1
|
Petchimuthu R, Venkatesh S, Kannan S, Balakrishnan V. Solid-state fermentation of brown seaweeds for the production of alginate lyase using marine bacterium Enterobacter tabaci RAU2C. Folia Microbiol (Praha) 2024; 69:1083-1093. [PMID: 38401040 DOI: 10.1007/s12223-024-01150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Alginate lyases have countless potential for application in industries and medicine particularly as an appealing biocatalyst for the production of biofuels and bioactive oligosaccharides. Solid-state fermentation (SSF) allows improved production of enzymes and consumes less energy compared to submerged fermentation. Seaweeds can serve as the most promising biomass for the production of biochemicals. Alginate present in the seaweed can be used by alginate lyase-producing bacteria to support growth and can secrete alginate lyase. In this perspective, the current study was directed on the bioprocessing of brown seaweeds for the production of alginate lyase using marine bacterial isolate. A novel alginate-degrading marine bacterium Enterobacter tabaci RAU2C which was previously isolated in the laboratory was used for the production of alginate lyase using Sargassum swartzii as a low-cost solid substrate. Process parameters such as inoculum incubation period and moisture content were optimized for alginate lyase production. SSF resulted in 33.56 U/mL of alginate lyase under the static condition maintained with 75% moisture after 4 days. Further, the effect of different buffers, pH, and temperature on alginate lyase activity was also analyzed. An increase in alginate lyase activity was observed with an increase in moisture content from 60 to 75%. Maximum enzyme activity was perceived with phosphate buffer at pH 7 and 37 °C. Further, the residual biomass after SSF could be employed as biofertilizer for plant growth promotion based on the preliminary analysis. To our knowledge, this is the first report stating the usage of seaweed biomass as a substrate for the production of alginate lyase using solid-state fermentation.
Collapse
Affiliation(s)
- Ramya Petchimuthu
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, Tamilnadu, India
| | - Subharaga Venkatesh
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, Tamilnadu, India
| | - Suriyalakshmi Kannan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, Tamilnadu, India
| | - Vanavil Balakrishnan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, Tamilnadu, India.
| |
Collapse
|
2
|
Anyairo CS, Unban K, Wongputtisin P, Rojtinnakorn J, Shetty K, Khanongnuch C. Bacillus spp. Isolated from Miang as Potential Probiotics in Nile Tilapia Culture-In Vitro Research. Microorganisms 2024; 12:1687. [PMID: 39203529 PMCID: PMC11357345 DOI: 10.3390/microorganisms12081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Among 79 Bacillus spp. isolated from Miang, a fermented tea in north Thailand, 17 Bacillus strains were selected with probiotic potential in Nile tilapia culture based on the capabilities of bacteriocin production and associated antimicrobial activities against fish pathogens, Aeromonas hydrophila and Streptococcus agalactiae. However, only six isolates were selected for further extensive studies based on the strength of their antimicrobial activities and their tolerance against simulated gastrointestinal conditions. The molecular identification by 16S rRNA gene sequence analysis revealed that five isolates, K2.1, K6.1, K7.1, K15.4, and K22.6, were Bacillus tequilensis, and the isolate K29.2 was Bacillus siamensis. B. siamensis K29.2 showed complete susceptibility to antibiotics tested in this study, while B. tequilensis K 15.4 showed moderate resistance to some antibiotics; therefore, both strains were selected as potential probiotic bacteria. B. tequilensis K15.4 and B. siamensis K29.2 were capable of the production and secretion of extracellular protease and polysaccharide degrading enzymes, including cellulase, xylanase, and β-mannanase. The tannin tolerant test also demonstrated their ability to grow on selective agar plates and secrete cellulase and β-mannanase in the presence of hydrolyzable tannin. In addition, in vitro digestion of commercial fish substrate revealed that the extracellular enzymes produced by both strains efficiently reacted with feed protein and polysaccharides. Based on the results from this study, B. siamensis K29.2 was deemed to have the highest potential multifunctional probiotic qualities for application in Nile tilapia culture, while the antibiotic-resistant gene in B. tequilensis K15.4 must be clarified before field application.
