1
|
Tsang HH, Joyce PWS, Falkenberg LJ. Temperature-dependent responses and trophic interaction strengths of a predatory marine gastropod and rock oyster under ocean warming. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106675. [PMID: 39146804 DOI: 10.1016/j.marenvres.2024.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Predator-prey interactions are important in shaping ecosystem structure. Consequently, impacts of accelerating global warming on predators will have notable implications. Effects are likely to be particularly marked for tropical organisms which are anticipated to be sensitive to further thermal stress. Here, we investigated effects of future ocean warming on the predatory dogwhelk Reishia clavigera and its predation of Saccostrea cucullata. Mortality of the predators rapidly increased under the extreme elevated temperature, while those exposed to moderate elevated temperature displayed similar mortality as the ambient. Predators that survived moderate temperature increases altered their oxygen consumption patterns, increased average feeding rates, and functional responses, although condition index and energy reserves were unchanged. Overall, we show extreme ocean warming scenarios can remove predators and their consumption of prey from an ecosystem, whereas moderate warming can intensify predator-prey interactions. Such temperature-dependent alterations to predator-prey interactions would lead to fundamental changes of ecosystem structure as the ocean warms.
Collapse
Affiliation(s)
- Hin Hung Tsang
- Simon F.S. Li Marine Science Laboratory, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR
| | - Patrick W S Joyce
- Simon F.S. Li Marine Science Laboratory, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR
| | - Laura J Falkenberg
- Simon F.S. Li Marine Science Laboratory, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR.
| |
Collapse
|
2
|
Bamford SM, Seebacher F. A fast fish swimming protocol that provides similar insights to critical swimming speed. Biol Open 2024; 13:bio060543. [PMID: 39077796 PMCID: PMC11340812 DOI: 10.1242/bio.060543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024] Open
Abstract
Performance measures are an important tool to assess the impact of environmental change on animals. In fish, performance is often measured as critical swimming speed (Ucrit), which reflects individual maximal physiological capacities. A drawback of Ucrit is that trials are relatively long (∼30-75 min). Ucrit may therefore not be suitable for several repeated measurements because of the potential for training effects, long recovery periods, and low throughput. Here we test a shorter (∼4-5 min) protocol, "Ucrit fast" (UCfast) in zebrafish (Danio rerio). We show that UCfast and Ucrit have similar, significant repeatabilities within individuals. Unlike Ucrit, repeated UCfast trials did not elicit a training effect. Both UCfast and Ucrit provide the same insights into thermal acclimation, and both provide similar estimates of individual acclimation capacity in doubly acclimated fish. We propose that UCfast is a valid substitute for Ucrit particularly when higher throughput and several repeated measures are necessary.
Collapse
Affiliation(s)
- Stephanie M. Bamford
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Opulente DA, LaBella AL, Harrison MC, Wolters JF, Liu C, Li Y, Kominek J, Steenwyk JL, Stoneman HR, VanDenAvond J, Miller CR, Langdon QK, Silva M, Gonçalves C, Ubbelohde EJ, Li Y, Buh KV, Jarzyna M, Haase MAB, Rosa CA, Čadež N, Libkind D, DeVirgilio JH, Hulfachor AB, Kurtzman CP, Sampaio JP, Gonçalves P, Zhou X, Shen XX, Groenewald M, Rokas A, Hittinger CT. Genomic factors shape carbon and nitrogen metabolic niche breadth across Saccharomycotina yeasts. Science 2024; 384:eadj4503. [PMID: 38662846 PMCID: PMC11298794 DOI: 10.1126/science.adj4503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/22/2024] [Indexed: 05/03/2024]
Abstract
Organisms exhibit extensive variation in ecological niche breadth, from very narrow (specialists) to very broad (generalists). Two general paradigms have been proposed to explain this variation: (i) trade-offs between performance efficiency and breadth and (ii) the joint influence of extrinsic (environmental) and intrinsic (genomic) factors. We assembled genomic, metabolic, and ecological data from nearly all known species of the ancient fungal subphylum Saccharomycotina (1154 yeast strains from 1051 species), grown in 24 different environmental conditions, to examine niche breadth evolution. We found that large differences in the breadth of carbon utilization traits between yeasts stem from intrinsic differences in genes encoding specific metabolic pathways, but we found limited evidence for trade-offs. These comprehensive data argue that intrinsic factors shape niche breadth variation in microbes.
Collapse
Affiliation(s)
- Dana A. Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- Biology Department Villanova University, Villanova, PA 19085, USA
| | - Abigail Leavitt LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- North Carolina Research Center (NCRC), Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 150 Research Campus Drive, Kannapolis, NC 28081, USA
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - John F. Wolters
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Chao Liu
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Yonglin Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jacek Kominek
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- LifeMine Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hayley R. Stoneman
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jenna VanDenAvond
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Caroline R. Miller
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Quinn K. Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Margarida Silva
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Carla Gonçalves
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Emily J. Ubbelohde
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Kelly V. Buh
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Martin Jarzyna
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Graduate Program in Neuroscience and Department of Biology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Max A. B. Haase
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- Vilcek Institute of Graduate Biomedical Sciences and Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Carlos A. Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Neža Čadež
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue, CONICET, CRUB, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - Jeremy H. DeVirgilio
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Cletus P. Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - José Paulo Sampaio
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | | | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| |
Collapse
|
4
|
Rubin AM, Seebacher F. Feeding frequency does not interact with BPA exposure to influence metabolism or behaviour in zebrafish (Danio rerio). Physiol Behav 2024; 273:114403. [PMID: 37939830 DOI: 10.1016/j.physbeh.2023.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Resource limitation can constrain energy (ATP) production, and thereby affect locomotion and behaviour such as exploration of novel environments and boldness. Consequently, ecological processes such as dispersal and interactions within and between species may be influenced by food availability. Energy metabolism, and behaviour are regulated by endocrine signalling, and may therefore be impacted by endocrine disrupting compounds (EDCs) including bisphenol A (BPA) derived from plastic manufacture and pollution. It is important to determine the impacts of these novel environmental contexts to understand how human activity alters individual physiology and behaviour and thereby populations. Our aim was to determine whether BPA exposure interacts with feeding frequency to alter metabolism and behaviour. In a fully factorial experiment, we show that low feeding frequency reduced zebrafish (Danio rerio) mass, condition, resting metabolic rates, total distance moved and speed in a novel arena, as well as anxiety indicated by the number of times fish returned to a dark shelter. However, feeding frequency did not significantly affect maximal metabolic rates, aerobic scope, swimming performance, latency to leave a shelter, or metabolic enzyme activities (citrate synthase and lactate dehydrogenase). Natural or anthropogenic fluctuation in food resources can therefore impact energetics and movement of animals with repercussions for ecological processes such as dispersal. BPA exposure reduced LDH activity and body mass, but did not interact with feeding frequency. Hence, behaviour of adult fish is relatively insensitive to disruption by BPA. However, alteration of LDH activity by BPA could disrupt lactate metabolism and signalling and together with reduction in body mass could affect size-dependent reproductive output. BPA released by plastic manufacture and pollution can thereby impact conservation and management of natural resources.
