1
|
Chen J, Luo H, Liu J, Wang W, Ma J, Hou C, Jiang X, Zhou Z, Li H. Application status and prospects of multimodal EEG-fMRI in HIV-associated neurocognitive disorders. Front Neurol 2024; 15:1479197. [PMID: 39703361 PMCID: PMC11655344 DOI: 10.3389/fneur.2024.1479197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
HIV-associated neurocognitive disorders (HAND) are one of the common complications in people living with HIV (PLWH), which can affect their attention, working memory, and other related cognitive functions. With the widespread use of combination antiretroviral therapy (cART), the incidence of HAND has declined. However, HAND is still an important complication of HIV, which not only affects the quality of life of patients but also affects their adherence to HIV treatment. Its diagnosis mainly relies on neurocognitive tests, which have a certain degree of subjectivity, making it difficult to diagnose and classify HAND accurately, and there is an urgent need to explore more sensitive biomarkers. Multimodal brain imaging has seen a surge in recent years with simultaneous EEG-fMRI being at the forefront of cognitive multimodal neuroimaging. It is a complementary fusion technique that effectively combines the high spatial resolution of fMRI with the high temporal resolution of EEG, compensating for the shortcomings of a single technique and providing a new method for studying cognitive function. It is expected to reveal the underlying mechanisms of HAND and provide high spatiotemporal warning biomarkers of HAND, which will provide a new perspective for the early diagnosis and treatment of HAND and contribute to the improvement of patient prognosis.
Collapse
Affiliation(s)
- Junzhuo Chen
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Haixia Luo
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jiaojiao Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Juming Ma
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chuanke Hou
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xingyuan Jiang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhongkai Zhou
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Tacke C, Landgraf P, Dieterich DC, Kröger A. The fate of neuronal synapse homeostasis in aging, infection, and inflammation. Am J Physiol Cell Physiol 2024; 327:C1546-C1563. [PMID: 39495249 DOI: 10.1152/ajpcell.00466.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Neuroplasticity is the brain's ability to reorganize and modify its neuronal connections in response to environmental stimuli, experiences, learning, and disease processes. This encompasses a variety of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in neuronal structure and function, and the generation of new neurons. Proper functioning of synapses, which facilitate neuron-to-neuron communication, is crucial for brain activity. Neuronal synapse homeostasis, which involves regulating and maintaining synaptic strength and function in the central nervous system (CNS), is vital for this process. Disruptions in synaptic balance, due to factors like inflammation, aging, or infection, can lead to impaired brain function. This review highlights the main aspects and mechanisms underlying synaptic homeostasis, particularly in the context of aging, infection, and inflammation.
Collapse
Affiliation(s)
- Charlotte Tacke
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Landgraf
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Center for Infection Research, Innate Immunity and Infection Group, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
3
|
Mustafa M, Musselman D, Jayaweera D, da Fonseca Ferreira A, Marzouka G, Dong C. HIV-Associated Neurocognitive Disorder (HAND) and Alzheimer's Disease Pathogenesis: Future Directions for Diagnosis and Treatment. Int J Mol Sci 2024; 25:11170. [PMID: 39456951 PMCID: PMC11508543 DOI: 10.3390/ijms252011170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
HIV-associated neurocognitive disorder (HAND) and Alzheimer's disease (AD) are two neurocognitive disorders with overlapping clinical presentations and pathophysiology. The two have been thought to be two separate entities. However, the introduction and widespread use of antiretroviral therapy (ART) has altered the clinical manifestations of HAND, shifting from a pattern of subcortical dementia to one more akin to cortical dementia, resembling AD. Thus, the line between the two disease entities is not clear-cut. In this review, we discuss the concept of Alzheimer's disease-like dementia (ADLD) in HIV, which describes this phenomenon. While the mechanisms of HIV-associated ADLD remain to be elucidated, potential mechanisms include HIV-specific pathways, including epigenetic imprinting from initial viral infection, persistent and low viral load (which can only be detected by ultra-sensitive PCR), HIV-related inflammation, and putative pathways underlying traditional AD risk factors. Importantly, we have shown that HIV-specific microRNAs (miRs) encapsulated in extracellular vesicles (EV-miRs) play an important role in mediating the detrimental effects in the cardiovascular system. A useful preclinical model to study ADLD would be to expose AD mice to HIV-positive EVs to identify candidate EV-miRs that mediate the HIV-specific effects underlying ADLD. Characterization of the candidate EV-miRs may provide novel therapeutic armamentaria for ADLD.