Collapse
Affiliation(s)
- Chioma Stella Anyairo
- Multidisciplinary and Interdisciplinary School, Chiang Mai University, Muang, Chiang Mai 50200, Thailand;
| | - Kridsada Unban
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Muang, Chiang Mai 50100, Thailand
| | - Pairote Wongputtisin
- Program in Biotechnology, Faculty of Science, Maejo University, Sansai, Chiang Mai 50290, Thailand;
| | - Jiraporn Rojtinnakorn
- Faculty of Fisheries and Technology, Maejo University, Sansai, Chiang Mai 50120, Thailand;
| | - Kalidas Shetty
- Global Institute of Food Security and International Agriculture (GIFSIA), Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA;
| | - Chartchai Khanongnuch
- Department of Biology, Faculty of Science, Chiang Mai University, Huay Kaew Rd., Muang, Chiang Mai 50200, Thailand
- Research Center for Multidisciplinary Approaches to Miang, Science and Technology Research Institute Chiang Mai University, Muang, Chiang Mai 50200, Thailand
- Research Center for Microbial Diversity and Sustainable Utilization, Chiang Mai University, Huay Kaew Rd., Muang, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
El-Khamisi EF, Soliman EAM, El-Sayed GM, Nour SA, Abdel-Monem MO, Hassan MG. Optimization, gene cloning, expression, and molecular docking insights for enhanced cellulase enzyme production by Bacillus amyloliquefaciens strain elh1. Microb Cell Fact 2024; 23:191. [PMID: 38956640 PMCID: PMC11218070 DOI: 10.1186/s12934-024-02454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND In this study, we isolated a cellulase-producing bacterium, Bacillus amyloliquefaciens strain elh, from rice peel. We employed two optimization methods to enhance the yield of cellulase. Firstly, we utilized a one-variable-at-a-time (OVAT) approach to evaluate the impact of individual physical and chemical parameters. Subsequently, we employed response surface methodology (RSM) to investigate the interactions among these factors. We heterologously expressed the cellulase encoding gene using a cloning vectorin E. coli DH5α. Moreover, we conducted in silico molecular docking analysis to analyze the interaction between cellulase and carboxymethyl cellulose as a substrate. RESULTS The bacterial isolate eh1 exhibited an initial cellulase activity of 0.141 ± 0.077 U/ml when cultured in a specific medium, namely Basic Liquid Media (BLM), with rice peel as a substrate. This strain was identified as Bacillus amyloliquefaciens strain elh1 through 16S rRNA sequencing, assigned the accession number OR920278 in GenBank. The optimal incubation time was found to be 72 h of fermentation. Urea was identified as the most suitable nitrogen source, and dextrose as the optimal sugar, resulting in a production increase to 5.04 ± 0.120 U/ml. The peak activity of cellulase reached 14.04 ± 0.42 U/ml utilizing statistical optimization using Response Surface Methodology (RSM). This process comprised an initial screening utilizing the Plackett-Burman design and further refinement employing the BOX -Behnken Design. The gene responsible for cellulase production, egl, was effectively cloned and expressed in E. coli DH5α. The transformed cells exhibited a cellulase activity of 22.3 ± 0.24 U/ml. The egl gene sequence was deposited in GenBank with the accession number PP194445. In silico molecular docking revealed that the two hydroxyl groups of carboxymethyl cellulose bind to the residues of Glu169 inside the binding pocket of the CMCase. This interaction forms two hydrogen bonds, with an affinity score of -5.71. CONCLUSIONS Optimization of cultural conditions significantly enhances the yield of cellulase enzyme when compared to unoptimized culturing conditions. Additionally, heterologous expression of egl gene showed that the recombinant form of the cellulase is active and that a valid expression system can contribute to a better yield of the enzyme.
