1
|
Su Y, Huang L, Zhang D, Zeng Z, Hong S, Lin X. Recent Advancements in Ultrasound Contrast Agents Based on Nanomaterials for Imaging. ACS Biomater Sci Eng 2024; 10:5496-5512. [PMID: 39246058 DOI: 10.1021/acsbiomaterials.4c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Ultrasound (US) is a type of mechanical wave that is capable of transmitting energy through biological tissues. By utilization of various frequencies and intensities, it can elicit specific biological effects. US imaging (USI) technology has been continuously developed with the advantages of safety and the absence of radiation. The advancement of nanotechnology has led to the utilization of various nanomaterials composed of both organic and inorganic compounds as ultrasound contrast agents (UCAs). These UCAs enhance USI, enabling real-time monitoring, diagnosis, and treatment of diseases, thereby facilitating the widespread adoption of UCAs in precision medicine. In this review, we introduce various UCAs based on nanomaterials for USI. Their principles can be roughly divided into the following categories: carrying and transporting gases, endogenous gas production, and the structural characteristics of the nanomaterial itself. Furthermore, the synergistic benefits of US in conjunction with various imaging modalities and their combined application in disease monitoring and diagnosis are introduced. In addition, the challenges and prospects for the development of UCAs are also discussed.
Collapse
Affiliation(s)
- Yina Su
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Linjie Huang
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Dongdong Zhang
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Zheng Zeng
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Shanni Hong
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Xiahui Lin
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| |
Collapse
|
2
|
Baroni S, Argenziano M, La Cava F, Soster M, Garello F, Lembo D, Cavalli R, Terreno E. Hard-Shelled Glycol Chitosan Nanoparticles for Dual MRI/US Detection of Drug Delivery/Release: A Proof-of-Concept Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2227. [PMID: 37570545 PMCID: PMC10420971 DOI: 10.3390/nano13152227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
This paper describes a novel nanoformulation for dual MRI/US in vivo monitoring of drug delivery/release. The nanosystem was made of a perfluoropentane core coated with phospholipids stabilized by glycol chitosan crosslinked with triphosphate ions, and it was co-loaded with the prodrug prednisolone phosphate (PLP) and the structurally similar MRI agent Gd-DTPAMA-CHOL. Importantly, the in vitro release of PLP and Gd-DTPAMA-CHOL from the nanocarrier showed similar profiles, validating the potential impact of the MRI agent as an imaging reporter for the drug release. On the other hand, the nanobubbles were also detectable by US imaging both in vitro and in vivo. Therefore, the temporal evolution of both MRI and US contrast after the administration of the proposed nanosystem could report on the delivery and the release kinetics of the transported drug in a given lesion.
Collapse
Affiliation(s)
- Simona Baroni
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (M.A.); (M.S.)
| | - Francesca La Cava
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| | - Marco Soster
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (M.A.); (M.S.)
| | - Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole, 10, 10043 Orbassano, Italy;
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (M.A.); (M.S.)
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| |
Collapse
|
3
|
Whitaker RD, Decano JL, Gormley C, Beigie CA, Meisel C, Tan GA, Moran AM, Giordano NJ, Park Y, Huang P, Andersson S, Gantz D, Grant AK, Ruiz-Opazo N, Herrera VL, Wong JY. Janus USPION modular platform (JUMP) for theranostic ultrasound-mediated targeted intratumoral microvascular imaging and DNA/miRNA delivery. Theranostics 2022; 12:7646-7667. [PMID: 36451861 PMCID: PMC9706579 DOI: 10.7150/thno.78454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Rationale: High mortality in pancreatic cancer (PDAC) and triple negative breast cancer (TNBC) highlight the need to capitalize on nanoscale-design advantages for multifunctional diagnostics and therapies. DNA/RNA-therapies can provide potential breakthroughs, however, to date, there is no FDA-approved systemic delivery system to solid tumors. Methods: Here, we report a Janus-nanoparticle (jNP)-system with modular targeting, payload-delivery, and targeted-imaging capabilities. Our jNP-system consists of 10 nm ultrasmall superparamagnetic iron oxide nanoparticles (USPION) with opposing antibody-targeting and DNA/RNA payload-protecting faces, directionally self-assembled with commercially available zwitterionic microbubbles (MBs) and DNA/RNA payloads. Results: Sonoporation of targeted jNP-payload-MBs delivers functional reporter-DNA imparting tumor-fluorescence, and micro-RNA126 reducing non-druggable KRAS in PDAC-Panc1 and TNBC-MB231 xenografted tumors. The targeting jNP-system enhances ultrasound-imaging of intra-tumoral microvasculature using less MBs/body weight (BW). The jNP-design enhances USPION's T2*-magnetic resonance (MR) and MR-imaging of PDAC-peritoneal metastases using less Fe/BW. Conclusion: Altogether, data advance the asymmetric jNP-design as a potential theranostic Janus-USPION Modular Platform - a JUMP forward.
