1
|
Soto-Ramírez R, Vlatten N, Ruz F, Tavernini L, Lobos MG. Engineering the cell wall reactive groups of Plant Growth Promoting Rhizobacteria by culture strategy for heavy metal removal. J Biotechnol 2024; 394:125-134. [PMID: 39216748 DOI: 10.1016/j.jbiotec.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
This research delved into the effects of nutrient limitation on the level of sporulation and the cadmium adsorption capacity of the bacterium Bacillus sp. isolated from the rhizosphere of endemic soils in the Region of Valparaiso, Chile. The bacteria were subjected to nitrogen limitation in fed-batch mode and were compared to bacteria grown in batch culture without nutrient limitation. The cultures were carried out in a 3 L bioreactor with an external nitrogen supply of ammonium at a flow of 0.123 L h-1. The specific maximum growth rate was 0.42 h-1 in batch and 0.45 h-1 in the exponential phase of the fed-batch. The analysis of sporulation did not show any significant difference between the biomass coming from the fed-batch and batch cultures. It was found that maximum cadmium adsorption capacity varied with culture strategy. The dry biomass grown without nutrient limitation exhibited a maximum adsorption capacity for cadmium of 65.0 mgCd g-1biomass. Conversely, the limited biomass achieved a lower cadmium adsorption capacity of approximately 36.0 mgCd g-1biomass. FTIR analysis showed that nitrogen limitation induced changes in the composition of the outer cell wall, specifically an increase of deacetlylated polysaccharides, reducing the relative amount of secondary amines and proteins from the peptidoglycan matrix. Amino groups from acetylated polysaccharides and proteins have been associated elsewhere with greater cadmium affinity, which could explain the poor results obtained with the nitrogen-restricted biomass. This study shows that new physiological states displaying different adsorption capabilities were effectively obtained by engineering the cell coverage of the bacteria using varying culture strategies. The fed-batch culture proved to be a valuable tool for studying PGPR strains for biosorption and other applications. Exploring diverse nutrient limitations and other pollutants in this bacterium and other members of the PGPR family offer great opportunities to tailor biosorption strategies based on specific conditions, ultimately contributing to sustainable environmental solutions.
Collapse
Affiliation(s)
- Robinson Soto-Ramírez
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, P.O. Box 4059, Valparaíso, Chile; Facultad de Ingeniería, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 02950, Chile.
| | - Nicolás Vlatten
- Laboratorio de Química Ambiental, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2508017, Chile
| | - Felipe Ruz
- Laboratorio de Química Ambiental, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2508017, Chile
| | - Luigi Tavernini
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, P.O. Box 4059, Valparaíso, Chile
| | - María-Gabriela Lobos
- Laboratorio de Química Ambiental, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2508017, Chile
| |
Collapse
|
2
|
Macur K, Roszkowska A, Czaplewska P, Miękus-Purwin N, Klejbor I, Moryś J, Bączek T. Pressure Cycling Technology Combined With MicroLC-SWATH Mass Spectrometry for the Analysis of Sex-Related Differences Between Male and Female Cerebella: A Promising Approach to Investigating Proteomics Differences in Psychiatric and Neurodegenerative Diseases. Proteomics Clin Appl 2024; 18:e202400001. [PMID: 39205462 DOI: 10.1002/prca.202400001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/19/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Pressure cycling technology (PCT) coupled with data-independent sequential window acquisition of all theoretical mass spectra (SWATH-MS) can be a powerful tool for identifying and quantifying biomarkers (e.g., proteins) in complex biological samples. Mouse models are frequently used in brain studies, including those focusing on different neurodevelopmental and psychiatric disorders. More and more pieces of evidence have suggested that sex-related differences in the brain impact the rates, clinical manifestations, and therapy outcomes of these disorders. However, sex-based differences in the proteomic profiles of mouse cerebella have not been widely investigated. EXPERIMENTAL DESIGN In this pilot study, we evaluate the applicability of coupling PCT sample preparation with microLC-SWATH-MS analysis to map and identify differences in the proteomes of two female and two male mice cerebellum samples. RESULTS We identified and quantified 174 proteins in mice cerebella. A comparison of the proteomic profiles revealed that the levels of 11 proteins in the female and male mice cerebella varied significantly. CONCLUSIONS AND CLINICAL RELEVANCE Although this study utilizes a small sample, our results indicate that the studied male and female mice cerebella possessed differing proteome compositions, mainly with respect to energy metabolism processes.