Collapse
Affiliation(s)
- Alexander M Rubin
- School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Building A08, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Building A08, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Opulente DA, Leavitt LaBella A, Harrison MC, Wolters JF, Liu C, Li Y, Kominek J, Steenwyk JL, Stoneman HR, VanDenAvond J, Miller CR, Langdon QK, Silva M, Gonçalves C, Ubbelohde EJ, Li Y, Buh KV, Jarzyna M, Haase MAB, Rosa CA, Čadež N, Libkind D, DeVirgilio JH, Beth Hulfachor A, Kurtzman CP, Sampaio JP, Gonçalves P, Zhou X, Shen XX, Groenewald M, Rokas A, Hittinger CT. Genomic and ecological factors shaping specialism and generalism across an entire subphylum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.19.545611. [PMID: 37425695 PMCID: PMC10327049 DOI: 10.1101/2023.06.19.545611] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Organisms exhibit extensive variation in ecological niche breadth, from very narrow (specialists) to very broad (generalists). Paradigms proposed to explain this variation either invoke trade-offs between performance efficiency and breadth or underlying intrinsic or extrinsic factors. We assembled genomic (1,154 yeast strains from 1,049 species), metabolic (quantitative measures of growth of 843 species in 24 conditions), and ecological (environmental ontology of 1,088 species) data from nearly all known species of the ancient fungal subphylum Saccharomycotina to examine niche breadth evolution. We found large interspecific differences in carbon breadth stem from intrinsic differences in genes encoding specific metabolic pathways but no evidence of trade-offs and a limited role of extrinsic ecological factors. These comprehensive data argue that intrinsic factors driving microbial niche breadth variation.
Collapse
Affiliation(s)
- Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA; Biology Department Villanova University, Villanova, PA 19085, USA
| | - Abigail Leavitt LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232 USA; Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte NC 28223
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Chao Liu
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Yonglin Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jacek Kominek
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA; LifeMine Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Jacob L. Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Hayley R. Stoneman
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Jenna VanDenAvond
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Caroline R. Miller
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Quinn K. Langdon
- Laboratory of Genetics, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Margarida Silva
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Carla Gonçalves
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA; Laboratory of Genetics, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of WisconsinMadison, Madison, WI 53726, USA
| | - Emily J. Ubbelohde
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Kelly V. Buh
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Martin Jarzyna
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA; Graduate Program in Neuroscience and Department of Biology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Max A. B. Haase
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA; Vilcek Institute of Graduate Biomedical Sciences and Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Carlos A. Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Neža Čadež
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue, CONICET, CRUB, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - Jeremy H. DeVirgilio
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Cletus P. Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - José Paulo Sampaio
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | | | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| |
Collapse
|
6
|
Seebacher F, Bamford SM, Le Roy A. Sex-specific transgenerational plasticity: developmental temperatures of mothers and fathers have different effects on sons and daughters. J Exp Biol 2023; 226:jeb245798. [PMID: 37293931 DOI: 10.1242/jeb.245798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Each parent can influence offspring phenotype via provisioning of the zygote or sex-specific DNA methylation. Transgenerational plasticity may therefore depend on the environmental conditions experienced by each parent. We tested this hypothesis by conducting a fully factorial experiment across three generations of guppies (Poecilia reticulata), determining the effects of warm (28°C) and cold (21°C) thermal backgrounds of mothers and fathers on mass and length, and thermal performance (sustained and sprint swimming speeds, citrate synthase and lactate dehydrogenase activities; 18, 24, 28, 32 and 36°C test temperatures) of sons and daughters. Offspring sex was significant for all traits except for sprint speed. Warmer mothers produced sons and daughters with reduced mass and length, and warmer fathers produced shorter sons. Sustained swimming speed (Ucrit) of male offspring was greatest when both parents were raised at 28°C, and warmer fathers produced daughters with greater Ucrit. Similarly, warmer fathers produced sons and daughters with greater metabolic capacity. We show that the thermal variation experienced by parents can modify offspring phenotype, and that predicting the impacts of environmental change on populations would require knowledge of the thermal background of each mother and father, particularly where sexes are spatially segregated.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences, Heydon-Laurence Building A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Stephanie M Bamford
- School of Life and Environmental Sciences, Heydon-Laurence Building A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Amelie Le Roy
- School of Life and Environmental Sciences, Heydon-Laurence Building A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Seidel L, Broman E, Nilsson E, Ståhle M, Ketzer M, Pérez-Martínez C, Turner S, Hylander S, Pinhassi J, Forsman A, Dopson M. Climate change-related warming reduces thermal sensitivity and modifies metabolic activity of coastal benthic bacterial communities. THE ISME JOURNAL 2023; 17:855-869. [PMID: 36977742 PMCID: PMC10202955 DOI: 10.1038/s41396-023-01395-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023]
Abstract
Besides long-term average temperature increases, climate change is projected to result in a higher frequency of marine heatwaves. Coastal zones are some of the most productive and vulnerable ecosystems, with many stretches already under anthropogenic pressure. Microorganisms in coastal areas are central to marine energy and nutrient cycling and therefore, it is important to understand how climate change will alter these ecosystems. Using a long-term heated bay (warmed for 50 years) in comparison with an unaffected adjacent control bay and an experimental short-term thermal (9 days at 6-35 °C) incubation experiment, this study provides new insights into how coastal benthic water and surface sediment bacterial communities respond to temperature change. Benthic bacterial communities in the two bays reacted differently to temperature increases with productivity in the heated bay having a broader thermal tolerance compared with that in the control bay. Furthermore, the transcriptional analysis showed that the heated bay benthic bacteria had higher transcript numbers related to energy metabolism and stress compared to the control bay, while short-term elevated temperatures in the control bay incubation experiment induced a transcript response resembling that observed in the heated bay field conditions. In contrast, a reciprocal response was not observed for the heated bay community RNA transcripts exposed to lower temperatures indicating a potential tipping point in community response may have been reached. In summary, long-term warming modulates the performance, productivity, and resilience of bacterial communities in response to warming.
Collapse
Affiliation(s)
- Laura Seidel
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Emelie Nilsson
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Magnus Ståhle
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Marcelo Ketzer
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Clara Pérez-Martínez
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Stephanie Turner
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Samuel Hylander
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
8
|
Pelaia T, Rubin AM, Seebacher F. Bisphenol S reduces locomotor performance and modifies muscle protein levels but not mitochondrial bioenergetics in adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106440. [PMID: 36822074 DOI: 10.1016/j.aquatox.2023.106440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Human activity has now introduced novel chemicals into most aquatic ecosystems. Endocrine-disrupting compounds originating from plastic pollution and manufacture can have pronounced biological effects by disrupting hormone-mediated processes. Bisphenol A (BPA) is one of the most commonly produced endocrine-disrupting compounds, which interferes with signalling by a broad range of hormones. In recognition of its potentially harmful effects, BPA is being replaced by substitutes such as bisphenol S (BPS). However, toxicological studies revealed that BPS too can bind to hormone receptors and disrupt signalling, particularly of thyroid hormone. The aim of this study was to test whether BPS exposure impacts locomotor performance and muscle function in zebrafish (Danio rerio). Locomotor performance depends on thyroid hormone signalling, and it is closely related to fitness so that its disruption can have negative ecological and evolutionary consequences. BPS exposure of 15 μg l-1 [∼60 nM] and 30 μg l-1 (but not 60 μg l-1) decreased sustained swimming performance (Ucrit), but not sprint speed. In a fully factorial design, we show that living in flowing water increased Ucrit compared to a still water control, and that BPS reduced Ucrit under both conditions but did not eliminate the training effect. In a second factorial experiment, we show that BPS did not affect mitochondrial bioenergetics in skeletal muscle (state 3 and 4 rates, respiratory control ratios, ROS production), but that induced hypothyroidism decreased state 3 and 4 rates of respiration. However, both hypothyroidism and BPS exposure decreased activity of AMP-activated protein kinase (pAMPK:total AMPK) but increased protein levels of myocyte enhancer factor 2, and slow and fast myosin heavy chains. Our data indicate that BPS is not a safe alternative for BPA and that exposure to BPS can have ecological consequences, which are likely to be at least partly mediated via thyroid hormone disruption.