Collapse
Affiliation(s)
- Mohammed Mustafa
- Department of Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.M.); (D.J.)
| | - Dominique Musselman
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Dushyantha Jayaweera
- Department of Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.M.); (D.J.)
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Andrea da Fonseca Ferreira
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - George Marzouka
- Department of Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.M.); (D.J.)
- Division of Cardiovascular Disease, Department of Medicine, Miami VA Health System, University of Miami, Miami, FL 33136, USA
| | - Chunming Dong
- Department of Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.M.); (D.J.)
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Division of Cardiovascular Disease, Department of Medicine, Miami VA Health System, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
4
|
Bhardwaj G, Riadi Y, Afzal M, Bansal P, Kaur H, Deorari M, Tonk RK, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Thangavelu L, Saleem S. The hidden threat: Environmental toxins and their effects on gut microbiota. Pathol Res Pract 2024; 255:155173. [PMID: 38364649 DOI: 10.1016/j.prp.2024.155173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The human gut microbiota (GM), which consists of a complex and diverse ecosystem of bacteria, plays a vital role in overall wellness. However, the delicate balance of this intricate system is being compromised by the widespread presence of environmental toxins. The intricate connection between contaminants in the environment and human well-being has garnered significant attention in recent times. Although many environmental pollutants and their toxicity have been identified and studied in laboratory settings and animal models, there is insufficient data concerning their relevance to human physiology. Consequently, research on the toxicity of environmental toxins in GM has gained prominence in recent years. Various factors, such as air pollution, chemicals, heavy metals, and pesticides, have a detrimental impact on the composition and functioning of the GM. This comprehensive review aims to comprehend the toxic effects of numerous environmental pollutants, including antibiotics, endocrine-disrupting chemicals, heavy metals, and pesticides, on GM by examining recent research findings. The current analysis concludes that different types of environmental toxins can lead to GM dysbiosis and have various potential adverse effects on the well-being of animals. We investigate the alterations to the GM composition induced by contaminants and their impact on overall well-being, providing a fresh perspective on research related to pollutant exposure.
Collapse
Affiliation(s)
- Gautam Bhardwaj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Lakshmi Thangavelu
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Shakir Saleem
- Department of Public Health. College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Hussain MS, Gupta G, Samuel VP, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Khan R, Altwaijry N, Patel S, Patel A, Singh SK, Dua K. Immunopathology of herpes simplex virus-associated neuroinflammation: Unveiling the mysteries. Rev Med Virol 2024; 34:e2491. [PMID: 37985599 DOI: 10.1002/rmv.2491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
The immunopathology of herpes simplex virus (HSV)-associated neuroinflammation is a captivating and intricate field of study within the scientific community. HSV, renowned for its latent infection capability, gives rise to a spectrum of neurological expressions, ranging from mild symptoms to severe encephalitis. The enigmatic interplay between the virus and the host's immune responses profoundly shapes the outcome of these infections. This review delves into the multifaceted immune reactions triggered by HSV within neural tissues, intricately encompassing the interplay between innate and adaptive immunity. Furthermore, this analysis delves into the delicate equilibrium between immune defence and the potential for immunopathology-induced neural damage. It meticulously dissects the roles of diverse immune cells, cytokines, and chemokines, unravelling the intricacies of neuroinflammation modulation and its subsequent effects. By exploring HSV's immune manipulation and exploitation mechanisms, this review endeavours to unveil the enigmas surrounding the immunopathology of HSV-associated neuroinflammation. This comprehensive understanding enhances our grasp of viral pathogenesis and holds promise for pioneering therapeutic strategies designed to mitigate the neurological ramifications of HSV infections.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences, Ras Al Khaimah, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samir Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat, India