Collapse
Affiliation(s)
- Katarzyna Macur
- Core Facility Laboratories, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Paulina Czaplewska
- Core Facility Laboratories, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Miękus-Purwin
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Ilona Klejbor
- Department of Anatomy, Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | - Janusz Moryś
- Department of Normal Anatomy, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
- Department of Nursing and Medical Rescue, Institute of Health Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
3
|
Epifane-de-Assunção MC, Bispo AG, Ribeiro-Dos-Santos Â, Cavalcante GC. Molecular Alterations in Core Subunits of Mitochondrial Complex I and Their Relation to Parkinson's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04526-5. [PMID: 39331353 DOI: 10.1007/s12035-024-04526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Among the myriad of neurodegenerative diseases, mitochondrial dysfunction represents a nexus regarding their pathogenic processes, in which Parkinson's disease (PD) is notable for inherent vulnerability of the dopaminergic pathway to energy deficits and oxidative stress. Underlying this dysfunction, the occurrence of defects in complex I (CI) derived from molecular alterations in its subunits has been described in the literature. However, the mechanistic understanding of the processes mediating the occurrence of mitochondrial dysfunction mediated by CI deficiency in PD remains uncertain and subject to some inconsistencies. Therefore, this review analyzed existing evidence that may explain the relationship between molecular alterations in the core subunits of CI, recognized for their direct contribution to its enzymatic performance, and the pathogenesis of PD. As a result, we discussed 47 genetic variants in the 14 core subunits of CI, which, despite some discordant results, were predominantly associated with varying degrees of deficiency in complex enzymatic activity, as well as defects in supercomplex biogenesis and CI itself. Finally, we hypothesized about the relationship of the described alterations with the pathogenesis of PD and offered some suggestions that may aid in the design of future studies aimed at elucidating the relationship between such alterations and PD.
Collapse
Affiliation(s)
- Matheus Caetano Epifane-de-Assunção
- Laboratório de Genética Humana e Médica, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal Do Pará, Belém, 66075-110, Brazil
| | - Ana Gabrielle Bispo
- Laboratório de Genética Humana e Médica, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal Do Pará, Belém, 66075-110, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal Do Pará, Belém, 66075-110, Brazil
| | - Giovanna C Cavalcante
- Laboratório de Genética Humana e Médica, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal Do Pará, Belém, 66075-110, Brazil.
- Laboratório de Metabolismo Energético, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
4
|
Cappelletti M, Pallotta L, Vona R, Tinari A, Pisano A, Casella G, Crocetti D, Carlomagno D, Tattoli I, Giordano C, Matarrese P, Severi C. The Unexplored Role of Mitochondria-Related Oxidative Stress in Diverticular Disease. Int J Mol Sci 2024; 25:9680. [PMID: 39273627 PMCID: PMC11395029 DOI: 10.3390/ijms25179680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
The pathophysiology of diverticular disease (DD) is not well outlined. Recent studies performed on the DD human ex vivo model have shown the presence of a predominant transmural oxidative imbalance whose origin remains unknown. Considering the central role of mitochondria in oxidative stress, the present study evaluates their involvement in the alterations of DD clinical phenotypes. Colonic surgical samples of patients with asymptomatic diverticulosis, complicated DD, and controls were analyzed. Electron microscopy, protein expression, and cytofluorimetric analyses were performed to assess the contribution of mitochondrial oxidative stress. Functional muscle activity was tested on cells in response to contractile and relaxant agents. To assess the possibility of reverting oxidative damages, N-acetylcysteine was tested on an in vitro model. Compared with the controls, DD tissues showed a marketed increase in mitochondrial number and fusion accompanied by the altered mitochondrial electron transport chain complexes. In SMCs, the mitochondrial mass increase was accompanied by altered mitochondrial metabolic activity supported by a membrane potential decrease. Ulteriorly, a decrease in antioxidant content and altered contraction-relaxation dynamics reverted by N-acetylcysteine were observed. Therefore, the oxidative stress-driven alterations resulted in mitochondrial impairment. The beneficial effects of antioxidant treatments open new possibilities for tailored therapeutic strategies that have not been tested for this disease.