Collapse
Affiliation(s)
- Elham F El-Khamisi
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, 33 El-Bohouth St., (Former El-Tahrir St.) Dokki, P.O. 12622, Giza, Egypt
| | - Effat A M Soliman
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, 33 El-Bohouth St., (Former El-Tahrir St.) Dokki, P.O. 12622, Giza, Egypt
| | - Ghada M El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, 33 El-Bohouth St., (Former El-Tahrir St.) Dokki, P.O. 12622, Giza, Egypt
| | - Shaimaa A Nour
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt.
| | - Mohamed O Abdel-Monem
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt
| | - Mervat G Hassan
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt
| |
Collapse
|
4
|
Yu Q, Xu J, Li M, Xi Y, Sun H, Xie Y, Cheng Q, Li P, Chen C, Yang F, Zheng Y. Synergistic effects of ferulic acid esterase-producing lactic acid bacteria, cellulase and xylanase on the fermentation characteristics, fibre and nitrogen components and microbial community structure of Broussonetia papyrifera during ensiling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3543-3558. [PMID: 38146051 DOI: 10.1002/jsfa.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND The high fibre content of whole plants of Broussonetia papyrifera limits its efficient utilization. Ferulic acid esterase (FAE), in combination with xylanase, can effectively cleave the lignin-carbohydrate complex, promoting the function of cellulase. However, little is known about the impact of these additives on silage. To effectively utilize natural woody plant resources, FAE-producing Lactiplantibacillus plantarum RO395, xylanase (XY) and cellulase (CE) were used to investigate the dynamic fermentation characteristics, fibre and nitrogen components and microbial community structure during B. papyrifera ensiling. RESULTS Broussonetia papyrifera was either not treated (CK) or treated with FAE-producing lactic acid bacteria (LP), CE, XY, LP + CE, LP + XY or LP + CE + XY for 3, 7, 15, 30 or 60 days, respectively. In comparison with those in the CK treatment, the L. plantarum and enzyme treatments (LP + CE, LP + XY and LP + XY + CE), especially the LP + XY + CE treatment, significantly increased the lactic acid concentration and decreased the pH and the contents of acid detergent insoluble protein and NH3 -N (P < 0.05). Enzyme addition improved the degradation efficiency of lignocellulose, and a synergistic effect was observed after enzyme treatment in combination with LP; in addition, the lowest acid detergent fibre, neutral detergent fibre, hemicellulose and cellulose contents were detected after the LP + CE + XY treatment (P < 0.05). Moreover, CE, XY and LP additions significantly improved the microbial community structure, increased the relative abundance of Lactiplantibacillus and Firmicutes, and effectively inhibited undesirable bacterial (Enterobacter) growth during ensiling. CONCLUSION FAE-producing L. plantarum and the two tested enzymes exhibited synergistic effects on improving the quality of silage, which indicates that this combination can serve as an efficient method for improved B. papyrifera silage utilization. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiang Yu
- College of Animal Science, Guizhou University, Guizhou, China
| | - Jinyi Xu
- College of Animal Science, Guizhou University, Guizhou, China
| | - Mengxin Li
- College of Animal Science, Guizhou University, Guizhou, China
| | - Yulong Xi
- College of Animal Science, Guizhou University, Guizhou, China
| | - Hong Sun
- College of Animal Science, Guizhou University, Guizhou, China
| | - Yixiao Xie
- College of Animal Science, Guizhou University, Guizhou, China
| | - Qiming Cheng
- College of Animal Science, Guizhou University, Guizhou, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guizhou, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guizhou, China
| | - Fuyu Yang
- College of Animal Science, Guizhou University, Guizhou, China
| | - Yulong Zheng
- College of Animal Science, Guizhou University, Guizhou, China
| |
Collapse
|
5
|