| | - Archita Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, New South Wales, Australia
| |
Collapse
|
6
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
7
|
Bruno F, Abondio P, Bruno R, Ceraudo L, Paparazzo E, Citrigno L, Luiselli D, Bruni AC, Passarino G, Colao R, Maletta R, Montesanto A. Alzheimer's disease as a viral disease: Revisiting the infectious hypothesis. Ageing Res Rev 2023; 91:102068. [PMID: 37704050 DOI: 10.1016/j.arr.2023.102068] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. Two major forms of the disease exist: sporadic - the causes of which have not yet been fully understood - and familial - inherited within families from generation to generation, with a clear autosomal dominant transmission of mutations in Presenilin 1 (PSEN1), 2 (PSEN2) or Amyloid Precursors Protein (APP) genes. The main hallmark of AD consists of extracellular deposits of amyloid-beta (Aβ) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein. An ever-growing body of research supports the viral infectious hypothesis of sporadic forms of AD. In particular, it has been shown that several herpes viruses (i.e., HHV-1, HHV-2, HHV-3 or varicella zoster virus, HHV-4 or Epstein Barr virus, HHV-5 or cytomegalovirus, HHV-6A and B, HHV-7), flaviviruses (i.e., Zika virus, Dengue fever virus, Japanese encephalitis virus) as well as Human Immunodeficiency Virus (HIV), hepatitis viruses (HAV, HBV, HCV, HDV, HEV), SARS-CoV2, Ljungan virus (LV), Influenza A virus and Borna disease virus, could increase the risk of AD. Here, we summarized and discussed these results. Based on these findings, significant issues for future studies are also put forward.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy.
| | - Rossella Bruno
- Sudent at the Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88050 Catanzaro, Italy
| | - Leognano Ceraudo
- Sudent at the Department of Medical and Surgical Sciences, University of Parma, 43121 Parma, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Luigi Citrigno
- National Research Council (CNR) - Institute for Biomedical Research and Innovation - (IRIB), 87050 Mangone, Cosenza, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Rosanna Colao
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy.
| |
Collapse
|
8
|
Pan Z, Wu N, Jin C. Intestinal Microbiota Dysbiosis Promotes Mucosal Barrier Damage and Immune Injury in HIV-Infected Patients. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:3080969. [PMID: 37927531 PMCID: PMC10625490 DOI: 10.1155/2023/3080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/08/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
The intestinal microbiota is an "invisible organ" in the human body, with diverse components and complex interactions. Homeostasis of the intestinal microbiota plays a pivotal role in maintaining the normal physiological process and regulating immune homeostasis. By reviewing more than one hundred related studies concerning HIV infection and intestinal microbiota from 2011 to 2023, we found that human immunodeficiency virus (HIV) infection can induce intestinal microbiota dysbiosis, which not only worsens clinical symptoms but also promotes the occurrence of post-sequelae symptoms and comorbidities. In the early stage of HIV infection, the intestinal mucosal barrier is damaged and a persistent inflammatory response is induced. Mucosal barrier damage and immune injury play a pivotal role in promoting the post-sequelae symptoms caused by HIV infection. This review summarizes the relationship between dysbiosis of the intestinal microbiota and mucosal barrier damage during HIV infection and discusses the potential mechanisms of intestinal barrier damage induced by intestinal microbiota dysbiosis and inflammation. Exploring these molecular mechanisms might provide new ideas to improve the efficacy of HIV treatment and reduce the incidence of post-sequelae symptoms.
