ( HOTAIR). Int J Mol Sci 2021; 22:ijms221810160. [PMID: 34576322 PMCID: PMC8466298 DOI: 10.3390/ijms221810160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Rare cancers are identified as those with an annual incidence of fewer than 6 per 100,000 persons and includes both epithelial and stromal tumors from different anatomical areas. The advancement of analytical methods has produced an accurate molecular characterization of most human cancers, suggesting a “molecular classification” that has allowed the establishment of increasingly personalized therapeutic strategies. However, the limited availability of rare cancer samples has resulted in very few therapeutic options for these tumors, often leading to poor prognosis. Long non coding RNAs (lncRNAs) are a class of non-coding RNAs mostly involved in tumor progression and drug response. In particular, the lncRNA HOX transcript antisense RNA (HOTAIR) represents an emergent diagnostic, prognostic and predictive biomarker in many human cancers. The aim of this review is to highlight the role of HOTAIR in rare cancers, proposing it as a new biomarker usable in the management of these tumors.
Collapse
Affiliation(s)
- Giuseppina Liguori
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Margherita Cerrone
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Annarosaria De Chiara
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Salvatore Tafuto
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Maura Tracey de Bellis
- Rehabilitation Medicine Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
- Correspondence: ; Tel.: +39-08159031755; Fax: +39-0815903718
| |
Collapse
|
15
|
Ghafouri-Fard S, Eghtedarian R, Seyedi M, Pouresmaeili F, Arsang-Jang S, Taheri M. Upregulation of VDR-associated lncRNAs in Schizophrenia. J Mol Neurosci 2021; 72:239-245. [PMID: 34499334 DOI: 10.1007/s12031-021-01901-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/14/2021] [Indexed: 11/30/2022]
Abstract
Vitamin D receptor (VDR) signaling has been found to contribute to the pathology of numerous neuropsychiatric diseases including schizophrenia. Notably, VDR signaling has a functional relationship with many long non-coding RNAs (lncRNAs) such as SNHG6, LINC00346 and LINC00511. We calculated expression of these lncRNAs in the venous blood of patients with schizophrenia versus healthy individuals. Expression of SNHG6 was significantly higher in cases versus controls (posterior beta = 0.552, adjusted P value < 0.0001). This pattern of expression was detected in both men (posterior beta = 0.556, adjusted P value < 0.0001) and women (posterior beta = 0.31, adjusted P value = 0.005). Expression of LINC00346 was also higher in cases versus controls (posterior beta = 0.497, adjusted P value < 0.0001) and in distinct sex-based comparisons (posterior beta = 0.451, adjusted P value = 0.009 among men and posterior beta = 0.214, P value = 0.004 among women). Expression of LINC00511 was higher in cases versus controls (posterior beta = 0.318, adjusted P value = 0.01). While sex-based comparisons revealed significant difference in expression of LINC00511 among female subgroups (posterior beta = 0.424, adjusted P value = 0.016), such comparison showed no difference among male cases and male controls (adjusted P value = 0.295). The expression levels of SNHG6 distinguished patients with schizophrenia from controls, with AUC = 0.932. LINC00346 and LINC00511 distinguished between the two groups with AUC values of 0.795 and 0.706, respectively. Therefore, these lncRNAs might be used as markers for schizophrenia.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhane Eghtedarian
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Motahareh Seyedi
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Farkhondeh Pouresmaeili
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Arsang-Jang
- Cancer Gene Therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Yang H, Pan Y, Zhang J, Jin L, Zhang X. LncRNA FOXD3-AS1 Promotes the Malignant Progression of Nasopharyngeal Carcinoma Through Enhancing the Transcription of YBX1 by H3K27Ac Modification. Front Oncol 2021; 11:715635. [PMID: 34395290 PMCID: PMC8359730 DOI: 10.3389/fonc.2021.715635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) can affect the progression of various tumors, including nasopharyngeal carcinoma (NPC). Here, lncRNA FOXD3-AS1 is highly expressed in NPC tissues through bioinformatics analysis and related to the malignant progression of NPC. METHODS Bioinformatics analysis and real-time reverse transcription quantitative PCR(RT-qPCR) assay were applied to identify the expression of FOXD3-AS1 in NPC tissues and cells. Specific short hairpin RNAs (shRNAs) or overexpression plasmids were used to knockdown or upregulate FOXD3-AS1 in NPC cells. The effect of FOXD3-AS1 on proliferation and metastasis of NPC was confirmed by CCK8, colony formation, transwell assays in vitro and mouse tumor growth and metastasis models in vivo, of which the mechanism was explored by RNA pull down, mass spectrometry (MS), RNA Immunoprecipitation (RIP), chromatin immunoprecipitation (CHIP) and luciferase assays. RESULTS FOXD3-AS1 was highly expressed in NPC tissues and cells. Knockdown of FOXD3-AS1 significantly inhibited proliferation, migration, and invasion of NPC cells in vitro and vivo. FOXD3-AS1 could specifically bind to YBX1 and have a positive effect on the expression of YBX1. Bioinformatics analysis showed that the promoter of YBX1 had a high enrichment of H3K27ac, which promote mRNA transcription and protein translation of YBX1. Moreover, overexpression of YBX1 could reverse the proliferation, migration and invasion arrest caused by FOXD3-AS1 knockdown. CONCLUSION LncRNA FOXD3-AS1 is highly expressed and promotes malignant phenotype in NPC, which may provide a new molecular mechanism for NPC.