Kang TA, Lee G, Kim K, Hahn D, Shin JH, Kim WC. Biocontrol of Peach Gummosis by Bacillus velezensis KTA01 and Its Antifungal Mechanism. J Microbiol Biotechnol 2024; 34:296-305. [PMID: 38073404 PMCID: PMC10940740 DOI: 10.4014/jmb.2310.10005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 03/01/2024]
Abstract
Peach tree gummosis is a botanical anomaly distinguished by the secretion of dark-brown gum from the shoots of peach trees, and Botryosphaeria dothidea has been identified as one of the fungal species responsible for its occurrence. In South Korea, approximately 80% of gummosis cases are linked to infections caused by B. dothidea. In this study, we isolated microbes from the soil surrounding peach trees exhibiting antifungal activity against B. dothidea. Subsequently, we identified several bacterial strains as potential candidates for a biocontrol agent. Among them, Bacillus velezensis KTA01 displayed the most robust antifungal activity and was therefore selected for further analysis. To investigate the antifungal mechanism of B. velezensis KTA01, we performed tests to assess cell wall degradation and siderophore production. Additionally, we conducted reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis based on whole-genome sequencing to confirm the presence of genes responsible for the biosynthesis of lipopeptide compounds, a well-known characteristic of Bacillus spp., and to compare gene expression levels. Moreover, we extracted lipopeptide compounds using methanol and subjected them to both antifungal activity testing and high-performance liquid chromatography (HPLC) analysis. The experimental findings presented in this study unequivocally demonstrate the promising potential of B. velezensis KTA01 as a biocontrol agent against B. dothidea KACC45481, the pathogen responsible for causing peach tree gummosis.
Collapse
Affiliation(s)
- Tae-An Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kihwan Kim
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dongyup Hahn
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won-Chan Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Jia L, Zhao L, Qin B, Lu F, Liu D, Liu F. Enhancement of rice husks saccharification through hydrolase preparation assisted by lytic polysaccharide monooxygenase. Enzyme Microb Technol 2023; 171:110319. [PMID: 37672961 DOI: 10.1016/j.enzmictec.2023.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
Rice husk is an abundant agricultural waste generated from rice production, but its application is limited. Considering its complex components, the rice husk was hydrolyzed by different enzymes to enhance its saccharification. In this study, saccharification of the rice husk by cellulase, xylosidase, and xylanase was first investigated. The synergistic effect of LPMO on the above hydrolases and different enzyme combinations in the saccharification process was then explored. Thereafter, the formulation of the enzyme cocktail and the degradation conditions were optimized to obtain the highest saccharification efficiency. The results showed that the optimum enzyme cocktail consists of Celluclast 1.5 L (83.3 mg/g substrate), the key enzymes in the saccharification process, worked with BpXyl (20 mg/g substrate), BpXyn11 (24 mg/g substrate), and R17L/N25G (4 mg/g substrate). The highest reducing sugar concentration (1.19 mg/mL) was obtained at pH 6.0 and 60 ℃ for 24 h. Fourier transform infrared spectroscopy and scanning electron microscopy were employed to characterize the structural changes in the rice husk after degradation. The results showed that the key chemical bonds in cellulose and hemicellulose were broken. This study illuminated the concept of saccharifying lignocellulose from rice husk using LPMO synergistically assisted combined-hydrolase including cellulase, xylosidase, and xylanase, and provided a theoretical basis for lignocellulose biodegradation.
Collapse
Affiliation(s)
- Li Jia
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China
| | - Lei Zhao
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China
| | - Bo Qin
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China
| | - Dingkuo Liu
- Tianjin Enterprise Key Laboratory of Biological Feed Additives, Tianjin 300111, PR China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China.