Collapse
Affiliation(s)
| | - Julius L. Decano
- Whitaker Cardiovascular Institute, Boston University, Boston, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Catherine Gormley
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Carl A. Beigie
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cari Meisel
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Glaiza A. Tan
- Whitaker Cardiovascular Institute, Boston University, Boston, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ann-Marie Moran
- Whitaker Cardiovascular Institute, Boston University, Boston, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nicholas J. Giordano
- Whitaker Cardiovascular Institute, Boston University, Boston, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yoonjee Park
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Peng Huang
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Sean Andersson
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Division of Systems Engineering, Boston University, Boston, MA, USA
| | - Donald Gantz
- Department of Physiology and Biophysics, Boston University, Boston, MA, USA
| | - Aaron K. Grant
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nelson Ruiz-Opazo
- Whitaker Cardiovascular Institute, Boston University, Boston, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Victoria L.M. Herrera
- Whitaker Cardiovascular Institute, Boston University, Boston, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Joyce Y. Wong
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Whitaker Cardiovascular Institute, Boston University, Boston, MA, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
4
|
Jia W, Han Y, Mao X, Xu W, Zhang Y. Nanotechnology strategies for hepatocellular carcinoma diagnosis and treatment. RSC Adv 2022; 12:31068-31082. [PMID: 36349046 PMCID: PMC9621307 DOI: 10.1039/d2ra05127c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy threatening human health, and existing diagnostic and therapeutic techniques are facing great challenges. In the last decade or so, nanotechnology has been developed and improved for tumor diagnosis and treatment. For example, nano-intravenous injections have been approved for malignant perivascular epithelioid cell tumors. This article provides a comprehensive review of the applications of nanotechnology in HCC in recent years: (I) in radiological imaging, magnetic resonance imaging (MRI), fluorescence imaging (FMI) and multimodality imaging. (II) For diagnostic applications in HCC serum markers. (III) As embolic agents in transarterial chemoembolization (TACE) or directly as therapeutic drugs. (IV) For application in photothermal therapy and photodynamic therapy. (V) As carriers of chemotherapeutic drugs, targeted drugs, and natural plant drugs. (VI) For application in gene and immunotherapy. Compared with the traditional methods for diagnosis and treatment of HCC, nanoparticles have high sensitivity, reduce drug toxicity and have a long duration of action, and can also be combined with photothermal and photodynamic multimodal combination therapy. These summaries provide insights for the further development of nanotechnology applications in HCC.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University Nanjing 210009 China
| | - YingHui Han
- Outpatient Department, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - XinYu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - WenJing Xu
- Medical School, Southeast University Nanjing 210009 China
| | - YeWei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| |
Collapse
|
5
|
Novel Magnetic Elastic Phase-Change Nanodroplets as Dual Mode Contrast Agent for Ultrasound and Magnetic Resonance Imaging. Polymers (Basel) 2022; 14:polym14142915. [PMID: 35890691 PMCID: PMC9318938 DOI: 10.3390/polym14142915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
Recently, dual-mode imaging systems merging magnetic resonance imaging (MRI) and ultrasound (US) have been developed. Designing a dual-mode contrast agent is complex due to different mechanisms of enhancement. Herein, we describe novel phase change nanodroplets (PCNDs) with perfluoropentane encapsulated in a pre-polyglycerol sebacate (pre-PGS) shell loaded with polyethylene glycol (PEG)-coated iron oxide nanoparticles as having a dual-mode contrast agent effect. Iron oxide nanoparticles were prepared via the chemical co-precipitation method and PCNDs were prepared via the solvent displacement technique. PCNDs showed excellent enhancement in the in vitro US much more than Sonovue® microbubbles. Furthermore, they caused a susceptibility effect resulting in a reduction of signal intensity on MRI. An increase in the concentration of nanoparticles caused an increase in the MR contrast effect but a reduction in US intensity. The concentration of nanoparticles in a shell of PCNDs was optimized to obtain a dual-mode contrast effect. Biocompatibility, hemocompatibility, and immunogenicity assays showed that PCNDs were safe and non-immunogenic. Another finding was the dual-mode potential of unloaded PCNDs as T1 MR and US contrast agents. Results suggest the excellent potential of these PCNDs for use as dual-mode contrast agents for both MRI and US.