Collapse
Affiliation(s)
- Huiyun Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuliang Pan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Long Jin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Li H, Huang J, Yu S, Li H, Zhou Y, Wu Q. HOXA11-AS induces cisplatin resistance by modulating the microRNA-98/PBX3 axis in nasopharyngeal carcinoma. Oncol Lett 2021; 21:493. [PMID: 33968209 PMCID: PMC8100958 DOI: 10.3892/ol.2021.12754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNA homeobox A11-antisense RNA (HOXA11-AS) has been implicated in cisplatin (DDP) resistance in multiple types of cancer. The purpose of the present study was to investigate the role of HOXA11-AS in DDP-resistant nasopharyngeal carcinoma (NPC) cells. The expression levels of HOXA11-AS were examined using reverse transcription-quantitative PCR. Cell viability was measured using a Cell Counting Kit-8 assay, and a TUNEL assay was utilized to assess cell apoptosis. The expression levels of apoptosis-related factors (Bax and Bcl-2) were detected by western blot analysis. The interaction between microRNA-98 (miR-98) and HOXA11-AS or pre-B-cell leukemia homeobox 3 (PBX3) was demonstrated using bioinformatics analysis, dual-luciferase reporter assays and RNA immunoprecipitation assays. HOXA11-AS and PBX3 expressions levels were upregulated, whereas miR-98 levels were downregulated in DDP-resistant NPC tissues. Patients with NPC with high HOXA11-AS expression had a low survival rate. Knockdown of HOXA11-AS enhanced the DDP sensitivity of DDP-resistant NPC (5-8F/DDP and SUNE1/DDP) cells, which was demonstrated by the accelerated apoptosis. In addition, HOXA11-AS inhibited the expression levels of miR-98 through direct interaction. Furthermore, miR-98 inhibition counteracted the inductive effect of HOXA11-AS-knockdown on the DDP sensitivity of NPC cells. PBX3 was a target of miR-98 and was positively modulated by HOXA11-AS. Overexpression of PBX3 reversed the suppressive effect of HOXA11-AS silencing on the DDP resistance of NPC cells. The data demonstrated that HOXA11-AS enhanced DDP resistance in NPC via the miR-98/PBX3 axis, providing a potential therapeutic target for patients with DDP-resistant NPC.
Collapse
Affiliation(s)
- Haineng Li
- Department of Otolaryngology, Zhuji People's Hospital Affiliated to Shaoxing University, Zhuji, Zhejiang 311800, P.R. China
| | - Jia Huang
- Department of Otolaryngology, Zhuji People's Hospital Affiliated to Shaoxing University, Zhuji, Zhejiang 311800, P.R. China
| | - Sa Yu
- Department of Otolaryngology, Zhuji People's Hospital Affiliated to Shaoxing University, Zhuji, Zhejiang 311800, P.R. China
| | - Hangbo Li
- Department of Otolaryngology, Zhuji People's Hospital Affiliated to Shaoxing University, Zhuji, Zhejiang 311800, P.R. China
| | - Yan Zhou
- Department of Neurology, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang 311800, P.R. China
| | - Qingwei Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
18
|
Akbari Dilmaghani N, Khoshsirat S, Shanaki-Bavarsad M, Pourbagheri-Sigaroodi A, Bashash D. The contributory role of long non-coding RNAs (lncRNAs) in head and neck cancers: Possible biomarkers and therapeutic targets? Eur J Pharmacol 2021; 900:174053. [PMID: 33766619 DOI: 10.1016/j.ejphar.2021.174053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Along with the developments in techniques for genome study, our understanding of its sequences has completely changed. The non-coding sequences of the human genome are no longer considered as "junk" but are rather known to be the source of high-functioning molecules. Some of the most fascinating transcripts in this regard are long non-coding RNAs (lncRNAs) ___RNA molecules that exceed 200 nucleotides and are not transcribed from protein-coding regions of the genome. These transcripts are capable of gene regulation by various mechanisms, from epigenetic changes and chromosomal arrangements to post-transcription modulation of messenger RNAs. Furthermore, lncRNAs interact with other non-coding transcripts such as microRNAs that further affects gene expression. Considering the fact that cancer is a disease of deregulated expression, recent studies have identified lncRNAs acting as either oncogene or tumor suppressor in a wide range of human malignancies. Head and neck cancer (HNC), with a high incidence rate and unfavorable survival, is no exception in this matter and many investigations have introduced lncRNAs involved in its tumor progression and drug response, as well as those acting as promising diagnostic or prognostic markers. The present study reviews the vital regulatory roles of lncRNAs and further introduces their role in progression of HNC subtypes.