Collapse
Affiliation(s)
- Martina Cappelletti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Lucia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Rosa Vona
- Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Antonella Tinari
- Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Annalinda Pisano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Giovanni Casella
- Department of Surgical Science, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Daniele Crocetti
- Department of Surgical Science, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Dominga Carlomagno
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Ivan Tattoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| |
Collapse
|
5
|
Yang J, Zhou Z, Ding X, He R, Li A, Wei Y, Wang M, Peng Z, Jiang Z, Zhao D, Li X, Leng X, Dong H. Gubi Zhitong formula alleviates osteoarthritis in vitro and in vivo via regulating BNIP3L-mediated mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155279. [PMID: 38581801 DOI: 10.1016/j.phymed.2023.155279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 04/08/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is characterized by degeneration of articular cartilage, leading to joint pain and dysfunction. Gubi Zhitong formula (GBZTF), a traditional Chinese medicine formula, has been used in the clinical treatment of OA for decades, demonstrating definite efficacy. However, its mechanism of action remains unclear, hindering its further application. METHODS The ingredients of GBZTF were analyzed and performed with liquid chromatography-mass spectrometry (LC-MS). 6 weeks old SD rats were underwent running exercise (25 m/min, 80 min, 0°) to construct OA model with cartilage wear and tear. It was estimated by Micro-CT, Gait Analysis, Histological Stain. RNA-seq technology was performed with OA Rats' cartilage, and primary chondrocytes induced by IL-1β (mimics OA chondrocytes) were utilized to evaluated and investigated the mechanism of how GBZTF protected OA cartilage from being damaged with some functional experiments. RESULTS A total of 1006 compounds were identified under positive and negative ion modes by LC-MS. Then, we assessed the function of GBZTF through in vitro and vivo. It was found GBZTF could significantly up-regulate OA rats' limb coordination and weight-bearing capacity, and reduce the surface and sub-chondral bone erosions of OA joints, and protect cartilage from being destroyed by inflammatory factors (iNOS, IL-6, IL-1β, TNF- α, MMP13, ADAMTS5), and promote OA chondrocytes proliferation and increase the S phage of cell cycle. In terms of mechanism, RNA-seq analysis of cartilage tissues revealed 1,778 and 3,824 differentially expressed genes (DEGs) in model vs control group and GBZTF vs model group, respectively. The mitophagy pathway was most significantly enriched in these DEGs. Further results of subunits of OA chondrocytes confirmed that GBZTF could alleviate OA-associated inflammation and cartilage damage through modulation BCL2 interacting protein 3-like (BNIP3L)-mediated mitophagy. CONCLUSION The therapeutic effectiveness of GBZTF on OA were first time verified in vivo and vitro through functional experiments and RNA-seq, which provides convincing evidence to support the molecular mechanisms of GBZTF as a promising therapeutic decoction for OA.
Collapse
Affiliation(s)
- Jie Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Zhenwei Zhou
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Xiaolei Ding
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Rong He
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Ailin Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Yuchi Wei
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Mingyue Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Zeyu Peng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Zhanliang Jiang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Daqing Zhao
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Xiangyan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China; Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China.
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China.
| |
Collapse
|
6
|
Morelli AM, Scholkmann F. Should the standard model of cellular energy metabolism be reconsidered? Possible coupling between the pentose phosphate pathway, glycolysis and extra-mitochondrial oxidative phosphorylation. Biochimie 2024; 221:99-109. [PMID: 38307246 DOI: 10.1016/j.biochi.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The process of cellular respiration occurs for energy production through catabolic reactions, generally with glucose as the first process step. In the present work, we introduce a novel concept for understanding this process, based on our conclusion that glucose metabolism is coupled to the pentose phosphate pathway (PPP) and extra-mitochondrial oxidative phosphorylation in a closed-loop process. According to the current standard model of glycolysis, glucose is first converted to glucose 6-phosphate (glucose 6-P) and then to fructose 6-phosphate, glyceraldehyde 3-phosphate and pyruvate, which then enters the Krebs cycle in the mitochondria. However, it is more likely that the pyruvate will be converted to lactate. In the PPP, glucose 6-P is branched off from glycolysis and used to produce NADPH and ribulose 5-phosphate (ribulose 5-P). Ribulose 5-P can be converted to fructose 6-P and glyceraldehyde 3-P. In our view, a circular process can take place in which the ribulose 5-P produced by the PPP enters the glycolysis pathway and is then retrogradely converted to glucose 6-P. This process is repeated several times until the complete degradation of glucose 6-P. The role of mitochondria in this process is to degrade lipids by beta-oxidation and produce acetyl-CoA; the function of producing ATP appears to be only secondary. This proposed new concept of cellular bioenergetics allows the resolution of some previously unresolved controversies related to cellular respiration and provides a deeper understanding of metabolic processes in the cell, including new insights into the Warburg effect.