Collapse
|
6
|
Waqar H, Riaz R, Ahmed NM, Majeed AI, Abbas SR. Monodisperse magnetic lecithin-PFP submicron bubbles as dual imaging contrast agents for ultrasound (US) and MRI. RSC Adv 2022; 12:10504-10513. [PMID: 35425014 PMCID: PMC8981111 DOI: 10.1039/d2ra01542k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 12/23/2022] Open
Abstract
Multimodal imaging is a recent idea of combining two or more imaging methods synergistically to overcome the weakness of individual imaging modalities and utilizing complementary benefits. Ultrasound (US) and magnetic resonance imaging (MRI) are widely used imaging techniques in healthcare and to fully utilize the potential of fusion imaging, dual-modal contrast agents are necessary to improve disease diagnosis by enhancing contrast resolution and reducing health risks associated with the dual dosage of contrast agents. In this study, magnetic microbubbles were synthesized by incorporating oleic acid stabilized superparamagnetic iron oxide nanoparticles (OA-SPIONs) into lecithin microbubbles, encapsulating the perfluoropentane (PFP) core. The magnetic microbubbles were characterized by FTIR, SEM, MFM, zeta potential, in vitro MRI, and ultrasound. Upon in vitro MRI, magnetic microbubbles showed a negative contrast effect by producing darker T2 weighted images. Magnetic microbubbles showed concentration-dependent response with a decrease in signal intensity with an increase in the concentration of OA-IONP in microbubbles. However, a decrease in acoustic enhancement was also observed with an increase in OA-IONP concentration, therefore concentration was optimized to achieve the best effect on both modalities. The magnetic lecithin microbubble with 10 mg SPIONs provided the best contrast on both US and MR imaging. The hemocompatibility testing resulted in hemolysis less than 7% with plasma recalcification time and thrombin time of 240 s and 6 s corresponding to excellent hemocompatibility. Thus the magnetic microbubbles with a phase convertible PFP core encapsulated by a lecithin shell loaded with OA-SPIONs can serve as a potential bimodal contrast agent for both US and MRI imaging.
Collapse
Affiliation(s)
- Hira Waqar
- Department of Industrial Biotechnology, ASAB-NUST Pakistan
| | - Ramish Riaz
- Department of Industrial Biotechnology, ASAB-NUST Pakistan .,Biosensors and Therapeutics Lab, School of Interdisciplinary Engineering and Sciences (SINES)-NUST Pakistan
| | - Nasir M Ahmed
- Department of Material Engineering, SCME-NUST Pakistan
| | | | - Shah Rukh Abbas
- Department of Industrial Biotechnology, ASAB-NUST Pakistan .,Biosensors and Therapeutics Lab, School of Interdisciplinary Engineering and Sciences (SINES)-NUST Pakistan
| |
Collapse
|
7
|
Liu Y, Lai X, Zhu Y, Guo F, Su L, Arkin G, He T, Xu J, Ran H. Contrast-enhanced ultrasound imaging using long-circulating cationic magnetic microbubbles in vitro and in vivo validations. Int J Pharm 2021; 616:121299. [PMID: 34929311 DOI: 10.1016/j.ijpharm.2021.121299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Traditional encapsulated microbubbles are recently used as delivery carriers for drugs and genes, but they have low efficiency. If the local microbubble concentration could be increased, this might be able to improve the therapeutic efficacy of diseases. In this study, we developed novel cationic magnetic microbubbles (MBM), which could simultaneously realize targeted aggregation under a magnetic field as well as ultrasonographic real-time visualization. Their physicochemical properties, biocompatibility, ultrasonography, magnetic response characteristics, and biodistribution were systematically evaluated. Here, the MBM were 2.55±0.14µm in size with a positive zeta potential, and had a good biocompatibility. They were able to enhance ultrasonographic contrast both in vitro and in vivo. MBM could be attracted by an external magnet for directional movement and aggregation in vitro. We confirmed that MBM also had a great magnetic response in vivo, by means of fluorescence imaging and contrast-enhanced ultrasound imaging. Following intravenous injection into tumor-bearing mice, MBM showed excellent stability in the internal circulation, and could accumulate in the tumor vasculature through magnetic targeting. With the excellent combination of magnetic response and acoustic properties, cationic magnetic microbubbles (MBM) have promising potential for use as a new kind of drug/gene carrier for theranostics in the future.