Collapse
Affiliation(s)
- Zhaoyi Pan
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Nanping Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changzhong Jin
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Tavasoli A, Gelman BB, Marra CM, Clifford DB, Iudicello JE, Rubin LH, Letendre SL, Tang B, Ellis RJ. Increasing Neuroinflammation Relates to Increasing Neurodegeneration in People with HIV. Viruses 2023; 15:1835. [PMID: 37766242 PMCID: PMC10536802 DOI: 10.3390/v15091835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND HIV infection causes neuroinflammation and immune activation (NIIA) and systemic inflammation and immune activation (SIIA), which in turn drive neurodegeneration (ND). Cross-sectionally, higher levels of NIIA biomarkers correlate with increased biomarkers of ND. A more convincing confirmation would be a longitudinal demonstration. METHODS PWH in the US multisite CHARTER Aging project were assessed at a baseline visit and after 12 years using standardized evaluations. We measured a panel of 14 biomarkers of NIIA, SIIA, and ND in plasma and CSF at two time points and calculated changes from baseline to the 12-year visit. Factor analysis yielded simplified indices of NIIA, SIIA, and ND. RESULTS The CSF NIIA factor analysis yielded Factor1 loading on soluble tumor necrosis factor type-2 (sTNFR-II) and neopterin, and Factor2, loading on MCP1, soluble CD14, and IL-6. The SIIA factor analysis yielded Factor1 loading on CRP, D-dimer, and Neopterin; Factor2 loading on sTNFR-II. The ND analysis yielded Factor1 loading on Phosphorylated tau (p-tau) and Aβ42; Factor2 loading on NFL. NIIA Factor1, but not Factor2, correlated with increases in CSF NFL (r = 0.370, p = 0.0002). CONCLUSIONS Increases in NIIA and SIIA in PWH were associated with corresponding increases in ND, suggesting that reducing neuro/systemic inflammation might slow or reverse neurodegeneration.
Collapse
Affiliation(s)
- Azin Tavasoli
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA;
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas at Galveston, Galveston, TX 77555, USA;
| | - Christina M. Marra
- Department of Medicine, University of Washington, Seattle, WA 98195, USA;
| | - David B. Clifford
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Jennifer E. Iudicello
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (J.E.I.); (B.T.)
| | - Leah H. Rubin
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Scott L. Letendre
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
| | - Bin Tang
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (J.E.I.); (B.T.)
| | - Ronald J. Ellis
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA;
| |
Collapse
|
10
|
Nouri Nojadeh J, Bildiren Eryilmaz NS, Ergüder BI. CRISPR/Cas9 genome editing for neurodegenerative diseases. EXCLI JOURNAL 2023; 22:567-582. [PMID: 37636024 PMCID: PMC10450213 DOI: 10.17179/excli2023-6155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/29/2023] [Indexed: 08/29/2023]
Abstract
Gene therapy has emerged as a promising therapeutic strategy for various conditions, including blood disorders, ocular disease, cancer, and nervous system disorders. The advent of gene editing techniques has facilitated the ability of researchers to specifically target and modify the eukaryotic cell genome, making it a valuable tool for gene therapy. This can be performed through either in vivo or ex vivo approaches. Gene editing tools, such as zinc finger nucleases, transcription activator-like effector nucleases, and CRISPR-Cas-associated nucleases, can be employed for gene therapy purposes. Among these tools, CRISPR-Cas-based gene editing stands out because of its ability to introduce heritable genome changes by designing short guide RNAs. This review aims to provide an overview of CRISPR-Cas technology and summarizes the latest research on the application of CRISPR/Cas9 genome editing technology for the treatment of the most prevalent neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and Spinocerebellar ataxia.