Collapse
Affiliation(s)
| | - Felix Scholkmann
- Neurophotonics and Biosignal Processing Research Group, Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Jaquet M, Bengue M, Lambert K, Carnac G, Missé D, Bisbal C. Human muscle cells sensitivity to chikungunya virus infection relies on their glycolysis activity and differentiation stage. Biochimie 2024; 218:85-95. [PMID: 37716499 DOI: 10.1016/j.biochi.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
Changes to our environment have led to the emergence of human pathogens such as chikungunya virus. Chikungunya virus infection is today a major public health concern. It is a debilitating chronic disease impeding patients' mobility, affecting millions of people. Disease development relies on skeletal muscle infection. The importance of skeletal muscle in chikungunya virus infection led to the hypothesis that it could serve as a viral reservoir and could participate to virus persistence. Here we questioned the interconnection between skeletal muscle cells metabolism, their differentiation stage and the infectivity of the chikungunya virus. We infected human skeletal muscle stem cells at different stages of differentiation with chikungunya virus to study the impact of their metabolism on virus production and inversely the impact of virus on cell metabolism. We observed that chikungunya virus infectivity is cell differentiation and metabolism-dependent. Chikungunya virus interferes with the cellular metabolism in quiescent undifferentiated and proliferative muscle cells. Moreover, activation of chikungunya infected quiescent muscle stem cells, induces their proliferation, increases glycolysis and amplifies virus production. Therefore, our results showed that Chikungunya virus infectivity and the antiviral response of skeletal muscle cells relies on their energetic metabolism and their differentiation stage. Then, muscle stem cells could serve as viral reservoir producing virus after their activation.
Collapse
Affiliation(s)
- M Jaquet
- PhyMedExp, Univ. Montpellier, INSERM U1046, CNRS UMR 9214, 34295, Montpellier Cedex 5, France; MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394, Montpellier, France
| | - M Bengue
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394, Montpellier, France
| | - K Lambert
- PhyMedExp, Univ. Montpellier, INSERM U1046, CNRS UMR 9214, 34295, Montpellier Cedex 5, France
| | - G Carnac
- PhyMedExp, Univ. Montpellier, INSERM U1046, CNRS UMR 9214, 34295, Montpellier Cedex 5, France
| | - D Missé
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394, Montpellier, France.
| | - C Bisbal
- PhyMedExp, Univ. Montpellier, INSERM U1046, CNRS UMR 9214, 34295, Montpellier Cedex 5, France.
| |
Collapse
|
8
|
Kursvietiene L, Kopustinskiene DM, Staneviciene I, Mongirdiene A, Kubová K, Masteikova R, Bernatoniene J. Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions. Antioxidants (Basel) 2023; 12:2056. [PMID: 38136176 PMCID: PMC10740678 DOI: 10.3390/antiox12122056] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is one of the most serious public health issues worldwide, demanding ongoing efforts to find novel therapeutic agents and approaches. Amid growing interest in the oncological applications of phytochemicals, particularly polyphenols, resveratrol-a naturally occurring polyphenolic stilbene derivative-has emerged as a candidate of interest. This review analyzes the pleiotropic anti-cancer effects of resveratrol, including its modulation of apoptotic pathways, cell cycle regulation, inflammation, angiogenesis, and metastasis, its interaction with cancer stem cells and the tumor microenvironment. The effects of resveratrol on mitochondrial functions, which are crucial to cancer development, are also discussed. Future research directions are identified, including the elucidation of specific molecular targets, to facilitate the clinical translation of resveratrol in cancer prevention and therapy.