Collapse
Affiliation(s)
- Yingying Liu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xiaoshu Lai
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Yao Zhu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Fengjuan Guo
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Lili Su
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Gulzira Arkin
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Tianzhen He
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Jinfeng Xu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
8
|
Gupta I, Su X, Jonnalagadda US, Das D, Pramanik M, Kwan JJ. Investigating the Acoustic Response and Contrast Enhancement of Drug-Loadable PLGA Microparticles with Various Shapes and Morphologies. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1844-1856. [PMID: 33810888 DOI: 10.1016/j.ultrasmedbio.2021.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/07/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Polymer nanoparticles and microparticles have been used primarily for drug delivery. There is now growing interest in further developing polymer-based solid cavitation agents to also enhance ultrasound imaging. We previously reported on a facile method to produce hollow poly(lactic-co-glycolic acid) (PLGA) microparticles with different diameters and degrees of porosity. Here, we investigate the cavitation response from these PLGA microparticles with both therapeutic and diagnostic ultrasound transducers. Interestingly, all formulations exhibited stable cavitation; larger porous and multicavity particles also provided inertial cavitation at elevated acoustic pressure amplitudes. These larger particles also achieved contrast enhancement comparable to that of commercially available ultrasound contrast agents, with a maximum recorded contrast-to-tissue ratio of 28 dB. Therefore, we found that multicavity PLGA microparticles respond to both therapeutic and diagnostic ultrasound and may be applied as a theranostic agent.
Collapse
Affiliation(s)
- Ipshita Gupta
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Xiaoqian Su
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Umesh Sai Jonnalagadda
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - James J Kwan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459.
| |
Collapse
|
9
|
Folic acid-functionalized gadolinium-loaded phase transition nanodroplets for dual-modal ultrasound/magnetic resonance imaging of hepatocellular carcinoma. Talanta 2021; 228:122245. [PMID: 33773745 DOI: 10.1016/j.talanta.2021.122245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 01/23/2023]
Abstract
Dual-modal molecular imaging by combining two imaging techniques can provide complementary information for early cancer diagnosis and therapeutic monitoring. In the present manuscript, folic acid (FA)-functionalized gadolinium-loaded nanodroplets (NDs) are introduced as dual-modal ultrasound (US)/magnetic resonance (MR) imaging contrast agents. These phase-change contrast agents (PCCAs) with alginate (Alg) stabilizing shell and a liquid perfluorohexane (PFH) core were successfully synthesized via the nano-emulsion method and characterized. In this regard, mouse hepatocellular carcinoma (Hepa1-6) as target cancer cells and mouse fibroblast (L929) as control cells were used. The in vitro and in vivo cytotoxicity assessments indicated that Gd/PFH@Alg and Gd/PFH@Alg-FA nanodroplets are highly biocompatible. Gd-loaded NDs do not induce organ toxicity, and no significant hemolytic activity in human red blood cells is observed. Additionally, nanodroplets exhibited strong ultrasound signal intensities as well as T1-weighted MRI signal enhancement with a high relaxivity value of 6.40 mM-1 s-1, which is significantly higher than that of the clinical Gadovist contrast agent (r1 = 4.01 mM-1 s-1). Cellular uptake of Gd-NDs-FA by Hepa1-6 cancer cells was approximately 2.5-fold higher than that of Gd-NDs after 12 h incubation. Furthermore, in vivo results confirmed that the Gd-NDs-FA bound selectively to cancer cells and were accumulated in the tumor region. In conclusion, Gd/PFH@Alg-FA nanodroplets have great potential as US/MR dual-modal imaging nanoprobes for the early diagnosis of cancer.