Collapse
Affiliation(s)
- Tiana Pelaia
- School of Life and Environmental Science A08, University of Sydney, NSW 2006, Australia
| | - Alexander M Rubin
- School of Life and Environmental Science A08, University of Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Science A08, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
9
|
Horne LM, DeVries DR, Wright R, Irwin E, Staton BA, Abdelrahman HA, Stoeckel JA. Thermal performance of the electron transport system Complex III in seven Alabama fishes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:153-162. [PMID: 36285344 DOI: 10.1002/jez.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Management of fish populations for conservation in thermally variable systems requires an understanding of the fish's underlying physiology and responses to thermal stress. Physiological research at the organismal level provides information on the overall effects of stressors such as extreme temperature fluctuations. While experiments with whole organisms provide information as to the overall effects of temperature fluctuations, biochemical assays of thermal stress provide direct results of exposure that are both sensitive and specific. Electron transport system (ETS; Complex III) assays quantify a rate-limiting step of respiratory enzymes. Parameters that can be estimated via this approach include optimum thermal temperature (Topt ) and optimal breadth of thermal performance (Tbreadth ), which can both be related to organismal-level temperature thresholds. We exposed enzymes of seven fish species (native fish chosen to represent a typical community in Alabama streams) to temperatures in the range 11-44°C. The resultant enzymatic thermal performance curves showed that Topt , the lower temperature for enzyme optimal thermal performance (Tlow ), the upper temperature for enzyme optimal thermal performance (Tup ), and Tbreadth differed among species. Relationships between enzymatic activity and temperature for all fish followed a pattern of steadily increasing enzyme activity to Topt before gradually decreasing with increasing temperature. A comparison of our enzyme optimum and upper-temperature limit results versus published critical thermal maxima values supports that ETS Complex III assays may be useful for assessing organismal-level thermal tolerance.
Collapse
Affiliation(s)
- Lindsay M Horne
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA.,Department of Biology, School of Mathematics and Sciences, Lincoln Memorial University, Tennessee, Harrogate, USA
| | - Dennis R DeVries
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | - Russell Wright
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | - Elise Irwin
- U.S. Geological Survey, Cooperative Fish and Wildlife Research Units, Auburn, Alabama, USA
| | | | - Hisham A Abdelrahman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA.,Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - James A Stoeckel
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
10
|
Friesen CR, Wapstra E, Olsson M. Of telomeres and temperature: Measuring thermal effects on telomeres in ectothermic animals. Mol Ecol 2022; 31:6069-6086. [PMID: 34448287 DOI: 10.1111/mec.16154] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
Ectotherms are classic models for understanding life-history tradeoffs, including the reproduction-somatic maintenance tradeoffs that may be reflected in telomere length and their dynamics. Importantly, life-history traits of ectotherms are tightly linked to their thermal environment, with diverse or synergistic mechanistic explanations underpinning the variation. Telomere dynamics potentially provide a mechanistic link that can be used to monitor thermal effects on individuals in response to climatic perturbations. Growth rate, age and developmental stage are all affected by temperature, which interacts with telomere dynamics in complex and intriguing ways. The physiological processes underpinning telomere dynamics can be visualized and understood using thermal performance curves (TPCs). TPCs reflect the evolutionary history and the thermal environment during an individual's ontogeny. Telomere maintenance should be enhanced at or near the thermal performance optimum of a species, population and individual. The thermal sensitivity of telomere dynamics should reflect the interacting TPCs of the processes underlying them. The key processes directly underpinning telomere dynamics are mitochondrial function (reactive oxygen production), antioxidant activity, telomerase activity and telomere endcap protein status. We argue that identifying TPCs for these processes will significantly help design robust, repeatable experiments and field studies of telomere dynamics in ectotherms. Conceptually, TPCs are a valuable framework to predict and interpret taxon- and population-specific telomere dynamics across thermal regimes. The literature of thermal effects on telomeres in ectotherms is sparse and mostly limited to vertebrates, but our conclusions and recommendations are relevant across ectothermic animals.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Mats Olsson
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Global change differentially modulates Caribbean coral physiology. PLoS One 2022; 17:e0273897. [PMID: 36054126 PMCID: PMC9439252 DOI: 10.1371/journal.pone.0273897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Global change driven by anthropogenic carbon emissions is altering ecosystems at unprecedented rates, especially coral reefs, whose symbiosis with algal symbionts is particularly vulnerable to increasing ocean temperatures and altered carbonate chemistry. Here, we assess the physiological responses of three Caribbean coral (animal host + algal symbiont) species from an inshore and offshore reef environment after exposure to simulated ocean warming (28, 31°C), acidification (300–3290 μatm), and the combination of stressors for 93 days. We used multidimensional analyses to assess how a variety of coral physiological parameters respond to ocean acidification and warming. Our results demonstrate reductions in coral health in Siderastrea siderea and Porites astreoides in response to projected ocean acidification, while future warming elicited severe declines in Pseudodiploria strigosa. Offshore S. siderea fragments exhibited higher physiological plasticity than inshore counterparts, suggesting that this offshore population was more susceptible to changing conditions. There were no plasticity differences in P. strigosa and P. astreoides between natal reef environments, however, temperature evoked stronger responses in both species. Interestingly, while each species exhibited unique physiological responses to ocean acidification and warming, when data from all three species are modelled together, convergent stress responses to these conditions are observed, highlighting the overall sensitivities of tropical corals to these stressors. Our results demonstrate that while ocean warming is a severe acute stressor that will have dire consequences for coral reefs globally, chronic exposure to acidification may also impact coral physiology to a greater extent in some species than previously assumed. Further, our study identifies S. siderea and P. astreoides as potential ‘winners’ on future Caribbean coral reefs due to their resilience under projected global change stressors, while P. strigosa will likely be a ‘loser’ due to their sensitivity to thermal stress events. Together, these species-specific responses to global change we observe will likely manifest in altered Caribbean reef assemblages in the future.
Collapse
|
12
|
Anlauf-Dunn K, Kraskura K, Eliason EJ. Intraspecific variability in thermal tolerance: a case study with coastal cutthroat trout. CONSERVATION PHYSIOLOGY 2022; 10:coac029. [PMID: 35693034 PMCID: PMC9178963 DOI: 10.1093/conphys/coac029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/04/2022] [Accepted: 04/15/2022] [Indexed: 05/24/2023]
Abstract
Fish physiological performance is directly regulated by their thermal environment. Intraspecific comparisons are essential to ascertain the vulnerability of fish populations to climate change and to identify which populations may be more susceptible to extirpation and which may be more resilient to continued warming. In this study, we sought to evaluate how thermal performance varies in coastal cutthroat trout (Oncorhynchus clarki clarki) across four distinct watersheds in OR, USA. Specifically, we measured oxygen consumption rates in trout from the four watersheds with variable hydrologic and thermal regimes, comparing three ecologically relevant temperature treatments (ambient, annual maximum and novel warm). Coastal cutthroat trout displayed considerable intraspecific variability in physiological performance and thermal tolerance across the four watersheds. Thermal tolerance matched the historical experience: the coastal watersheds experiencing warmer ambient temperatures had higher critical thermal tolerance compared with the interior, cooler Willamette watersheds. Physiological performance varied across all four watersheds and there was evidence of a trade-off between high aerobic performance and broad thermal tolerance. Given the evidence of climate regime shifts across the globe, the uncertainty in both the rate and extent of warming and species responses in the near and long term, a more nuanced approach to the management and conservation of native fish species must be considered.