| |
Collapse
|
7
|
Zalila-Kolsi I, Ben-Mahmoud A, Al-Barazie R. Bacillus amyloliquefaciens: Harnessing Its Potential for Industrial, Medical, and Agricultural Applications-A Comprehensive Review. Microorganisms 2023; 11:2215. [PMID: 37764059 PMCID: PMC10536829 DOI: 10.3390/microorganisms11092215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Bacillus amyloliquefaciens, a Gram-positive bacterium, has emerged as a versatile microorganism with significant applications in various fields, including industry, medicine, and agriculture. This comprehensive review aims to provide an in-depth understanding of the characteristics, genetic tools, and metabolic capabilities of B. amyloliquefaciens, while highlighting its potential as a chassis cell for synthetic biology, metabolic engineering, and protein expression. We discuss the bacterium's role in the production of chemicals, enzymes, and other industrial bioproducts, as well as its applications in medicine, such as combating infectious diseases and promoting gut health. In agriculture, B. amyloliquefaciens has demonstrated potential as a biofertilizer, biocontrol agent, and stress tolerance enhancer for various crops. Despite its numerous promising applications, B. amyloliquefaciens remains less studied than its Gram-negative counterpart, Escherichia coli. This review emphasizes the need for further research and development of advanced engineering techniques and genetic editing technologies tailored for B. amyloliquefaciens, ultimately unlocking its full potential in scientific and industrial contexts.
Collapse
Affiliation(s)
- Imen Zalila-Kolsi
- Faculty of Medical and Health Sciences, Liwa College, Abu Dhabi P.O. Box 41009, United Arab Emirates;
| | - Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| | - Ray Al-Barazie
- Faculty of Medical and Health Sciences, Liwa College, Abu Dhabi P.O. Box 41009, United Arab Emirates;
| |
Collapse
|
8
|
Wang L, Lyu Y, Miao X, Yin X, Zhang C. Enhanced protein glutaminase production from Chryseobacterium proteolyticum combining physico-chemical mutagenesis and resistance screening and its application to soybean protein isolates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4562-4572. [PMID: 36853147 DOI: 10.1002/jsfa.12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Protein glutaminase (PG) is a novel protein modification biotechnology that is increasingly being used in the food industry. However, the current level of fermentation of PG-producing strains still does not meet the requirements of industrial production. To obtain the mutant strains with high PG production, the atmospheric and room temperature plasma (ARTP) combined with LiCl chemical mutagen were used in mutagenesis of a PG producing Chryseobacterium proteolyticum 1003. RESULTS A mutant strain (WG15) was successfully obtained based on malonic acid resistance screening after compound mutagenesis of the starting strain C. proteolyticum 1003 using ARTP with LiCl, and it was confirmed to be genetically stable in PG synthesis after 15 generations. The protein glutaminase production of WG15 was 2.91 U mL-1 after optimization of fermentation conditions, which is 48.69% higher than the original strain C. proteolyticum 1003. The PG obtained from fermentation showed good activities in deamidation of soy protein isolate. The solubility and foaming properties of the PG-treated soy protein isolate were significantly increased by 36.50% and 10.03%, respectively, when PG was added at the amount of 100 U mL-1 . In addition, the emulsifying activity and emulsion stability of the treated soy protein isolate were improved by 12.44% and 10.34%, respectively, on the addition of 10 U mL-1 PG. The secondary structure of the soy protein isolate changed after PG treatment, with an increased proportion of glutamate. CONCLUSION The results of the present study indicate that the PG produced by this mutant strain could improve the functional properties of soybean protein isolate and the C. proteolyticum mutant WG15 has great potential in food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lijuan Wang
- Laboratory of Food Industrial Enzyme Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yunbin Lyu