Collapse
|
10
|
Mauro N, Utzeri MA, Varvarà P, Cavallaro G. Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules 2021; 26:3085. [PMID: 34064173 PMCID: PMC8196792 DOI: 10.3390/molecules26113085] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer theranostics is a new concept of medical approach that attempts to combine in a unique nanoplatform diagnosis, monitoring and therapy so as to provide eradication of a solid tumor in a non-invasive fashion. There are many available solutions to tackle cancer using theranostic agents such as photothermal therapy (PTT) and photodynamic therapy (PDT) under the guidance of imaging techniques (e.g., magnetic resonance-MRI, photoacoustic-PA or computed tomography-CT imaging). Additionally, there are several potential theranostic nanoplatforms able to combine diagnosis and therapy at once, such as gold nanoparticles (GNPs), graphene oxide (GO), superparamagnetic iron oxide nanoparticles (SPIONs) and carbon nanodots (CDs). Currently, surface functionalization of these nanoplatforms is an extremely useful protocol for effectively tuning their structures, interface features and physicochemical properties. This approach is much more reliable and amenable to fine adjustment, reaching both physicochemical and regulatory requirements as a function of the specific field of application. Here, we summarize and compare the most promising metal- and carbon-based theranostic tools reported as potential candidates in precision cancer theranostics. We focused our review on the latest developments in surface functionalization strategies for these nanosystems, or hybrid nanocomposites consisting of their combination, and discuss their main characteristics and potential applications in precision cancer medicine.
Collapse
Affiliation(s)
- Nicolò Mauro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Mara Andrea Utzeri
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Paola Varvarà
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
- Advanced Technologies Network Center, University of Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo, Italy
| |
Collapse
|
11
|
Xiaoting ZBS, Zhifei DP. Micro/Nanobubbles Driven Multimodal Imaging and Theragnostics of Cancer. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2021. [DOI: 10.37015/audt.2021.200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
12
|
Nabavinia M, Beltran-Huarac J. Recent Progress in Iron Oxide Nanoparticles as Therapeutic Magnetic Agents for Cancer Treatment and Tissue Engineering. ACS APPLIED BIO MATERIALS 2020; 3:8172-8187. [DOI: 10.1021/acsabm.0c00947] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahboubeh Nabavinia
- Department of Physics, East Carolina University, Howell Science Complex, Greenville, North Carolina 27858, United States
| | - Juan Beltran-Huarac
- Department of Physics, East Carolina University, Howell Science Complex, Greenville, North Carolina 27858, United States
| |
Collapse
|
13
|
Awada H, Al Samad A, Laurencin D, Gilbert R, Dumail X, El Jundi A, Bethry A, Pomrenke R, Johnson C, Lemaire L, Franconi F, Félix G, Larionova J, Guari Y, Nottelet B. Controlled Anchoring of Iron Oxide Nanoparticles on Polymeric Nanofibers: Easy Access to Core@Shell Organic-Inorganic Nanocomposites for Magneto-Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9519-9529. [PMID: 30729776 DOI: 10.1021/acsami.8b19099] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Composites combining superparamagnetic iron oxide nanoparticles (SPIONs) and polymers are largely present in modern (bio)materials. However, although SPIONs embedded in polymer matrices are classically reported, the mechanical and degradation properties of the polymer scaffold are impacted by the SPIONs. Therefore, the controlled anchoring of SPIONs onto polymer surfaces is still a major challenge. Herein, we propose an efficient strategy for the direct and uniform anchoring of SPIONs on the surface of functionalized-polylactide (PLA) nanofibers via a simple free ligand exchange procedure to design PLA@SPIONs core@shell nanocomposites. The resulting PLA@SPIONs hybrid biomaterials are characterized by electron microscopy (scanning electron microscopy and transmission electron microscopy) and energy-dispersive X-ray spectroscopy analysis to probe the morphology and detect elements present at the organic-inorganic interface, respectively. A monolayer of SPIONs with a complete and homogeneous coverage is observed on the surface of PLA nanofibers. Magnetization experiments show that magnetic properties of the nanoparticles are well preserved after their grafting on the PLA fibers and that the size of the nanoparticles does not change. The absence of cytotoxicity, combined with a high sensitivity of detection in magnetic resonance imaging both in vitro and in vivo, makes these hybrid nanocomposites attractive for the development of magnetic biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Hussein Awada
- IBMM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
- ICGM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
| | - Assala Al Samad
- IBMM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
| | | | - Ryan Gilbert
- Department of Biomedical Engineering, Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Xavier Dumail
- ICGM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
| | - Ayman El Jundi
- IBMM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
| | - Audrey Bethry