Collapse
Affiliation(s)
- Kara Anlauf-Dunn
- Oregon Department of Fish and Wildlife, 28655
Highway 34, Corvallis, OR 97333, USA
| | - Krista Kraskura
- Department of Ecology, Evolution, and Marine Biology,
University of California Santa Barbara, Santa
Barbara, CA 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution, and Marine Biology,
University of California Santa Barbara, Santa
Barbara, CA 93106, USA
| |
Collapse
|
13
|
Leonard JN, Skov PV. Capacity for thermal adaptation in Nile tilapia (Oreochromis niloticus): Effects on oxygen uptake and ventilation. J Therm Biol 2022; 105:103206. [DOI: 10.1016/j.jtherbio.2022.103206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/25/2022] [Accepted: 02/05/2022] [Indexed: 10/19/2022]
|
14
|
Pallarés S, Verberk WCEP, Bilton DT. Plasticity of thermal performance curves in a narrow range endemic water beetle. J Therm Biol 2021; 102:103113. [PMID: 34863476 DOI: 10.1016/j.jtherbio.2021.103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022]
Abstract
Thermal history can plastically alter the response of ectotherms to temperature, and thermal performance curves (TPCs) are powerful tools for exploring how organismal-level performance varies with temperature. Plasticity in TPCs may be favoured in thermally variable habitats, where it can result in fitness benefits. However, thermal physiology remains insufficiently studied for freshwater insects despite freshwater biodiversity being at great risk under global change. Here, we assess how acclimation at either summer or winter average temperatures changes TPCs for locomotion activity and metabolism in Enochrus jesusarribasi (Hydrophilidae), a water beetle endemic to shallow saline streams in SE Spain. This beetle is a bimodal gas exchanger and so we also assessed how aerial and aquatic gas exchange varied across temperatures for both acclimation treatments. Responses of locomotory TPCs to thermal acclimation were relatively weak, but high temperature acclimated beetles tended to exhibit higher maximum locomotor activity and reduced TPC breadth than those acclimated at lower temperature. High temperature acclimation increased the thermal sensitivity of metabolic rates, contrary to the response generally found in aquatic organisms. Higher metabolic rates upon high temperature acclimation were achieved by increasing aerial, rather than aquatic oxygen uptake. Such plastic respiratory behaviour likely contributed to enhanced locomotor performance at temperatures around the optimum and thermal plasticity could thus be an important component in the response of aquatic insects to climate change. However, high temperature acclimation appeared to be detrimental for locomotion in subsequent exposure at upper sublethal temperatures, suggesting that this narrow range endemic may be vulnerable to future climate warming. This study demonstrates that TPCs are context-specific, differing with performance metric as well as thermal history. Such context dependency must be considered when using TPCs to predict organismal responses to climate change.
Collapse
Affiliation(s)
- Susana Pallarés
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus Plymouth, PL4 8AA, UK.
| | - Wilco C E P Verberk
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL, Heyendaalseweg 135, 6525, AJ, Nijmegen, the Netherlands.
| | - David T Bilton
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus Plymouth, PL4 8AA, UK; Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa.
| |
Collapse
|
15
|
Laskowski KL, Seebacher F, Habedank M, Meka J, Bierbach D. Two Locomotor Traits Show Different Patterns of Developmental Plasticity Between Closely Related Clonal and Sexual Fish. Front Physiol 2021; 12:740604. [PMID: 34712149 PMCID: PMC8546259 DOI: 10.3389/fphys.2021.740604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
The capacity to compensate for environmental change determines population persistence and biogeography. In ectothermic organisms, performance at different temperatures can be strongly affected by temperatures experienced during early development. Such developmental plasticity is mediated through epigenetic mechanisms that induce phenotypic changes within the animal's lifetime. However, epigenetic modifiers themselves are encoded by DNA so that developmental plasticity could itself be contingent on genetic diversity. In this study, we test the hypothesis that the capacity for developmental plasticity depends on a species' among-individual genetic diversity. To test this, we exploited a unique species complex that contains both the clonal, genetically identical Amazon molly (Poecilia formosa), and the sexual, genetically diverse Atlantic molly (Poecilia mexicana). We predicted that the greater among-individual genetic diversity in the Atlantic molly may increase their capacity for developmental plasticity. We raised both clonal and sexual mollies at either warm (28°C) or cool (22°C) temperatures and then measured locomotor capacity (critical sustained swimming performance) and unforced movement in an open field across a temperature gradient that simulated environmental conditions often experienced by these species in the wild. In the clonal Amazon molly, differences in the developmental environment led to a shift in the thermal performance curve of unforced movement patterns, but much less so in maximal locomotor capacity. In contrast, the sexual Atlantic mollies exhibited the opposite pattern: developmental plasticity was present in maximal locomotor capacity, but not in unforced movement. Thus our data show that developmental plasticity in clones and their sexual, genetically more diverse sister species is trait dependent. This points toward mechanistic differences in how genetic diversity mediates plastic responses exhibited in different traits.
Collapse
Affiliation(s)
- Kate L Laskowski
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Department of Evolution and Ecology, University of California, Davis, Davis, CA, United States
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, The University of Sydney, Sydney, NSW, Australia
| | - Marie Habedank
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Johannes Meka
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, Berlin, Germany.,Cluster of Excellence "Science of Intelligence," Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
16
|
Seebacher F, Little AG. Plasticity of Performance Curves in Ectotherms: Individual Variation Modulates Population Responses to Environmental Change. Front Physiol 2021; 12:733305. [PMID: 34658917 PMCID: PMC8513571 DOI: 10.3389/fphys.2021.733305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022] Open
Abstract
Many ectothermic animals can respond to changes in their environment by altering the sensitivities of physiological rates, given sufficient time to do so. In other words, thermal acclimation and developmental plasticity can shift thermal performance curves so that performance may be completely or partially buffered against the effects of environmental temperature changes. Plastic responses can thereby increase the resilience to temperature change. However, there may be pronounced differences between individuals in their capacity for plasticity, and these differences are not necessarily reflected in population means. In a bet-hedging strategy, only a subsection of the population may persist under environmental conditions that favour either plasticity or fixed phenotypes. Thus, experimental approaches that measure means across individuals can not necessarily predict population responses to temperature change. Here, we collated published data of 608 mosquitofish (Gambusia holbrooki) each acclimated twice, to a cool and a warm temperature in random order, to model how diversity in individual capacity for plasticity can affect populations under different temperature regimes. The persistence of both plastic and fixed phenotypes indicates that on average, neither phenotype is selectively more advantageous. Fish with low acclimation capacity had greater maximal swimming performance in warm conditions, but their performance decreased to a greater extent with decreasing temperature in variable environments. In contrast, the performance of fish with high acclimation capacity decreased to a lesser extent with a decrease in temperature. Hence, even though fish with low acclimation capacity had greater maximal performance, high acclimation capacity may be advantageous when ecologically relevant behaviour requires submaximal locomotor performance. Trade-offs, developmental effects and the advantages of plastic phenotypes together are likely to explain the observed population variation.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Alexander G Little
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON, Canada
| |
Collapse
|
17
|
Bell TH, Bell T. Many roads to bacterial generalism. FEMS Microbiol Ecol 2021; 97:6006266. [PMID: 33238305 DOI: 10.1093/femsec/fiaa240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
The fundamental niches of bacteria can be defined along many environmental axes, including temperature tolerance and resources consumed, while interactions with other organisms can constrain (e.g. competition) or enlarge (e.g. cross-feeding) realized niches. Organisms are often categorized as generalists or specialists, corresponding to broad or narrow niche requirements, which can then be linked to their functional role in an ecosystem. We show how these terms are applied to bacteria, make predictions about how the type and extent of generalism displayed by an organism relates to its functional potential and discuss the value of collecting different types of generalist bacteria. We believe that new approaches that take advantage of both high-throughput sequencing and environmental manipulation can allow us to understand the many types of generalism found within both cultivated and yet-to-be-cultivated bacteria.
Collapse
Affiliation(s)
- Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA.,Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Thomas Bell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
18
|
Keshavmurthy S, Beals M, Hsieh HJ, Choi KS, Chen CA. Physiological plasticity of corals to temperature stress in marginal coral communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143628. [PMID: 33248756 DOI: 10.1016/j.scitotenv.2020.143628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Adaptation and/or acclimatization through various mechanisms have been suggested to help some tropical coral species to overcome temperature-induced bleaching that is intensifying with climate change; however, while much research has been done on the physiological responses of tropical and subtropical corals to stress, little is known about these responses in corals in marginal environments-e.g., high-latitude and non-reefal communities. In this study, we examined the thermal-tolerant physiology of the flowerpot coral, Alveopora japonica, endemic to the high-latitude Jeju Island (33.39°N), South Korea and Oulastrea crispata and Coelastrea aspera from the subtropical non-reefal coral community on the Penghu Islands (23.34°N), Taiwan. Analysis of physiological parameters; photochemical efficiency, Chlorophyll pigment, Symbiodiniaceae cell number and host soluble proteins - showed that A. japonica can survive through a wide range of temperature stresses (10-32 °C) over a period of 8 days without showing signs of bleaching. In addition, corals O. crispata and C. aspera withstood temperature stresses of up to 33 °C and repeated temperature fluctuations without bleaching. Our results indicate that, under large seasonal variations and asymmetrical daily fluctuations in temperature, corals currently living in marginal environments could have thermal plasticity, allowing them to survive in the future climate change scenarios. This study reiterates the importance of studying the eco-physiology of corals that are generally ignored because of their neutral or positive responses to stress.