Collapse
Affiliation(s)
- Lolita Kursvietiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Inga Staneviciene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Ausra Mongirdiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Kateřina Kubová
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Ruta Masteikova
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
9
|
Nunn AVW, Guy GW, Bell JD. Informing the Cannabis Conjecture: From Life's Beginnings to Mitochondria, Membranes and the Electrome-A Review. Int J Mol Sci 2023; 24:13070. [PMID: 37685877 PMCID: PMC10488084 DOI: 10.3390/ijms241713070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Before the late 1980s, ideas around how the lipophilic phytocannabinoids might be working involved membranes and bioenergetics as these disciplines were "in vogue". However, as interest in genetics and pharmacology grew, interest in mitochondria (and membranes) waned. The discovery of the cognate receptor for tetrahydrocannabinol (THC) led to the classification of the endocannabinoid system (ECS) and the conjecture that phytocannabinoids might be "working" through this system. However, the how and the "why" they might be beneficial, especially for compounds like CBD, remains unclear. Given the centrality of membranes and mitochondria in complex organisms, and their evolutionary heritage from the beginnings of life, revisiting phytocannabinoid action in this light could be enlightening. For example, life can be described as a self-organising and replicating far from equilibrium dissipating system, which is defined by the movement of charge across a membrane. Hence the building evidence, at least in animals, that THC and CBD modulate mitochondrial function could be highly informative. In this paper, we offer a unique perspective to the question, why and how do compounds like CBD potentially work as medicines in so many different conditions? The answer, we suggest, is that they can modulate membrane fluidity in a number of ways and thus dissipation and engender homeostasis, particularly under stress. To understand this, we need to embrace origins of life theories, the role of mitochondria in plants and explanations of disease and ageing from an adaptive thermodynamic perspective, as well as quantum mechanics.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Geoffrey W. Guy
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
| |
Collapse
|
10
|
Guha S, Sesili S, Mir IH, Thirunavukkarasu C. Epigenetics and mitochondrial dysfunction insights into the impact of the progression of non-alcoholic fatty liver disease. Cell Biochem Funct 2023; 41:4-19. [PMID: 36330539 DOI: 10.1002/cbf.3763] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
A metabolic problem occurs when regular functions of the body are disrupted due to an undesirable imbalance. Nonalcoholic fatty liver disease (NAFLD) is considered as one of the most common in this category. NAFLD is subclassified and progresses from lipid accumulation to cirrhosis before advancing to hepatocellular cancer. In spite of being a critical concern, the standard treatment is inadequate. Metformin, silymarin, and other nonspecific medications are used in the management of NAFLD. Aside from this available medicine, maintaining a healthy lifestyle has been emphasized as a means of combating this. Epigenetics, which has been attributed to NAFLD, is another essential feature of this disease that has emerged as a result of several sorts of research. The mechanisms by which DNA methylation, noncoding RNA, and histone modification promote NAFLD have been extensively researched. Another organelle, mitochondria, which play a pivotal role in biological processes, contributes to the global threat. Individuals with NAFLD have been documented to have a multitude of alterations and malfunctioning. Mitochondria are mainly concerned with the process of energy production and regulation of the signaling pathway on which the fate of a cell relies. Modulation of mitochondria leads to elevated lipid deposition in the liver. Further, changes in oxidation states result in an impaired balance between the antioxidant system and reactive oxygen species directly linked to mitochondria. Hence mitochondria have a definite role in potentiating NAFLD. In this regard, it is essential to consider the role of epigenetics as well as mitochondrial contribution while developing a medication or therapy with the desired accuracy.
Collapse
Affiliation(s)
- Shreyoshi Guha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Selvam Sesili
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | |
Collapse
|
11
|
Epigenetic Alterations under Oxidative Stress in Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6439097. [PMID: 36071870 PMCID: PMC9444469 DOI: 10.1155/2022/6439097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
Abstract
Epigenetic regulation of gene expression, including DNA methylation and histone modifications, provides finely tuned responses for cells that undergo cellular environment changes. Abundant evidences have demonstrated the detrimental role of oxidative stress in various human pathogenesis since oxidative stress results from the imbalance between reactive oxygen species (ROS) accumulation and antioxidant defense system. Stem cells can self-renew themselves and meanwhile have the potential to differentiate into many other cell types. As some studies have described the effects of oxidative stress on homeostasis and cell fate decision of stem cells, epigenetic alterations have emerged crucial for mediating the stem cell behaviours under oxidative stress. Here, we review recent findings on the oxidative effects on DNA and histone modifications in stem cells. We propose that epigenetic alterations and oxidative stress may influence each other in stem cells.