- IBMM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
| | - Rebecca Pomrenke
- Department of Biomedical Engineering, Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Christopher Johnson
- Department of Biomedical Engineering, Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Laurent Lemaire
- Micro & Nanomédecines Translationnelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021 , Angers , France
- PRISM Plate-Forme de Recherche en Imagerie et Spectroscopie Multi-Modales, PRISM-Icat , Angers , France
| | - Florence Franconi
- Micro & Nanomédecines Translationnelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021 , Angers , France
- PRISM Plate-Forme de Recherche en Imagerie et Spectroscopie Multi-Modales, PRISM-Icat , Angers , France
| | - Gautier Félix
- ICGM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
| | - Joulia Larionova
- ICGM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
| | - Yannick Guari
- ICGM, Université de Montpellier, CNRS, ENSCM , Montpellier , France
| | | |
Collapse
|
14
|
Danthanarayana AN, Manatunga DC, De Silva RM, Chandrasekharan NV, Nalin De Silva KM. Magnetofection and isolation of DNA using polyethyleneimine functionalized magnetic iron oxide nanoparticles. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181369. [PMID: 30662742 PMCID: PMC6304157 DOI: 10.1098/rsos.181369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/06/2018] [Indexed: 05/03/2023]
Abstract
This study was carried out to develop a simple and efficient method to isolate DNA directly from biological samples using iron oxide nanoparticles (IONPs) functionalized with polyethyleneimine (PEI). IONPs were synthesized via co-precipitation method followed with direct attachment of branched PEI. Nanoparticles were characterized using STEM, FT-IR spectroscopy and XRD analysis. The binding capacity of synthesized PEI-IONPs for plasmid and genomic DNA was assessed using purified DNA samples. In order to elute bound DNA, elution conditions were optimized, changing pH, salt concentration and temperature. Synthesized PEI-IONPs were subjected to isolation of DNA from bacterial cell culture and from human blood. PCR and magnetofection of the enhanced green fluorescence protein (EGFP) were carried out to verify the downstream applications of isolated DNA. The results indicated that the synthesized nanoparticles were of 5-10 nm. The binding capacity of PEI-IONPs for plasmid DNA and genomic DNA were 5.4 and 8.4 µg mg-1, respectively, which were even higher than the commercially available kits such as Mag-bind, MagJET and Magmax. The optimized condition for plasmid DNA elution was 0.1 M Tris HCl (pH 10.0), 1.5 M NaCl and 5% formamide, maintained at the temperature of 60°C. The optimized condition for genomic DNA elution was 0.1 M Tris HCl (pH 10.0), 1.5 M NaCl and 10% formamide, maintained at 60°C. PCR and magnetofection processes were successful. This study revealed that the magnetic separation of DNA using PEI-IONPs is a simple and efficient method for direct isolation of DNA from biological samples which can be then used in various downstream applications.
Collapse
Affiliation(s)
| | | | - Rohini M. De Silva
- Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | | | - K. M. Nalin De Silva
- Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
- Sri Lanka Institute of Nanotechnology (SLINTEC), Mahenwatta, Pitipana, Homagama 10200, Sri Lanka
| |
Collapse
|
15
|
Molecular Imaging of a New Multimodal Microbubble for Adhesion Molecule Targeting. Cell Mol Bioeng 2018; 12:15-32. [PMID: 31719897 PMCID: PMC6816780 DOI: 10.1007/s12195-018-00562-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Introduction Inflammation is an important risk-associated component of many diseases and can be diagnosed by molecular imaging of specific molecules. The aim of this study was to evaluate the possibility of targeting adhesion molecules on inflammation-activated endothelial cells and macrophages using an innovative multimodal polyvinyl alcohol-based microbubble (MB) contrast agent developed for diagnostic use in ultrasound, magnetic resonance, and nuclear imaging. Methods We assessed the binding efficiency of antibody-conjugated multimodal contrast to inflamed murine or human endothelial cells (ECs), and to peritoneal macrophages isolated from rats with peritonitis, utilizing the fluorescence characteristics of the MBs. Single-photon emission tomography (SPECT) was used to illustrate 99mTc-labeled MB targeting and distribution in an experimental in vivo model of inflammation. Results Flow cytometry and confocal microscopy showed that binding of antibody-targeted MBs to the adhesion molecules ICAM-1, VCAM-1, or E-selectin, expressed on cytokine-stimulated ECs, was up to sixfold higher for human and 12-fold higher for mouse ECs, compared with that of non-targeted MBs. Under flow conditions, both VCAM-1- and E-selectin-targeted MBs adhered more firmly to stimulated human ECs than to untreated cells, while VCAM-1-targeted MBs adhered best to stimulated murine ECs. SPECT imaging showed an approximate doubling of signal intensity from the abdomen of rats with peritonitis, compared with healthy controls, after injection of anti-ICAM-1-MBs. Conclusions This novel multilayer contrast agent can specifically target adhesion molecules expressed as a result of inflammatory stimuli in vitro, and has potential for use in disease-specific multimodal diagnostics in vivo using antibodies against targets of interest.