Collapse
Affiliation(s)
- Jafar Nouri Nojadeh
- Ankara University Faculty of Medicine, Department of Medical Biochemistry, Ankara, Turkey
- The Graduate School of Health Sciences of Ankara University, Ankara, Turkey
| | | | - Berrin Imge Ergüder
- Ankara University Faculty of Medicine, Department of Medical Biochemistry, Ankara, Turkey
- The Graduate School of Health Sciences of Ankara University, Ankara, Turkey
| |
Collapse
|
11
|
Ellis RJ, Fan Y, Grelotti D, Tang B, Letendre S, He JJ. Astrocyte Activation is A Potential Mechanism Underlying Depressed Mood and Apathy in People with HIV. JOURNAL OF NEUROLOGY AND PSYCHOLOGY 2022; 9:05. [PMID: 37205974 PMCID: PMC10194432 DOI: 10.13188/2332-3469.1000048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background Astrocytes become activated with certain infections, and this might alter the brain to trigger or worsen depressed mood. Indeed, astrocytes are chronically activated in people with HIV infection (PWH), who are much more frequently depressed than people without HIV (PWoH). A particularly disabling component of depression in PWH is apathy, a loss of interest, motivation, emotion, and goal-directed behavior. We tested the hypothesis that depression and apathy in PWH would be associated with higher levels of a biomarker of astrocyte activation, glial fibrillary acidic protein (GFAP), in cerebrospinal fluid (CSF). Methods We evaluated PWH in a prospective observational study using the Beck Depression Inventory-II (BDI-II) and additional standardized assessments, including lumbar puncture. We measured GFAP in CSF with a customized direct sandwich ELISA method. Data were analyzed using ANOVA and multivariable regression. Results Participants were 212 PWH, mean (SD) age 40.9±9.14 years, median (IQR) nadir and current CD4 199 (57, 326) and 411 (259, 579), 65.1% on ART, 67.3% virally suppressed. Higher CSF GFAP correlated with worse total BDI-II total scores (Pearson correlation r=0.158, p-value=0.0211), and with worse apathy scores (r=0.205, p=0.0027). The correlation between apathy/depression and GFAP was not in fluenced by other factors such as age or HIV suppression status. Conclusions Astrocyte activation, reflected in higher levels of CSF GFAP, was associated with worse depression and apathy in PWH. Interventions to reduce astrocyte activation -- for example, using a peptide-1 receptor (GLP-1R) agonist -- might be studied to evaluate their impact on disabling depression in PWH.
Collapse
Affiliation(s)
- Ronald J. Ellis
- Departments of Neurosciences and Psychiatry, University of California, San Diego, CA, United States
| | - Yan Fan
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas TX, United States
| | - David Grelotti
- Department of Psychiatry, University of California, San Diego, CA, United States
| | - Bin Tang
- Department of Psychiatry, University of California, San Diego, CA, United States
| | - Scott Letendre
- Departments of Medicine and Psychiatry, University of California, San Diego, CA, United States
| | - Johnny J. He
- Department of Microbiology and Immunology, Chicago Medical School Rosalind Franklin University, North Chicago, IL, United States
| |
Collapse
|
12
|
Mu T, Wei J, Sun J, Jin J, Zhang T, Wu H, Su B. Association of apolipoprotein E epsilon 4 and cognitive impairment in adults living with human immunodeficiency virus: a meta-analysis. Chin Med J (Engl) 2022; 135:2677-2686. [PMID: 36719356 PMCID: PMC9945176 DOI: 10.1097/cm9.0000000000002480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND It is controversial whether the apolipoprotein E epsilon 4 allele (APOE ε4) is a risk gene for human immunodeficiency virus (HIV)-related neurocognitive impairment. This meta-analysis aimed to summarize evidence of the associations between APOE ε4 and cognitive impairment in people living with HIV (PLWH). METHODS Our study conducted a systematic literature search of PubMed, Web of Science, Embase, Google Scholar, and ProQuest for studies published before April 11, 2022 that evaluated associations between APOE ε4 and cognitive impairment in adult PLWH (aged ≥18 years). We calculated pooled odds ratios (ORs) of global cognitive impairment and 95% confidence intervals (CIs) and standardized mean differences (SMDs) for specific cognitive domains between APOE ε4 carriers and non-carriers. Subgroup meta-analyses were used to evaluate the result profiles across different categorical variables. RESULTS Twenty studies met the inclusion criteria, including 19 that evaluated global cognitive impairment. APOE ε4 was significantly associated with global cognitive impairment in PLWH (OR = 1.36, 95% CI = [1.05, 1.78], number of estimates [k] = 19, P = 0.02, random effects). Subgroup meta-analysis based percentage of females showed evident intergroup differences in global cognitive performance between ε4 carriers and non-carriers (P = 0.015). APOE ε4 carriers had lower cognitive test scores than non-carriers in all seven cognitive domains, including fluency (SMD = -0.51, 95% CI = [-0.76, -0.25], P < 0.001, k = 4, I2 = 0%), learning (SMD = -0.52, 95% CI = [-0.75, -0.28], P < 0.001, k = 5, I2 = 0%), executive function (SMD = -0.41, 95% CI = [-0.59, -0.23], P < 0.001, k = 8, I2 = 0%), memory (SMD = -0.41, 95% CI = [-0.61, -0.20], P < 0.001, k = 10, I2 = 36%), attention/working memory (SMD = -0.34, 95% CI = [-0.54, -0.14], P = 0.001, k = 6, I2 = 0%), speed of information processing (SMD = -0.34, 95% CI = [-0.53, -0.16], P < 0.001, k = 8, I2 = 0%), and motor function (SMD = -0.19, 95% CI = [-0.38, -0.01], P = 0.04, k = 7, I2 = 0%). CONCLUSIONS Our meta-analysis provides significant evidence that APOE ε4 is a risk genotype for HIV-associated cognitive impairment, especially in cognitive domains of fluency, learning, executive function, and memory. Moreover, the impairment is sex specific. META ANALYSIS REGISTRATION PROSPERO, CRD 42021257775.