- Laboratory of Food Industrial Enzyme Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Miao
- Laboratory of Food Industrial Enzyme Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | - Chong Zhang
- Laboratory of Food Industrial Enzyme Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Abdel Wahab WA, Mostafa FA, Ahmed SA, Saleh SAA. Statistical optimization of enzyme cocktail production using Jew's mallow stalks residues by a new isolate Aspergillus flavus B2 via statistical strategy and enzymes characterization. J Biotechnol 2023; 367:89-97. [PMID: 37028558 DOI: 10.1016/j.jbiotec.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
This study investigates the production of the enzyme cocktail by the isolated fungi Aspergillus flavus B2 (GenBank accession number OL655454) using agricultural and industrial (AI) residues as the sole substrate. Of all the AI residues tested, Jew's mallow stalk was the best inducer substrate for enzyme cocktail production without adding any nutrients. Statistical optimization using Response Surface Methodology enhanced the production by 5.45, 5.20, and 3.34-fold, respectively for pectinase, xylanase, and CMCase. Optimum temperature, activation energy (Ea), and activation energy for denaturation (Ed) were determined. Michaelis constant (Km) for CMCase, xylanase, and pectinase enzyme was 1.82, 1.23, and 1.05mg/mL, respectively. Maximum reaction rate (Vmax) was 4.67, 5.29, and 17.13U/mL, respectively for CMCase, xylanase, and pectinase. Thermal stability revealed that pectinase, CMCase, and xylanase enzymes retained 64.7, 61.8, and 53.2% residual activities after incubation for 1h at 50 °C. Half-life time (t0.5) of pectinase, CMCase, and xylanase at 50 °C were 189.38, 129.8, and 127.89min, respectively. Thermodynamics of the produced enzymes enthalpy (ΔH⁎d), free energy (ΔG⁎d), and entropy (ΔS⁎d) were determined at 40, 50, and 60°C. In the presence of EDTA (5mM), CMCase, xylanase, and pectinase retained 69.5, 66.2, and 41.2%, respectively of their activity. This work is significant for the valorization of AI residues and the production of value-added products.
Collapse
Affiliation(s)
- Walaa A Abdel Wahab
- Chemistry of Natural and Microbial Products Department National Research Centre, Dokki, Cairo, Egypt, 12622.
| | - Faten A Mostafa
- Chemistry of Natural and Microbial Products Department National Research Centre, Dokki, Cairo, Egypt, 12622.
| | - Samia A Ahmed
- Chemistry of Natural and Microbial Products Department National Research Centre, Dokki, Cairo, Egypt, 12622.
| | - Shireen A A Saleh
- Chemistry of Natural and Microbial Products Department National Research Centre, Dokki, Cairo, Egypt, 12622.
| |
Collapse
|
10
|
Liu G, Guo Z, Zhao X, Sun J, Yue S, Li M, Chen Z, Ma Z, Zhao H. Whole Genome Resequencing Identifies Single-Nucleotide Polymorphism Markers of Growth and Reproduction Traits in Zhedong and Zi Crossbred Geese. Genes (Basel) 2023; 14:487. [PMID: 36833414 PMCID: PMC9956059 DOI: 10.3390/genes14020487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The broodiness traits of domestic geese are a bottleneck that prevents the rapid development of the goose industry. To reduce the broodiness of the Zhedong goose and thus improve it, this study hybridized it with the Zi goose, which has almost no broody behavior. Genome resequencing was performed for the purebred Zhedong goose, as well as the F2 and F3 hybrids. The results showed that the F1 hybrids displayed significant heterosis in growth traits, and their body weight was significantly greater than those of the other groups. The F2 hybrids showed significant heterosis in egg-laying traits, and the number of eggs laid was significantly greater than those of the other groups. A total of 7,979,421 single-nucleotide polymorphisms (SNPs) were obtained, and three SNPs were screened. Molecular docking results showed that SNP11 located in the gene NUDT9 altered the structure and affinity of the binding pocket. The results suggested that SNP11 is an SNP related to goose broodiness. In the future, we will use the cage breeding method to sample the same half-sib families to accurately identify SNP markers of growth and reproductive traits.