Collapse
|
16
|
Tang R, Yan F, Yang GY, Chen KM. Microbubbles containing gadolinium as contrast agents for both phase contrast and magnetic resonance imaging. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:560-564. [PMID: 29488937 DOI: 10.1107/s1600577517017404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/04/2017] [Indexed: 06/08/2023]
Abstract
Portal vein imaging is an important method for investigating portal venous disorders. However, the diagnostic requirements are not usually satisfied when using single imaging techniques. Diagnostic accuracy can be improved by combining different imaging techniques. Contrast agents that can be used for combined imaging modalities are needed. In this study, the feasibility of using microbubbles containing gadolinium (MCG) as contrast agents for both phase contrast imaging (PCI) and magnetic resonance imaging (MRI) are investigated. MCG were made by encapsulating sulfur hexafluoride (SF6) gas with gadolinium and lyophilized powder. Absorption contrast imaging (ACI) and PCI of MCG were performed and compared in vitro. MCG were injected into the main portal trunk of living rats. PCI and MRI were performed at 2 min and 10 min after MCG injection, respectively. PCI exploited the differences in the refractive index and visibly showed the MCG, which were not detectable by ACI. PCI could facilitate clear revelation of the MCG-infused portal veins. The diameter of the portal veins could be determined by the largest MCG in the same portal vein. The minimum diameter of clearly detected portal veins was about 300 µm by MRI. These results indicate that MCG could enhance both PCI and MRI for imaging portal veins. The detection sensitivity of PCI and MRI could compensate for each other when using MCG contrast agents for animals.
Collapse
Affiliation(s)
- Rongbiao Tang
- Department of Radiology. Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Fuhua Yan
- Department of Radiology. Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Guo Yuan Yang
- Neuroscience and Neuroengineering Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Ke Min Chen
- Department of Radiology. Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| |
Collapse
|
17
|
Chertok B, Langer R. Circulating Magnetic Microbubbles for Localized Real-Time Control of Drug Delivery by Ultrasonography-Guided Magnetic Targeting and Ultrasound. Am J Cancer Res 2018; 8:341-357. [PMID: 29290812 PMCID: PMC5743552 DOI: 10.7150/thno.20781] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/03/2017] [Indexed: 01/09/2023] Open
Abstract
Image-guided and target-selective modulation of drug delivery by external physical triggers at the site of pathology has the potential to enable tailored control of drug targeting. Magnetic microbubbles that are responsive to magnetic and acoustic modulation and visible to ultrasonography have been proposed as a means to realize this drug targeting strategy. To comply with this strategy in vivo, magnetic microbubbles must circulate systemically and evade deposition in pulmonary capillaries, while also preserving magnetic and acoustic activities in circulation over time. Unfortunately, challenges in fabricating magnetic microbubbles with such characteristics have limited progress in this field. In this report, we develop magnetic microbubbles (MagMB) that display strong magnetic and acoustic activities, while also preserving the ability to circulate systemically and evade pulmonary entrapment. Methods: We systematically evaluated the characteristics of MagMB including their pharmacokinetics, biodistribution, visibility to ultrasonography and amenability to magneto-acoustic modulation in tumor-bearing mice. We further assessed the applicability of MagMB for ultrasonography-guided control of drug targeting. Results: Following intravenous injection, MagMB exhibited a 17- to 90-fold lower pulmonary entrapment compared to previously reported magnetic microbubbles and mimicked circulation persistence of the clinically utilized Definity microbubbles (>10 min). In addition, MagMB could be accumulated in tumor vasculature by magnetic targeting, monitored by ultrasonography and collapsed by focused ultrasound on demand to activate drug deposition at the target. Furthermore, drug delivery to target tumors could be enhanced by adjusting the magneto-acoustic modulation based on ultrasonographic monitoring of MagMB in real-time. Conclusions: Circulating MagMB in conjunction with ultrasonography-guided magneto-acoustic modulation may provide a strategy for tailored minimally-invasive control over drug delivery to target tissues.