Collapse
Affiliation(s)
- Tingting Mu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jiaqi Wei
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jun Sun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Junyan Jin
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
13
|
Casagrande CC, Wiesman AI, Schantell M, Johnson HJ, Wolfson SL, O’Neill J, Johnson CM, May PE, Swindells S, Murman DL, Wilson TW. Signatures of somatosensory cortical dysfunction in Alzheimer's disease and HIV-associated neurocognitive disorder. Brain Commun 2022; 4:fcac169. [PMID: 35813878 PMCID: PMC9260304 DOI: 10.1093/braincomms/fcac169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/19/2022] [Accepted: 06/22/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease is the most common type of dementia in the general population, while HIV-associated neurocognitive disorder is the most common neurological comorbidity in those infected with HIV and affects between 40 and 70% of this population. Both conditions are associated with cognitive impairment and have been associated with aberrant functioning in sensory cortices, but far less is known about their disparate effects on neural activity. Identifying such disparate effects is important because it may provide critical data on the similarities and differences in the neuropathology underlying cognitive decline in each condition. In the current study, we utilized magnetoencephalography, extensive neuropsychological testing and a paired-pulse somatosensory gating paradigm to probe differences in somatosensory processing in participants from two ongoing magnetoencephalography studies. The resulting participant groups included 27 cognitively normal controls, 26 participants with HIV-associated neurocognitive disorder and 21 amyloid biomarker-confirmed patients with Alzheimer's disease. The data were imaged using a beamformer and voxel time series were extracted to identify the oscillatory dynamics serving somatosensory processing, as well as the amplitude of spontaneous cortical activity preceding stimulation onset. Our findings indicated that people with Alzheimer's disease and HIV-associated neurocognitive disorder exhibit normal somatosensory gating but have distinct aberrations in other elements of somatosensory cortical function. Essentially, those with Alzheimer's disease exhibited accentuated neural responses to somatosensory stimulation, along with spontaneous gamma activity preceding stimulus onset. In contrast, those with HIV-associated neurocognitive disorder exhibited normal responses to somatosensory stimulation but had sharply elevated spontaneous gamma activity prior to stimulus onset. These distinct aberrations may reflect the impact of different neuropathological mechanisms underlying each condition. Further, given the differential pattern of deficits in somatosensory cortical function, these measures may function as unique biomarkers in each condition and be useful in identifying persons with HIV who may go on to develop Alzheimer's disease.