Collapse
Affiliation(s)
- Guojun Liu
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, China
| | - Zhenhua Guo
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, China
| | - Xiuhua Zhao
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, China
| | - Jinyan Sun
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, China
| | - Shan Yue
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, China
| | - Manyu Li
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, No. 368 Xuefu Road, Harbin 150086, China
| | - Zhifeng Chen
- Heilongjiang Academy of Agricultural Sciences, Qiqihare Branch Academy, No. 2 Heyi Road, Qiqihare 161005, China
| | - Zhigang Ma
- Heilongjiang Academy of Agricultural Sciences, Qiqihare Branch Academy, No. 2 Heyi Road, Qiqihare 161005, China
| | - Hui Zhao
- Liaoning Academy of Agricultural Sciences, No. 84 Dongling Road, Shenyang 110161, China
| |
Collapse
|
11
|
Li C, Li S, Dang G, Jia R, Chen S, Deng X, Liu G, Beckers Y, Cai H. Screening and characterization of Bacillus velezensis LB-Y-1 toward selection as a potential probiotic for poultry with multi-enzyme production property. Front Microbiol 2023; 14:1143265. [PMID: 37138616 PMCID: PMC10149742 DOI: 10.3389/fmicb.2023.1143265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Bacillus spp. have gained increasing recognition as an option to use as antimicrobial growth promoters, which are characterized by producing various enzymes and antimicrobial compounds. The present study was undertaken to screen and evaluate a Bacillus strain with the multi-enzyme production property for poultry production. LB-Y-1, screened from the intestines of healthy animals, was revealed to be a Bacillus velezensis by the morphological, biochemical, and molecular characterization. The strain was screened out by a specific screening program, possessed excellent multi-enzyme production potential, including protease, cellulase, and phytase. Moreover, the strain also exhibited amylolytic and lipolytic activity in vitro. The dietary LB-Y-1 supplementation improved growth performance and tibia mineralization in chicken broilers, and increased serum albumin and serum total protein at 21 days of age (p < 0.05). Besides, LB-Y-1 enhanced the activity of serum alkaline phosphatase and digestive enzyme in broilers at 21 and 42 days of age (p < 0.05). Analysis of intestinal microbiota showed that a higher community richness (Chao1 index) and diversity (Shannon index) in the LB-Y-1 supplemented compared with the CON group. PCoA analysis showed that the community composition and structure were distinctly different between the CON and LB-Y-1 group. The beneficial genera such as Parasutterella and Rikenellaceae were abundant, while the opportunistic pathogen such as Escherichia-Shigella were reduced in the LB-Y-1 supplemented group (p < 0.05). Collectively, LB-Y-1 can be considered as a potential strain for further utilization in direct-fed microbial or starter culture for fermentation.
Collapse
Affiliation(s)
- Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shuzhen Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Guoqi Dang
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Rui Jia
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Si Chen
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Xuejuan Deng
- National Engineering Research Center of Biological Feed, Beijing, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Yves Beckers
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Huiyi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
- National Engineering Research Center of Biological Feed, Beijing, China
- *Correspondence: Huiyi Cai,
| |
Collapse
|
12
|
Production of a halotolerant endo-1,4-β-glucanase by a newly isolated Bacillus velezensis H1 on olive mill wastes without pretreatment: purification and characterization of the enzyme. Arch Microbiol 2022; 204:681. [DOI: 10.1007/s00203-022-03300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
|
13
|
Liu Q, Li W, Huang S, Zhao L, Zhang J, Ji C, Ma Q. R- Is Superior to S-Form of α-Lipoic Acid in Anti-Inflammatory and Antioxidant Effects in Laying Hens. Antioxidants (Basel) 2022; 11:antiox11081530. [PMID: 36009249 PMCID: PMC9405457 DOI: 10.3390/antiox11081530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