Collapse
Affiliation(s)
| | - Morgan Beals
- Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan; Department of Life Sciences, National Taiwan Normal University, Taipei 106, Taiwan
| | - Hernyi Justin Hsieh
- Penghu Marine Biology Research Center, Fishery Research Institute, Council of Agriculture, Magong, Penghu 880, Taiwan
| | - Kwang-Sik Choi
- School of Marine Biomedical Science (BK 21 PLUS), Jeju National University, 102 Jejudaehakno, Jeju 63243, Republic of Korea
| | - Chaolun Allen Chen
- Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan; Taiwan International Graduate Program-Biodiversity, Academia Sinica, Nangang, Taipei 115, Taiwan; Department of Life Sciences, National Taiwan Normal University, Taipei 106, Taiwan; Department of Life Sciences, Tunghai University, Taichung 404, Taiwan.
| |
Collapse
|
19
|
Christensen EAF, Norin T, Tabak I, van Deurs M, Behrens JW. Effects of temperature on physiological performance and behavioral thermoregulation in an invasive fish, the round goby. J Exp Biol 2021; 224:jeb237669. [PMID: 33257434 PMCID: PMC7823162 DOI: 10.1242/jeb.237669] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
Invasive species exert negative impacts on biodiversity and ecosystems on a global scale, which may be enhanced in the future by climate change. Knowledge of how invasive species respond physiologically and behaviorally to novel and changing environments can improve our understanding of which traits enable the ecological success of these species, and potentially facilitate mitigation efforts. We examined the effects of acclimation to temperatures ranging from 5 to 28°C on aerobic metabolic rates, upper temperature tolerance (critical thermal maximum, CTmax), as well as temperature preference (Tpref) and avoidance (Tavoid) of the round goby (Neogobius melanostomus), one of the most impactful invasive species in the world. We show that round goby maintained a high aerobic scope from 15 to 28°C; that is, the capacity to increase its aerobic metabolic rate above that of its maintenance metabolism remained high across a broad thermal range. Although CTmax increased relatively little with acclimation temperature compared with other species, Tpref and Tavoid were not affected by acclimation temperature at all, meaning that round goby maintained a large thermal safety margin (CTmax-Tavoid) across acclimation temperatures, indicating a high level of thermal resilience in this species. The unperturbed physiological performance and high thermal resilience were probably facilitated by high levels of phenotypic buffering, which can make species readily adaptable and ecologically competitive in novel and changing environments. We suggest that these physiological and behavioral traits could be common for invasive species, which would only increase their success under continued climate change.
Collapse
Affiliation(s)
- Emil A F Christensen
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Tommy Norin
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Iren Tabak
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Mikael van Deurs
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Jane W Behrens
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
20
|
Christensen EAF, Norin T, Tabak I, van Deurs M, Behrens JW. Effects of temperature on physiological performance and behavioral thermoregulation in an invasive fish, the round goby. J Exp Biol 2021. [PMID: 33257434 PMCID: PMC7823162 DOI: 10.1242/jeb.237669 10.1242/jeb.237669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Invasive species exert negative impacts on biodiversity and ecosystems on a global scale, which may be enhanced in the future by climate change. Knowledge of how invasive species respond physiologically and behaviorally to novel and changing environments can improve our understanding of which traits enable the ecological success of these species, and potentially facilitate mitigation efforts. We examined the effects of acclimation to temperatures ranging from 5 to 28°C on aerobic metabolic rates, upper temperature tolerance (critical thermal maximum, CTmax), as well as temperature preference (T pref) and avoidance (T avoid) of the round goby (Neogobius melanostomus), one of the most impactful invasive species in the world. We show that round goby maintained a high aerobic scope from 15 to 28°C; that is, the capacity to increase its aerobic metabolic rate above that of its maintenance metabolism remained high across a broad thermal range. Although CTmax increased relatively little with acclimation temperature compared with other species, T pref and T avoid were not affected by acclimation temperature at all, meaning that round goby maintained a large thermal safety margin (CTmax-T avoid) across acclimation temperatures, indicating a high level of thermal resilience in this species. The unperturbed physiological performance and high thermal resilience were probably facilitated by high levels of phenotypic buffering, which can make species readily adaptable and ecologically competitive in novel and changing environments. We suggest that these physiological and behavioral traits could be common for invasive species, which would only increase their success under continued climate change.
Collapse
|
21
|
Acclimation temperature affects thermal reaction norms for energy reserves in Drosophila. Sci Rep 2020; 10:21681. [PMID: 33303846 PMCID: PMC7729904 DOI: 10.1038/s41598-020-78726-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Organisms have evolved various physiological mechanisms to cope with unfavourable environmental conditions. The ability to tolerate non-optimal thermal conditions can be substantially improved by acclimation. In this study, we examined how an early-life acclimation to different temperatures (19 °C, 25 °C and 29 °C) influences thermal reaction norms for energy stores in Drosophila adults. Our results show that acclimation temperature has a significant effect on the amount of stored fat and glycogen (and their relative changes) and the optimal temperature for their accumulation. Individuals acclimated to 19 °C had, on average, more energy reserves than flies that were initially maintained at 25 °C or 29 °C. In addition, acclimation caused a shift in optimal temperature for energy stores towards acclimation temperature. We also detected significant population differences in this response. The effect of acclimation on the optimal temperature for energy stores was more pronounced in flies from the temperate climate zone (Slovakia) than in individuals from the tropical zone (India). Overall, we found that the acclimation effect was stronger after acclimation to low (19 °C) than to high (29 °C) temperature. The observed sensitivity of thermal reaction norms for energy reserves to acclimation temperature can have important consequences for surviving periods of food scarcity, especially at suboptimal temperatures.
Collapse
|
22
|
Gomez Isaza DF, Cramp RL, Franklin CE. Thermal acclimation offsets the negative effects of nitrate on aerobic scope and performance. J Exp Biol 2020; 223:jeb224444. [PMID: 32647016 DOI: 10.1242/jeb.224444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/06/2020] [Indexed: 08/26/2023]
Abstract
Rising temperatures are set to imperil freshwater fishes as climate change ensues unless compensatory strategies are employed. However, the presence of additional stressors, such as elevated nitrate concentrations, may affect the efficacy of compensatory responses. Here, juvenile silver perch (Bidyanus bidyanus) were exposed to current-day summer temperatures (28°C) or a future climate-warming scenario (32°C) and simultaneously exposed to one of three ecologically relevant nitrate concentrations (0, 50 or 100 mg l-1). We measured indicators of fish performance (growth, swimming), aerobic scope (AS) and upper thermal tolerance (CTmax) to test the hypothesis that nitrate exposure would increase susceptibility to elevated temperatures and limit thermal compensatory responses. After 8 weeks of acclimation, the thermal sensitivity and plasticity of AS and swimming performance were tested at three test temperatures (28, 32, 36°C). The AS of 28°C-acclimated fish declined with increasing temperature, and the effect was more pronounced in nitrate-exposed individuals. In these fish, declines in AS corresponded with poorer swimming performance and a 0.8°C decrease in CTmax compared with unexposed fish. In contrast, acclimation to 32°C masked the effects of nitrate; fish acclimated to 32°C displayed a thermally insensitive phenotype whereby locomotor performance remained unchanged, AS was maintained and CTmax was increased by ∼1°C irrespective of nitrate treatment compared with fish acclimated to 28°C. However, growth was markedly reduced in 32°C-acclimated compared with 28°C-acclimated fish. Our results indicate that nitrate exposure increases the susceptibility of fish to acute high temperatures, but thermal compensation can override some of these potentially detrimental effects.