Collapse
Affiliation(s)
- Chloe C Casagrande
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Alex I Wiesman
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA,College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Sara L Wolfson
- Geriatrics Medicine Clinic, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jennifer O’Neill
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Craig M Johnson
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pamela E May
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daniel L Murman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA,Memory Disorders and Behavioral Neurology Program, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Correspondence to: Tony W. Wilson, PhD Patrick E. Brookhouser Endowed Chair in Cognitive NeuroscienceDirector, Institute for Human Neuroscience Boys Town National Research Hospital 14090 Mother Teresa Lane Boys Town, NE, USA E-mail:
| |
Collapse
|
14
|
Sathler MF, Doolittle MJ, Cockrell JA, Nadalin IR, Hofmann F, VandeWoude S, Kim S. HIV and FIV glycoproteins increase cellular tau pathology via cGMP-dependent kinase II activation. J Cell Sci 2022; 135:jcs259764. [PMID: 35638570 PMCID: PMC9270957 DOI: 10.1242/jcs.259764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
As the development of combination antiretroviral therapy (cART) against human immunodeficiency virus (HIV) drastically improves the lifespan of individuals with HIV, many are now entering the prime age when Alzheimer's disease (AD)-like symptoms begin to manifest. It has been shown that hyperphosphorylated tau, a known AD pathological characteristic, is prematurely increased in the brains of HIV-infected individuals as early as in their 30s and that its levels increase with age. This suggests that HIV infection might lead to accelerated AD phenotypes. However, whether HIV infection causes AD to develop more quickly in the brain is not yet fully determined. Interestingly, we have previously revealed that the viral glycoproteins HIV gp120 and feline immunodeficiency virus (FIV) gp95 induce neuronal hyperexcitation via cGMP-dependent kinase II (cGKII; also known as PRKG2) activation in cultured hippocampal neurons. Here, we use cultured mouse cortical neurons to demonstrate that the presence of HIV gp120 and FIV gp95 are sufficient to increase cellular tau pathology, including intracellular tau hyperphosphorylation and tau release to the extracellular space. We further reveal that viral glycoprotein-induced cellular tau pathology requires cGKII activation. Taken together, HIV infection likely accelerates AD-related tau pathology via cGKII activation.
Collapse
Affiliation(s)
- Matheus F. Sathler
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael J. Doolittle
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA
| | - James A. Cockrell
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO 80523, USA
| | - India R. Nadalin
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Franz Hofmann
- Technical University of Munich, Arcisstraße 21, D-80333 Munich, Germany
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Seonil Kim
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
15
|
Hassan Almalki W, Alzahrani A, Mahmoud El-Daly MES, Faissal Fadel Ahmed ASH. A molecular explanation of cardiovascular protection through abnormal cannabidiol: Involving the dysfunctional β-adrenergic and ATP-sensitive K+ channel activity in cardiovascular compromised preterm infants. J Biochem Mol Toxicol 2021; 35:e22849. [PMID: 34309957 DOI: 10.1002/jbt.22849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022]
Abstract
Growing cannabis efficacy, usage frequency, legal supply, and declining awareness of danger recently led to expanded United States cannabis exposure. In turn, cannabis use among elderly people over 50 has more than tripled in a decade and has contributed toward a positive association of cannabis use with pathological conditions, which include type II diabetes, metabolic syndrome, neurovascular and cardiovascular disease. Remarkably, all these outcome results are mediated by the involvement of the ATP-sensitive K+ channel. Cardiovascular compromise is a common syndrome in preterm infants that leads to incidence and death and has been distinguished by poor systemic flow or hypotension. Conditions of cardiovascular compromise include vasodysregulation and myocardial malfunction through dysfunctional β-adrenergic activity. To avoid organ hypoperfusion progressing to tissue hypoxia-ischemia, inotropic drugs are used. Many premature children, however, respond insufficiently to inotropic activity with adrenergic agonists. The clinical disturbance including myocardial dysfunction through the activation of the ATP-sensitive K+ channel is often involved and the comparative efficacy of the nonpsychotropic cannabinoid, abnormal cannabidiol (Abn-CBD) is not yet known. Therefore, our primary aim was to investigate the molecular exploration of the cannabinoid system specifically Abn-CBD in cardiovascular protection involving dysregulated KATP.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulaziz Alzahrani
- Department of Pharmacology, College of Clinical Pharmacy, Albaha University, Al Bahah, Saudi Arabia
| | | | | |
Collapse
|
16
|
The Influence of Virus Infection on Microglia and Accelerated Brain Aging. Cells 2021; 10:cells10071836. [PMID: 34360004 PMCID: PMC8303900 DOI: 10.3390/cells10071836] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system contributing substantially to health and disease. There is increasing evidence that inflammatory microglia may induce or accelerate brain aging, by interfering with physiological repair and remodeling processes. Many viral infections affect the brain and interfere with microglia functions, including human immune deficiency virus, flaviviruses, SARS-CoV-2, influenza, and human herpes viruses. Especially chronic viral infections causing low-grade neuroinflammation may contribute to brain aging. This review elucidates the potential role of various neurotropic viruses in microglia-driven neurocognitive deficiencies and possibly accelerated brain aging.