Collapse
|
18
|
Nedyalkova M, Donkova B, Romanova J, Tzvetkov G, Madurga S, Simeonov V. Iron oxide nanoparticles - In vivo/in vitro biomedical applications and in silico studies. Adv Colloid Interface Sci 2017; 249:192-212. [PMID: 28499604 DOI: 10.1016/j.cis.2017.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
Abstract
The review presents a broad overview of the biomedical applications of surface functionalized iron oxide nanoparticles (IONPs) as magnetic resonance imaging (MRI) agents for sensitive and precise diagnosis tool and synergistic combination with other imaging modalities. Then, the recent progress in therapeutic applications, such as hyperthermia is discussed and the available toxicity data of magnetic nanoparticles concerning in vitro and in vivo biomedical applications are addressed. This review also presents the available computer models using molecular dynamics (MD), Monte Carlo (MC) and density functional theory (DFT), as a basis for a complete understanding of the behaviour and morphology of functionalized IONPs, for improving NPs surface design and expanding the potential applications in nanomedicine.
Collapse
Affiliation(s)
- Miroslava Nedyalkova
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria.
| | - Borjana Donkova
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
| | - Julia Romanova
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
| | - George Tzvetkov
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
| | - Sergio Madurga
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), C/Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
| | - Vasil Simeonov
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
| |
Collapse
|
19
|
Jablonowski LJ, Teraphongphom NT, Wheatley MA. Drug Delivery from a Multi-faceted Ultrasound Contrast Agent: Influence of Shell Composition. Mol Pharm 2017; 14:3448-3456. [DOI: 10.1021/acs.molpharmaceut.7b00451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lauren J. Jablonowski
- School
of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Nutte T. Teraphongphom
- School
of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Margaret A. Wheatley
- School
of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
20
|
Cellular Uptake of Plain and SPION-Modified Microbubbles for Potential Use in Molecular Imaging. Cell Mol Bioeng 2017; 10:537-548. [PMID: 29151981 PMCID: PMC5662700 DOI: 10.1007/s12195-017-0504-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/01/2017] [Indexed: 12/31/2022] Open
Abstract
Introduction Both diagnostic ultrasound (US) and magnetic resonance imaging (MRI) accuracy can be improved by using contrast enhancement. For US gas-filled microbubbles (MBs) or silica nanoparticles (SiNPs), and for MRI superparamagnetic or paramagnetic agents, contribute to this. However, interactions of MBs with the vascular wall and cells are not fully known for all contrast media. Methods We studied the in vitro interactions between three types of non-targeted air-filled MBs with a polyvinyl-alcohol shell and murine macrophages or endothelial cells. The three MB types were plain MBs and two types that were labelled (internally and externally) with superparamagnetic iron oxide nanoparticles (SPIONs) for US/MRI bimodality. Cells were incubated with MBs and imaged by microscopy to evaluate uptake and adhesion. Interactions were quantified and the MB internalization was confirmed by fluorescence quenching of non-internalized MBs. Results Macrophages internalized each MB type within different time frames: plain MBs 6 h, externally labelled MBs 25 min and internally labelled MBs 2 h. An average of 0.14 externally labelled MBs per cell were internalized after 30 min and 1.34 after 2 h; which was 113% more MBs than the number of internalized internally labelled MBs. The macrophages engulfed these three differently modified new MBs at various rate, whereas endothelial cells did not engulf MBs. Conclusions Polyvinyl-alcohol MBs are not taken up by endothelial cells. The MB uptake by macrophages is promoted by SPION labelling, in particular external such, which may be important for macrophage targeting.
Collapse
|
21
|
Abstract
The fields of biomedical nanotechnology and theranostics have enjoyed exponential growth in recent years. The "Molecular Imaging in Nanotechnology and Theranostics" (MINT) Interest Group of the World Molecular Imaging Society (WMIS) was created in order to provide a more organized and focused forum on these topics within the WMIS and at the World Molecular Imaging Conference (WMIC). The interest group was founded in 2015 and was officially inaugurated during the 2016 WMIC. The overarching goal of MINT is to bring together the many scientists who work on molecular imaging approaches using nanotechnology and those that work on theranostic agents. MINT therefore represents scientists, labs, and institutes that are very diverse in their scientific backgrounds and areas of expertise, reflecting the wide array of materials and approaches that drive these fields. In this short review, we attempt to provide a condensed overview over some of the key areas covered by MINT. Given the breadth of the fields and the given space constraints, we have limited the coverage to the realm of nanoconstructs, although theranostics is certainly not limited to this domain. We will also focus only on the most recent developments of the last 3-5 years, in order to provide the reader with an intuition of what is "in the pipeline" and has potential for clinical translation in the near future.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Suchetan Pal
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lara Rotter
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jiang Yang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|