Collapse
|
12
|
Heroin Addiction Induces Axonal Transport Dysfunction in the Brain Detected by In Vivo MRI. Neurotox Res 2022; 40:1070-1085. [PMID: 35759084 DOI: 10.1007/s12640-022-00533-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Heroin is a highly addictive drug that causes axonal damage. Here, manganese-enhanced magnetic resonance imaging (MEMRI) was used to dynamically monitor axonal transport at different stages of heroin addiction. Rat models of heroin addiction (HA) and prolonged heroin addiction (PHA) were established by injecting rats with heroin at different stages. Heroin-induced learning and memory deficits were evaluated in the Morris water maze (MWM), and MEMRI was used to dynamically evaluate axonal transport in the olfactory pathway. The expression of proteins related to axonal structure and function was also assessed by Western blotting. Transmission electron microscopy (TEM) was used to observe ultrastructural changes, and protein levels of neurofilament heavy chain (NF-H) were analyzed by immunofluorescence staining. HA rats, especially PHA rats, exhibited worse spatial learning and memory than control rats. Compared with HA rats and control rats, PHA rats exhibited significantly longer escape latencies, significantly fewer platform-location crossings, and significantly more time in the target quadrant during the MWM test. Mn2+ transport was accelerated in HA rats. PHA rats exhibited severely reduced Mn2+ transport, and the axonal transport rate (ATR) was significantly lower in these rats than in control rats (P < 0.001). The levels of cytoplasmic dynein and kinesin-1 were significantly decreased in the PHA group than in the control group (P < 0.001); additionally, the levels of energy-related proteins, including cytochrome c oxidase (COX) IV and ATP synthase subunit beta (ATPB), were lower in the PHA group (P < 0.001). The brains of heroin-exposed rats displayed an abnormal ultrastructure, with neuronal apoptosis and mitochondrial dysfunction. Heroin exposure decreased the expression of NF-H, as indicated by significantly reduced staining intensities in tissues from HA and PHA rats (P < 0.05). MEMRI detected axonal transport dysfunction caused by long-term repeated exposure to heroin. The main causes of axonal transport impairment may be decreases in the levels of motor proteins and mitochondrial dysfunction. This study shows that MEMRI is a potential tool for visualizing axonal transport in individuals with drug addictions, providing a new way to evaluate addictive encephalopathy.
Collapse
|
13
|
Yan R, Zhou H, Zheng X, Zhang X. RNA-seq analysis of green tea polyphenols modulation of differently expressed genes in Enterococcus faecalis under low pH. Lett Appl Microbiol 2022; 74:970-980. [PMID: 35247280 DOI: 10.1111/lam.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
Enterococcus faecalis (E. faecalis) is a resident bacterium in the host. The increase of internal stress like low pH may affect the biological effects of E. faecalis. The prebiotic-like function of tea polyphenols can enhance the beneficial effects of its tolerance to environmental stress. In this study, RNA-sequence analysis was used to explore the protective effect of green tea polyphenols (GTP) on E. faecalis under low pH stress. A total of 28 genes were found to be responsive to GTP under low pH stress, including 16 up-regulated and 12 down-regulated. GTP intervention can partly relieve some undesired negative influences, such as the down-regulation of the base excision repair gene and amino acid transport and metabolism gene. The significantly changes were associated with selenocompound metabolism and aminoacyl-tRNA biosynthesis after the intervention of GTP. The present study provided new insights into the growth and continuous adaptation of E. faecalis under stress.
Collapse
Affiliation(s)
- Ruonan Yan
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, P.R. China
| | - Huan Zhou
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Xiaojie Zheng
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, P.R. China
| |
Collapse
|
14
|
Silverstein TP. The Proton in Biochemistry: Impacts on Bioenergetics, Biophysical Chemistry, and Bioorganic Chemistry. Front Mol Biosci 2021; 8:764099. [PMID: 34901158 PMCID: PMC8661011 DOI: 10.3389/fmolb.2021.764099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
The proton is the smallest atomic particle, and in aqueous solution it is the smallest hydrated ion, having only two waters in its first hydration shell. In this article we survey key aspects of the proton in chemistry and biochemistry, starting with the definitions of pH and pK a and their application inside biological cells. This includes an exploration of pH in nanoscale spaces, distinguishing between bulk and interfacial phases. We survey the Eigen and Zundel models of the structure of the hydrated proton, and how these can be used to explain: a) the behavior of protons at the water-hydrophobic interface, and b) the extraordinarily high mobility of protons in bulk water via Grotthuss hopping, and inside proteins via proton wires. Lastly, we survey key aspects of the effect of proton concentration and proton transfer on biochemical reactions including ligand binding and enzyme catalysis, as well as pH effects on biochemical thermodynamics, including the Chemiosmotic Theory. We find, for example, that the spontaneity of ATP hydrolysis at pH ≥ 7 is not due to any inherent property of ATP (or ADP or phosphate), but rather to the low concentration of H+. Additionally, we show that acidification due to fermentation does not derive from the organic acid waste products, but rather from the proton produced by ATP hydrolysis.