Collapse
|
17
|
Ajoolabady A, Aslkhodapasandhokmabad H, Henninger N, Demillard LJ, Nikanfar M, Nourazarian A, Ren J. Targeting autophagy in neurodegenerative diseases: From molecular mechanisms to clinical therapeutics. Clin Exp Pharmacol Physiol 2021; 48:943-953. [PMID: 33752254 PMCID: PMC8204470 DOI: 10.1111/1440-1681.13500] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Many neurodegenerative diseases are associated with pathological aggregation of proteins in neurons. Autophagy is a natural self-cannibalization process that can act as a powerful mechanism to remove aged and damaged organelles as well as protein aggregates. It has been shown that promoting autophagy can attenuate or delay neurodegeneration by removing protein aggregates. In this paper, we will review the role of autophagy in Alzheimer's disease (AD), Parkinson's Disease (PD), and Huntington's Disease (HD) and discuss opportunities and challenges of targeting autophagy as a potential therapeutic avenue for treatment of these common neurodegenerative diseases.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nils Henninger
- Department of Neurology, University of Massachusetts, Worcester, MA 01655, USA
- Department of Psychiatry, University of Massachusetts, Worcester, MA 01655, USA
| | - Laurie J. Demillard
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
| | - Masoud Nikanfar
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jun Ren
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195 USA
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
18
|
Bhardwaj S, Kesari KK, Rachamalla M, Mani S, Ashraf GM, Jha SK, Kumar P, Ambasta RK, Dureja H, Devkota HP, Gupta G, Chellappan DK, Singh SK, Dua K, Ruokolainen J, Kamal MA, Ojha S, Jha NK. CRISPR/Cas9 gene editing: New hope for Alzheimer's disease therapeutics. J Adv Res 2021; 40:207-221. [PMID: 36100328 PMCID: PMC9481950 DOI: 10.1016/j.jare.2021.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Mutations in APP, PSEN1 and PSEN2 are known factors for AD pathobiology. CRISPR/Cas9 genome editing approach hold promises in AD management. CRISPR/Cas9 is utilized to help correct anomalous genetic functions. Off-target mutations may impair the functionality of edited cells. Non-viral vectors show better efficacy and safety than viral vectors.
Background Alzheimer's disease (AD) is an insidious, irreversible, and progressive neurodegenerative health condition manifesting as cognitive deficits and amyloid beta (Aβ) plaques and neurofibrillary tangles. Approximately 50 million individuals are affected by AD, and the number is rapidly increasing globally. This review explores the role of CRISPR/Cas9 gene editing in the management of AD and its clinical manifestations. Aim of Review This review aims to provide a deep insight into the recent progress in CRISPR/Cas9-mediated genome editing and its use against neurodegenerative disorders, specifically AD. However, we have referred to its use against parkinsons’s disease (PD), Huntington’s disease (HD), and other human diseases, as is one of the most promising and emerging technologies for disease treatment. Key Scientific Concepts of Review The pathophysiology of AD is known to be linked with gene mutations, that is, presenilin (PSEN) and amyloid beta precursor protein (APP). However, clinical trials focused at the genetic level could not meet the desired efficiency. The CRISPR/Cas9 genome editing tool is one of the most powerful technologies for correcting inconsistent genetic signatures and now extensively used for AD management. It has significant potential for the correction of undesired gene mutations associated with AD. This technology has allowed the development of empirical AD models, therapeutic lines, and diagnostic approaches for better understanding the nervous system, from in vitro to in vivo models.
Collapse
Affiliation(s)
- Shanu Bhardwaj
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Shalini Mani
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal road, Jagatpura, Jaipur, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 17666, United Arab Emirates.
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India.
| |
Collapse
|