Collapse
Affiliation(s)
- Nader Akbari Dilmaghani
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Otolaryngology, Head and Neck Surgery, Loghman Hakim Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrokh Khoshsirat
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Otolaryngology, Head and Neck Surgery, Loghman Hakim Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahsa Shanaki-Bavarsad
- Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology. Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Noncoding RNAs Associated with Therapeutic Resistance in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9030263. [PMID: 33799952 PMCID: PMC7998345 DOI: 10.3390/biomedicines9030263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Therapeutic resistance is an inevitable impediment towards effective cancer therapies. Evidence accumulated has shown that the signaling pathways and related factors are fundamentally responsible for therapeutic resistance via regulating diverse cellular events, such as epithelial-to-mesenchymal transition (EMT), stemness, cell survival/apoptosis, autophagy, etcetera. Noncoding RNAs (ncRNAs) have been identified as essential cellular components in gene regulation. The expression of ncRNAs is altered in cancer, and dysregulated ncRNAs participate in gene regulatory networks in pathological contexts. An in-depth understanding of molecular mechanisms underlying the modulation of therapeutic resistance is required to refine therapeutic benefits. This review presents an overview of the recent evidence concerning the role of human ncRNAs in therapeutic resistance, together with the feasibility of ncRNAs as therapeutic targets in pancreatic cancer.
Collapse
|
20
|
Garofoli M, Volpicella M, Guida M, Porcelli L, Azzariti A. The Role of Non-Coding RNAs as Prognostic Factor, Predictor of Drug Response or Resistance and Pharmacological Targets, in the Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12092552. [PMID: 32911687 PMCID: PMC7565940 DOI: 10.3390/cancers12092552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the most common keratinocyte-derived skin cancer in the Caucasian population. Exposure to UV radiations (UVRs) represents the main risk carcinogenesis, causing a considerable accumulation of DNA damage in epidermal keratinocytes with an uncontrolled hyperproliferation and tumor development. The limited and rarely durable response of CSCC to the current therapeutic options has led researchers to look for new therapeutic strategies. Recently, the multi-omics approaches have contributed to the identification and prediction of the key role of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circularRNAs (circRNAs) and long non-coding RNAs (lncRNAs) in the regulation of several cellular processes in different tumor types, including CSCC. ncRNAs can modulate transcriptional and post-transcriptional events by interacting either with each other or with DNA and proteins, such as transcription factors and RNA-binding proteins. In this review, the implication of ncRNAs in tumorigenesis and their potential role as diagnostic biomarkers and therapeutic targets in human CSCC are reported.
Collapse
Affiliation(s)
- Marianna Garofoli
- Experimental Pharmacology Laboratory, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.G.); (L.P.)
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy;
| | - Michele Guida
- Rare Tumors and Melanoma Unit, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Letizia Porcelli
- Experimental Pharmacology Laboratory, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.G.); (L.P.)
| | - Amalia Azzariti
- Experimental Pharmacology Laboratory, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.G.); (L.P.)
- Correspondence: ; Tel.: +39-080-555-5986
| |
Collapse
|
21
|
E. A. R. ENS, Irekeola AA, Yean Yean C. Diagnostic and Prognostic Indications of Nasopharyngeal Carcinoma. Diagnostics (Basel) 2020; 10:E611. [PMID: 32825179 PMCID: PMC7554987 DOI: 10.3390/diagnostics10090611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a disease that is highly associated with the latent infection of Epstein-Barr virus. The absence of obvious clinical signs at the early stage of the disease has made early diagnosis practically impossible, thereby promoting the establishment and progression of the disease. To enhance the stride for a reliable and less invasive tool for the diagnosis and prognosis of NPC, we synopsize biomarkers belonging to the two most implicated biological domains (oncogenes and tumor suppressors) in NPC disease. Since no single biomarker is sufficient for diagnosis and prognosis, coupled with the fact that the known established methods such as methylation-specific polymerase chain reaction (PCR), multiplex methylation-specific PCR, microarray assays, etc., can only accommodate a few biomarkers, we propose a 10-biomarker panel (KIT, LMP1, PIKC3A, miR-141, and miR-18a/b (oncogenic) and p16, RASSF1A, DAP-kinase, miR-9, and miR-26a (tumor suppressors)) based on their diagnostic and prognostic values. This marker set could be explored in a multilevel or single unified assay for the diagnosis and prognosis of NPC. If carefully harnessed and standardized, it is hoped that the proposed marker set would help transform the diagnostic and prognostic realm of NPC, and ultimately, help prevent the life-threatening late-stage NPC disease.
Collapse
Affiliation(s)
- Engku Nur Syafirah E. A. R.
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
- Department of Biological Sciences, Microbiology Unit, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Kwara State, Nigeria
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|