Collapse
Affiliation(s)
- Daniel F Gomez Isaza
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca L Cramp
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig E Franklin
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
23
|
Loughland I, Seebacher F. Differences in oxidative status explain variation in thermal acclimation capacity between individual mosquitofish (
Gambusia holbrooki
). Funct Ecol 2020. [DOI: 10.1111/1365-2435.13563] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Isabella Loughland
- School of Life and Environmental Sciences A08 University of Sydney Sydney NSW Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08 University of Sydney Sydney NSW Australia
| |
Collapse
|
24
|
Wu E, Wang Y, Yahuza L, He M, Sun D, Huang Y, Liu Y, Yang L, Zhu W, Zhan J. Rapid adaptation of the Irish potato famine pathogen Phytophthora infestans to changing temperature. Evol Appl 2020; 13:768-780. [PMID: 32211066 PMCID: PMC7086108 DOI: 10.1111/eva.12899] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/19/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023] Open
Abstract
Temperature plays a multidimensional role in host-pathogen interactions. As an important element of climate change, elevated world temperature resulting from global warming presents new challenges to sustainable disease management. Knowledge of pathogen adaptation to global warming is needed to predict future disease epidemiology and formulate mitigating strategies. In this study, 21 Phytophthora infestans isolates originating from seven thermal environments were acclimated for 200 days under stepwise increase or decrease of experimental temperatures and evolutionary responses of the isolates to the thermal changes were evaluated. We found temperature acclimation significantly increased the fitness and genetic adaptation of P. infestans isolates at both low and high temperatures. Low-temperature acclimation enforced the countergradient adaptation of the pathogen to its past selection and enhanced the positive association between the pathogen's intrinsic growth rate and aggressiveness. At high temperatures, we found that pathogen growth collapsed near the maximum temperature for growth, suggesting a thermal niche boundary may exist in the evolutionary adaptation of P. infestans. These results indicate that pathogens can quickly adapt to temperature shifts in global warming. If this is associated with environmental conditions favoring pathogen spread, it will threaten future food security and human health and require the establishment of mitigating actions.
Collapse
Affiliation(s)
- E‐Jiao Wu
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementInstitute of PomologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yan‐Ping Wang
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lurwanu Yahuza
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Meng‐Han He
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Dan‐Li Sun
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yan‐Mei Huang
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yu‐Chan Liu
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Na Yang
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wen Zhu
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiasui Zhan
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
25
|
Tanner RL, Dowd WW. Inter-individual physiological variation in responses to environmental variation and environmental change: Integrating across traits and time. Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110577. [PMID: 31521705 DOI: 10.1016/j.cbpa.2019.110577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
Greater understanding of physiological responses to climate change demands deeper comprehension of the causes and consequences of physiological variation. Increasingly, population trait means are being deconstructed into variable signals at the level of individuals. We advocate for greater consideration of such inter-individual physiological variation and how it both depends on and interacts with environmental variability. First, we review several studies on the intertidal mussel Mytilus californianus to illustrate how the magnitude of inter-individual variation may depend on the environmental context analyzed (i.e., is the mean condition benign or stressful?) and/or on the specific physiological metric investigated. Stressful conditions may reveal or mask variation in disparate ways at different levels of analysis (e.g., transcriptome vs. proteome), but we often lack crucial information regarding the relationships among these different physiological metrics and their consequences for fitness. We then reanalyze several published datasets to ask whether individuals employ divergent strategies over time in response to acute heat stress; such time-dependence would further complicate interpretation of physiological variation. However, definitive conclusions are precluded by limited sample sizes and short timescales in extant datasets. A key remaining challenge is to extend these analytical frameworks to longer periods over which individuals in a population experience repeated, but spatially variable, episodic stress events. We conclude that variation at multiple levels of analysis should be investigated over longer periods and, where possible, within individuals (or genotypes) experiencing repeated environmental challenges. Although difficult in practice, such studies will facilitate improved understanding of potential population-level physiological responses to climate change.
Collapse
Affiliation(s)
- Richelle L Tanner
- Washington State University, School of Biological Sciences, P.O. Box 644236, Pullman, WA 99164-4236, USA.
| | - W Wesley Dowd
- Washington State University, School of Biological Sciences, P.O. Box 644236, Pullman, WA 99164-4236, USA
| |
Collapse
|
26
|
CALSBEEK RYAN, CAREAU VINCENT. Survival of the Fastest: The Multivariate Optimization of Performance Phenotypes. Med Sci Sports Exerc 2019; 51:330-337. [DOI: 10.1249/mss.0000000000001788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Shuman JL, Coughlin DJ. Red muscle function and thermal acclimation to cold in rainbow smelt, Osmerus mordax, and rainbow trout, Oncorhynchus mykiss. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:547-556. [PMID: 30101480 DOI: 10.1002/jez.2219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/29/2018] [Accepted: 07/07/2018] [Indexed: 02/02/2023]
Abstract
Climate change affects the thermal environment of aquatic organisms. Changes in the thermal environment may affect muscle function in the eurythermal rainbow smelt, Osmerus mordax, and relatively more stenothermal rainbow trout, Oncorhynchus mykiss. Literature suggests that the trout will be more sensitive to changes in environmental temperature, as they experience a more limited range of environmental temperatures. To examine the effects of thermal environment on red muscle function, both the smelt and trout were thermally acclimated to either a warm (12-15°C) or cold (4-5°C) temperature, after which studies of swimming performance and muscle mechanics were performed. The data on swimming performance and maximum muscle shortening velocity in rainbow smelt were previously published. In both species, cold-acclimated (CA) fish swam with a significantly faster maximum aerobic swimming speed than warm-acclimated fish, when tested at a common temperature of 10°C. Similarly, CA smelt and trout had faster red muscle contraction kinetics. However, smelt displayed a greater shift in contractile properties, such as having a significant shift in maximum muscle shortening velocity that was not observed in trout. The smelt red muscle outperformed trout, with twitch and tetanic times of relaxation being significantly faster for CA smelt compared with CA trout, especially when contraction kinetics were tested at 2°C. The smelt shows a greater thermal acclimation response compared with trout, with more robust increases in maximum swimming speed and faster muscle contractile properties. These differences in acclimation response may contribute to understanding how smelt and trout cope with climate change.
Collapse
Affiliation(s)
- Jacie L Shuman
- Department of Biology, Widener University, Chester, Pennsylvania
| | - David J Coughlin
- Department of Biology, Widener University, Chester, Pennsylvania
| |
Collapse
|
28
|
Rodgers EM, Cocherell DE, Nguyen TX, Todgham AE, Fangue NA. Plastic responses to diel thermal variation in juvenile green sturgeon, Acipenser medirostris. J Therm Biol 2018; 76:147-155. [DOI: 10.1016/j.jtherbio.2018.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/16/2018] [Accepted: 07/22/2018] [Indexed: 11/24/2022]
|
29
|
Cavieres G, Bogdanovich JM, Toledo P, Bozinovic F. Fluctuating thermal environments and time-dependent effects on fruit fly egg-hatching performance. Ecol Evol 2018; 8:7014-7021. [PMID: 30073063 PMCID: PMC6065328 DOI: 10.1002/ece3.4220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/24/2022] Open
Abstract
Organismal performance in a changing environment is dependent on temporal patterns and duration of exposure to thermal variability. We experimentally assessed the time-dependent effects of thermal variability (i.e., patterns of thermal exposure) on the hatching performance of Drosophila melanogaster. Flies were collected in central Chile and maintained for four generations in laboratory conditions. Fourth generation eggs were acclimated to different thermal fluctuation cycles until hatching occurred. Our results show that the frequency of extreme thermal events has a significant effect on hatching success. Eggs exposed to 24 hr cycles of thermal fluctuation had a higher proportion of eggs that hatched than those acclimated to shorter (6 and 12 hr) and longer cycles (48 hr). Furthermore, eggs subjected to frequent thermal fluctuations hatched earlier than those acclimated to less frequent thermal fluctuations. Overall, we show that, egg-to-adult viability is dependent on the pattern of thermal fluctuations experienced during ontogeny; thus, the pattern of thermal fluctuation experienced by flies has a significant and until now unappreciated impact on fitness.