Collapse
Affiliation(s)
- Todd P Silverstein
- Chemistry Department (emeritus), Willamette University, Salem, OR, United States
| |
Collapse
|
15
|
Morelli AM, Chiantore M, Ravera S, Scholkmann F, Panfoli I. Myelin sheath and cyanobacterial thylakoids as concentric multilamellar structures with similar bioenergetic properties. Open Biol 2021; 11:210177. [PMID: 34905702 PMCID: PMC8670949 DOI: 10.1098/rsob.210177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is a surprisingly high morphological similarity between multilamellar concentric thylakoids in cyanobacteria and the myelin sheath that wraps the nerve axons. Thylakoids are multilamellar structures, which express photosystems I and II, cytochromes and ATP synthase necessary for the light-dependent reaction of photosynthesis. Myelin is a multilamellar structure that surrounds many axons in the nervous system and has long been believed to act simply as an insulator. However, it has been shown that myelin has a trophic role, conveying nutrients to the axons and producing ATP through oxidative phosphorylation. Therefore, it is tempting to presume that both membranous structures, although distant in the evolution tree, share not only a morphological but also a functional similarity, acting in feeding ATP synthesized by the ATP synthase to the centre of the multilamellar structure. Therefore, both molecular structures may represent a convergent evolution of life on Earth to fulfill fundamentally similar functions.
Collapse
Affiliation(s)
| | - Mariachiara Chiantore
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Silvia Ravera
- Experimental Medicine Department, University of Genova, Genova, Italy
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Isabella Panfoli
- Experimental Medicine Department, University of Genova, Genova, Italy
| |
Collapse
|
16
|
Pant A, Chittayil Krishnakumar K, Chakkalaparambil Dileep N, Yamana M, Meenakshisundaran Alamelu N, Paithankar K, Amash V, Amere Subbarao S. Hsp90 and its mitochondrial homologue TRAP-1 independently regulate hypoxia adaptations in Caenorhabditis elegans. Mitochondrion 2021; 60:101-111. [PMID: 34365052 DOI: 10.1016/j.mito.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022]
Abstract
Mitochondrial adaptations to various environmental cues contribute to cellular and organismal adaptations across multiple model organisms. Due to increased complexity, a direct connection between mitochondrial integrity and oxygen fluctuations, and survival fitness was not demonstrated. Here, using C. elegans as a model system, we studied the role of HIF-1, Hsp90, and TRAP-1 in mitochondrial adaptations during chemical hypoxia. We show that Hsp90mt (Hsp90 mutant) but not HIF-1mt (HIF-1 mutant) affects hypoxia adaptation in nematodes. TRAP-1KD (TRAP-1 knockdown) interfered with the survival and fecundity of worms. Compared to Hsp90mt, TRAP-1KD has induced a significant decrease in mitochondrial integrity and oxygen consumption rate. The complex I inhibitor rotenone did not affect ATP levels in Hsp90mt worms. However, ATP levels were decreased in TRAP-1KD worms under similar conditions. The glucose restriction has reduced, and glucose supplementation has increased the survival rate in Hsp90mt worms. Neither glucose restriction nor glucose supplementation has significantly affected the survival of TRAP-1KD worms in response to hypoxia. However, TRAP-1 inhibition using a nanocarrier drug has dramatically reduced the survival rate in response to hypoxia. Our results suggest that Hsp90 and TRAP-1 independently regulate hypoxia adaptations and metabolic plasticity in C. elegans. Considering the emerging roles of TRAP-1 in altered energy metabolism and cellular adaptations, our findings gain importance.