Collapse
Affiliation(s)
- Grisel Cavieres
- Departamento de EcologíaCenter of Applied Ecology and Sustainability (CAPES‐UC) Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
- CCT‐Mendoza CONICETGrupo de Investigaciones de la BiodiversidadCONICETInstituto Argentino de Investigaciones de Zonas ÁridasMendozaArgentina
| | - José M. Bogdanovich
- Departamento de EcologíaCenter of Applied Ecology and Sustainability (CAPES‐UC) Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
- Centro de Investigación e Innovación para el Cambio ClimáticoUniversidad Santo TomásSantiagoChile
| | - Paloma Toledo
- Departamento de EcologíaCenter of Applied Ecology and Sustainability (CAPES‐UC) Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Francisco Bozinovic
- Departamento de EcologíaCenter of Applied Ecology and Sustainability (CAPES‐UC) Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
30
|
Le Roy A, Seebacher F. Transgenerational effects and acclimation affect dispersal in guppies. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Amélie Le Roy
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| |
Collapse
|
31
|
Fryxell DC, Palkovacs EP. Warming Strengthens the Ecological Role of Intraspecific Variation in a Predator. COPEIA 2017. [DOI: 10.1643/ce-16-527] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Ghanizadeh-Kazerouni E, Franklin CE, Seebacher F. Living in flowing water increases resistance to ultraviolet B radiation. ACTA ACUST UNITED AC 2017; 220:582-587. [PMID: 28202648 DOI: 10.1242/jeb.151019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/24/2016] [Indexed: 01/09/2023]
Abstract
Ultraviolet B radiation (UV-B) is an important environmental driver that can affect locomotor performance negatively by inducing production of reactive oxygen species (ROS). Prolonged regular exercise increases antioxidant activities, which may alleviate the negative effects of UV-B-induced ROS. Animals naturally performing exercise, such as humans performing regular exercise or fish living in flowing water, may therefore be more resilient to the negative effects of UV-B. We tested this hypothesis in a fully factorial experiment, where we exposed mosquitofish (Gambusia holbrooki) to UV-B and control (no UV-B) conditions in flowing and still water. We show that fish exposed to UV-B and kept in flowing water had increased sustained swimming performance (Ucrit), increased antioxidant defences (catalase activity and glutathione concentrations) and reduced cellular damage (lipid peroxidation and protein carbonyl concentrations) compared with fish in still water. There was no effect of UV-B or water flow on resting or maximal rates of oxygen consumption. Our results show that environmental water flow can alleviate the negative effects of UV-B-induced ROS by increasing defence mechanisms. The resultant reduction in ROS-induced damage may contribute to maintain locomotor performance. Hence, the benefits of regular exercise are 'transferred' to improve resilience to the negative impacts of UV-B. Ecologically, the mechanistic link between responses to different habitat characteristics can determine the success of animals. These dynamics have important ecological connotations when river or stream flow changes as a result of weather patterns, climate or human modifications.
Collapse
Affiliation(s)
| | - Craig E Franklin
- School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
33
|
Seebacher F, Borg J, Schlotfeldt K, Yan Z. Energetic cost determines voluntary movement speed only in familiar environments. ACTA ACUST UNITED AC 2017; 219:1625-31. [PMID: 27252454 DOI: 10.1242/jeb.136689] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/10/2016] [Indexed: 11/20/2022]
Abstract
Locomotor performance is closely related to fitness. However, in many ecological contexts, animals do not move at their maximal locomotor capacity, but adopt a voluntary speed that is lower than maximal. It is important to understand the mechanisms that underlie voluntary speed, because these determine movement patterns of animals across natural environments. We show that voluntary speed is a stable trait in zebrafish (Danio rerio), but there were pronounced differences between individuals in maximal sustained speed, voluntary speed and metabolic cost of locomotion. We accept the hypothesis that voluntary speed scales positively with maximal sustained swimming performance (Ucrit), but only in unfamiliar environments (1st minute in an open-field arena versus 10th minute) at high temperature (30°C). There was no significant effect of metabolic scope on Ucrit Contrary to expectation, we rejected the hypothesis that voluntary speed decreases with increasing metabolic cost of movement, except in familiar spatial (after 10 min of exploration) and thermal (24°C but not 18 or 30°C) environments. The implications of these data are that the energetic costs of exploration and dispersal in novel environments are higher than those for movement within familiar home ranges.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Jason Borg
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Kathryn Schlotfeldt
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Zhongning Yan
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
34
|
Simmonds AIM, Seebacher F. Histone deacetylase activity modulates exercise-induced skeletal muscle plasticity in zebrafish ( Danio rerio). Am J Physiol Regul Integr Comp Physiol 2017; 313:R35-R43. [PMID: 28404582 DOI: 10.1152/ajpregu.00378.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022]
Abstract
Aerobic exercise has a positive impact on animals by enhancing skeletal muscle function and locomotor performance. Responses of skeletal muscle to exercise involve changes in energy metabolism, calcium handling, and the composition of contractile protein isoforms, which together influence contractile properties. Histone deacetylases (HDAC) can cause short-term changes in gene expression and may thereby mediate plasticity in contractile properties of skeletal muscle in response to exercise. The aim of this project was to determine (in zebrafish, Danio rerio) the traits that mediate interindividual differences in sustained and sprint performance and to determine whether inhibiting class I and II HDACs mediates exercise-induced changes in these traits. High sustained performers had greater aerobic metabolic capacity [citrate synthase (CS) activity], calcium handling capacity [sarco/endoplasmic reticulum ATPase (SERCA) activity], and slow contractile protein concentration [slow myosin heavy chain (MHC)] compared with low performers. High sprint performers had lower CS activity and slow MHC concentrations compared with low performers, but there were no significant differences in lactate dehydrogenase activity or fast MHC concentrations. Four weeks of aerobic exercise training increased sustained performance, CS activity, SERCA activity, and slow MHC concentration. Inhibiting class I and II HDACs increased slow MHC concentration in untrained fish but not in trained fish. However, inhibiting HDACs reduced SERCA activity, which was paralleled by a reduction in sustained and sprint performance. The regulation of muscle phenotypes by HDACs could be a mechanism underlying the adaptation of sustained locomotor performance to different environmental conditions, and may therefore be of therapeutic and ecological significance.
Collapse
Affiliation(s)
- Alec I M Simmonds
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Le Roy A, Loughland I, Seebacher F. Differential effects of developmental thermal plasticity across three generations of guppies (Poecilia reticulata): canalization and anticipatory matching. Sci Rep 2017; 7:4313. [PMID: 28659598 PMCID: PMC5489511 DOI: 10.1038/s41598-017-03300-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
Developmental plasticity can match offspring phenotypes to environmental conditions experienced by parents. Such epigenetic modifications are advantageous when parental conditions anticipate offspring environments. Here we show firstly, that developmental plasticity manifests differently in males and females. Secondly, that under stable conditions, phenotypic responses (metabolism and locomotion) accumulate across several generations. Metabolic scope in males was greater at warmer test temperatures (26–36 °C) in offspring bred at warm temperatures (29–30 °C) compared to those bred at cooler temperatures (22–23 °C), lending support to the predictive adaptive hypothesis. However, this transgenerational matching was not established until the second (F2) generation. For other responses, e.g. swimming performance in females, phenotypes of offspring bred in different thermal environments were different in the first (F1) generation, but became more similar across three generations, implying canalization. Thirdly, when environments changed across generations, the grandparental environment affected offspring phenotypes. In females, the mode of the swimming thermal performance curve shifted to coincide with the grandparental rather than the parental or offspring developmental environments, and this lag in response may represent a cost of plasticity. These findings show that the effects of developmental plasticity differ between traits, and may be modulated by the different life histories of males and females.