Collapse
Affiliation(s)
- Aakanksha Pant
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | | | | | - Meghana Yamana
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | | | | | | | | |
Collapse
|
17
|
Nath S. Charge transfer across biomembranes: A solution to the conundrum of high desolvation free energy penalty in ion transport. Biophys Chem 2021; 275:106604. [PMID: 33957504 DOI: 10.1016/j.bpc.2021.106604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 02/08/2023]
Abstract
Charge transfer across membranes is an important problem in a wide variety of fundamental physicochemical and biological processes. Since Mitchell's concept of the ion well advanced in 1968, several models of ion translocation across biomembranes, for instance through the membrane-bound FO portion of ATP synthase have been proposed. None of these models has considered the large desolvation free energy penalty of ~500 meV incurred in transferring a protonic charge from the aqueous phase into the membrane that hinders such charge transfer processes. The difficulty has been pointed out repeatedly. However, the problem of how the adverse ∆Gdesolvation barrier is overcome in order to enable rapid ion translocation in biomembranes has not been satisfactorily resolved. Hence the fact that the self-energy of the charges has been overlooked can be regarded as a main source of confusion in the field of bioenergetics. Further, in order to consider charges of a finite size (and not just point charges), the free energy of transferring the ions from water into a membrane phase of lower dielectric εm needs to be evaluated. Here a solution to the longstanding conundrum has been proposed by including the bound anion - the second ion in Nath's two-ion theory of energy coupling and ATP synthesis - in the free energy calculations. The mechanistic importance of the H+ - A- charge pair in causing rotation and ATP synthesis by ion-protein interactions is highlighted. The ∆G calculations have been performed by using the Kirkwood-Tanford-Warshel (KTW) theory that takes into account the self-energies of the ions. The results show that the adverse ∆Gdesolvation can be almost exactly compensated by the sum of the electrostatic free energy of the charge-charge interactions and the dipole solvation energy for long-range ion pairs. Results of free energy compensation using the KTW theory have been compared with experimental data on the ∆G of ion pairs and shown to be in reasonable agreement. A general thermodynamic cycle for coupled ion transfer has been constructed to further elucidate facilitated ion permeation between water and membrane phases. Molecular interpretations of the results and their implications for various mechanisms of energy transduction have been discussed. We firmly believe that use of electrostatic theories such as the KTW theory that properly include the desolvation free energy penalty arising from the self-energy of the relevant ions are crucial for quantifying charge transfer processes in bioenergetics. Finally, the clear-cut implication is that proton-only and single-ion theories of ATP synthesis, such as the chemiosmotic theory, are grossly inadequate to comprehend energy storage and transduction in biological processes.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
18
|
Nath S. Coupling mechanisms in ATP synthesis: Rejoinder to "Response to molecular-level understanding of biological energy coupling and transduction". Biophys Chem 2021; 272:106579. [PMID: 33773332 DOI: 10.1016/j.bpc.2021.106579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022]
Abstract
Recently, an exchange of views on key fundamental aspects of biological energy coupling and ATP synthesis in the vital process of oxidative phosphorylation appeared in the pages of this journal. The very difficult scientific problems are analyzed and clarified. Errors in the mathematical/thermodynamic equations of a previous analysis have been identified that invalidate previous assertions, and the correct equations are derived. The major differences between the two competing models - localized versus delocalized - for biological energy coupling and transduction are discussed from physical, chemical, and mathematical perspectives. The opposing views are summarized, so that the reader can assess for himself or herself the merits of the two coupling mechanisms. A fresh attempt has been made to go to the root of bioenergetics by calculating the desolvation free energy barrier, ∆Gdesolvation for ion transport across biomembranes. Several constructive suggestions are made that have the power to resolve the basic contradictions and the areas of fundamental conflict, and reach a consensus by catalyzing the progress of future research in this interdisciplinary field.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
19
|
Baluška F, Miller WB, Reber AS. Biomolecular Basis of Cellular Consciousness via Subcellular Nanobrains. Int J Mol Sci 2021; 22:ijms22052545. [PMID: 33802617 PMCID: PMC7961929 DOI: 10.3390/ijms22052545] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cells emerged at the very beginning of life on Earth and, in fact, are coterminous with life. They are enclosed within an excitable plasma membrane, which defines the outside and inside domains via their specific biophysical properties. Unicellular organisms, such as diverse protists and algae, still live a cellular life. However, fungi, plants, and animals evolved a multicellular existence. Recently, we have developed the cellular basis of consciousness (CBC) model, which proposes that all biological awareness, sentience and consciousness are grounded in general cell biology. Here we discuss the biomolecular structures and processes that allow for and maintain this cellular consciousness from an evolutionary perspective.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany
- Correspondence:
| | | | - Arthur S. Reber
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|