Collapse
Affiliation(s)
- Amélie Le Roy
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Camperdown, Australia
| | - Isabella Loughland
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Camperdown, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Camperdown, Australia.
| |
Collapse
|
36
|
Ghanizadeh Kazerouni E, Franklin CE, Seebacher F. Parental exposure modulates the effects of
UV
‐B on offspring in guppies. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Craig E. Franklin
- School of Biological Sciences The University of Queensland St. Lucia QLD4072 Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08 The University of Sydney Sydney NSW2006 Australia
| |
Collapse
|
37
|
Cortes PA, Puschel H, Acuña P, Bartheld JL, Bozinovic F. Thermal ecological physiology of native and invasive frog species: do invaders perform better? CONSERVATION PHYSIOLOGY 2016; 4:cow056. [PMID: 27933168 PMCID: PMC5141634 DOI: 10.1093/conphys/cow056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/03/2016] [Accepted: 10/26/2016] [Indexed: 06/04/2023]
Abstract
Biological invasions are recognized as an important biotic component of global change that threatens the composition, structure and functioning of ecosystems, resulting in loss of biodiversity and displacement of native species. Although ecological characteristics facilitating the establishment and spread of non-native species are widely recognized, little is known about organismal attributes underlying invasion success. In this study, we tested the effect of thermal acclimation on thermal tolerance and locomotor performance in the invasive Xenopus laevis and the Chilean native Calyptocephalella gayi. In particular, the maximal righting performance (μMAX), optimal temperature (TO), lower (CTmin) and upper critical thermal limits (CTmax), thermal breadth (Tbr) and the area under the performance curve (AUC) were studied after 6 weeks acclimation to 10 and 20°C. We observed higher values of μmax and AUC in X. laevis in comparison to C. gayi. On the contrary, the invasive species showed lower values of CTmin in comparison to the native one. In contrast, CTmax, TO and Tbr showed no inter-specific differences. Moreover, we found that both species have the ability to acclimate their locomotor performance and lower thermal tolerance limit at low temperatures. Our results demonstrate that X. laevis is a better performer than C. gayi. Although there were differences in CTmin, the invasive and native frogs did not differ in their thermal tolerance. Interestingly, in both species the lower and upper critical thermal limits are beyond the minimal and maximal temperatures encountered in nature during the coldest and hottest month, respectively. Overall, our findings suggest that both X. laevis and C. gayi would be resilient to climate warming expectations in Chile.
Collapse
Affiliation(s)
- Pablo A. Cortes
- Departamento de Ecología, Center of Applied Ecology & Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Hans Puschel
- Departamento de Ecología, Center of Applied Ecology & Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Paz Acuña
- Departamento de Ciencias Básicas, Universidad Santo Tomás, Santiago, Chile
| | - José L. Bartheld
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Francisco Bozinovic
- Departamento de Ecología, Center of Applied Ecology & Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| |
Collapse
|
38
|
Seebacher F, Little AG, James RS. Skeletal muscle contractile function predicts activity and behaviour in zebrafish. J Exp Biol 2015; 218:3878-84. [DOI: 10.1242/jeb.129049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
ABSTRACT
Locomotion facilitates behaviour and its underlying physiological mechanisms may therefore impact behavioural phenotypes. Metabolism is often thought to modulate locomotion and behaviour, but empirical support for this suggestion is equivocal. Muscle contractile function is directly associated with locomotion. Here, we test the hypotheses that muscle mechanics determine locomotor performance and activity in zebrafish (Danio rerio) and thereby also affect risk-taking behaviour. We show that there is a mechanistic link between muscle performance and behaviour by manipulating muscle contractile properties, which caused proportional changes in critical sustained swimming performance and, in an open arena, voluntary swimming speed, the proportion of time fish were active, and the latency to move. We modelled the relationships between muscle contractile properties, swimming performance, activity and behaviour with a partial least-squares path model. The latent variable ‘muscle’, formed by isolated muscle force production, stress, fatigue resistance and activation and relaxation rates, had a significant positive effect on swimming performance (‘swim’ reflected in sustained and sprint speeds). Together, muscle and swim had a significant positive effect on activity, and explained 71.8% of variation in the distance moved, time active and maximum voluntary speed in an open field. Activity had a significant positive effect on boldness, explaining 76.0% of variation in latencies to move and to approach a novel object. Muscle contractile function determines voluntary movement and we suggest that exploration and dispersal are functions of physiological and mechanical optimisation. Boldness therefore may be partly explained by the greater likelihood of faster fish to move further and encounter novel objects and conspecifics more quickly as a result.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Biological Sciences A08, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alexander G. Little
- Donnelly Centre for Cellular and Biomolecular Research, Faculty of Medicine, The University Of Toronto, Toronto ON M5S, Canada
| | - Rob S. James
- Centre for Applied Biological and Exercise Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
39
|
Ghanizadeh Kazerouni E, Franklin CE, Seebacher F. UV-B exposure reduces locomotor performance by impairing muscle function but not mitochondrial ATP production. ACTA ACUST UNITED AC 2015; 219:96-102. [PMID: 26567351 DOI: 10.1242/jeb.131615] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/01/2015] [Indexed: 11/20/2022]
Abstract
Ultraviolet B radiation (UV-B) can reduce swimming performance by increasing reactive oxygen species (ROS) formation. High concentrations of ROS can damage mitochondria, resulting in reduced ATP production. ROS can also damage muscle proteins, thereby leading to impaired muscle contractile function. We have shown previously that UV-B exposure reduces locomotor performance in mosquitofish (Gambusia holbrooki) without affecting metabolic scope. Our aim was therefore to test whether UV-B influences swimming performance of mosquitofish by ROS-induced damage to muscle proteins without affecting mitochondrial function. In a fully factorial design, we exposed mosquitofish to UV-B and no-UV-B controls in combination with exposure to N-acetylcysteine (NAC) plus no-NAC controls. We used NAC, a precursor of glutathione, as an antioxidant to test whether any effects of UV-B on swimming performance were at least partly due to UV-B-induced ROS. UV-B significantly reduced critical sustained swimming performance and tail beat frequencies, and it increased ROS-induced damage (protein carbonyl concentrations and lipid peroxidation) in muscle. However, UV-B did not affect the activity of sarco-endoplasmic reticulum ATPase (SERCA), an enzyme associated with muscle calcium cycling and muscle relaxation. UV-B did not affect ADP phosphorylation (state 3) rates of mitochondrial respiration, and it did not alter the amount of ATP produced per atom of oxygen consumed (P:O ratio). However, UV-B reduced the mitochondrial respiratory control ratio. Under UV-B exposure, fish treated with NAC showed greater swimming performance and tail beat frequencies, higher glutathione concentrations, and lower protein carbonyl concentrations and lipid peroxidation than untreated fish. Tail beat amplitude was not affected by any treatment. Our results showed, firstly, that the effects of UV-B on locomotor performance were mediated by ROS and, secondly, that reduced swimming performance was not caused by impaired mitochondrial ATP production. Instead, reduced tail beat frequencies indicate that muscle of UV-B exposed fish were slower, which was likely to have been caused by slower contraction rates, because SERCA activities remained unaffected.
Collapse
Affiliation(s)
| | - Craig E Franklin
- School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Frank Seebacher
- School of Biological Sciences A08, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|