The development of single enantiomers with high efficiency and low toxic activity has become a hot spot for the development and application of drugs and active additives. The aim of the present study was to investigate the effectiveness of the application of α-lipoic acid with a different optical rotation to alleviate the inflammation response and oxidative stress induced by oxidized fish oil in laying hens. Sixty-four 124-week-old Peking Red laying hens were randomly allocated to four groups with eight replicates of two birds each. The normal group was fed basal diets supplemented with 1% fresh fish oil (FO), and the oxidative stress model group was constructed with diets supplemented with 1% oxidized fish oil (OFO). The two treatment groups were the S-form of the α-lipoic acid model with 1% oxidized fish oil (OFO + S-LA) and the R-form of the α-lipoic acid model with 1% oxidized fish oil (OFO + R-LA) added at 100 mg/kg, respectively. Herein, these results were evaluated by the breeding performance, immunoglobulin, immune response, estrogen secretion, antioxidant factors of the serum and oviduct, and pathological observation of the uterus part of the oviduct. From the results, diets supplemented with oxidized fish oil can be relatively successful in constructing a model of inflammation and oxidative stress. The OFO group significantly increased the levels of the serum inflammatory factor (TNF-α, IL-1β, IL-6, and IFN-γ) and the oxidative factor MDA and decreased the activity of the antioxidant enzyme (T-AOC, T-SOD, GSH-Px, GSH, and CAT) in the oviduct. The addition of both S-LA and R-LA significantly reduced the levels of serum inflammatory factors (TNF-α, IL-1β, IL-6, and IFN-γ), increased the activity of antioxidant indexes (T-AOC, T-SOD, GSH-Px, GSH, and CAT), and decreased the MDA contents in the serum and oviduct. Meanwhile, the supplementation of S-LA and R-LA also mitigated the negative effects of the OFO on the immunoglobulins (IgA and IgM) and serum hormone levels (P and E2). In addition, it was worth noting that the R-LA was significantly more effective than the S-LA in some inflammatory (IL-1β) and antioxidant indices (T-SOD, GSH, and CAT). Above all, both S-LA and R-LA can alleviate the inflammation and oxidative damage caused by oxidative stress in aged laying hens, and R-LA is more effective than S-LA. Thus, these findings will provide basic data for the potential development of α-lipoic acid as a chiral dietary additive for laying hens.
Collapse
|
14
|
Shang Z, Liu S, Duan Y, Bao C, Wang J, Dong B, Cao Y. Complete genome sequencing and investigation on the fiber-degrading potential of Bacillus amyloliquefaciens strain TL106 from the tibetan pig. BMC Microbiol 2022; 22:186. [PMID: 35906551 PMCID: PMC9336001 DOI: 10.1186/s12866-022-02599-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022] Open
Abstract
Background Cellulolytic microorganisms are considered a key player in the degradation of feed fiber. These microorganisms can be isolated from various resources, such as animal gut, plant surfaces, soil and oceans. A new strain of Bacillus amyloliquefaciens, TL106, was isolated from faeces of a healthy Tibetan pigs. This strain can produce cellulase and shows strong antimicrobial activity in mice. Thus, in this study, to better understand the strain of B. amyloliquefaciens TL106 on degradation of cellulose, the genome of the strain TL106 was completely sequenced and analyzed. In addition, we also explored the cellulose degradation ability of strain TL106 in vitro. Results TL106 was completely sequenced with the third generation high-throughput DNA sequencing. In vitro analysis with enzymatic hydrolysis identified the activity of cellulose degradation. TL106 consisted of one circular chromosome with 3,980,960 bp and one plasmid with 16,916 bp, the genome total length was 3.99 Mb and total of 4,130 genes were predicted. Several genes of cellulases and hemicellulase were blasted in Genbank, including β-glucosidase, endoglucanase, ß-glucanase and xylanase genes. Additionally, the activities of amylase (20.25 U/mL), cellulase (20.86 U/mL), xylanase (39.71 U/mL) and β-glucanase (36.13 U/mL) in the fermentation supernatant of strain TL106 were higher. In the study of degradation characteristics, we found that strain TL106 had a better degradation effect on crude fiber, neutral detergent fiber, acid detergent fiber, starch, arabinoxylan and β-glucan of wheat and highland barley . Conclusions The genome of B. amyloliquefaciens TL106 contained several genes of cellulases and hemicellulases, can produce carbohydrate-active enzymes, amylase, cellulase, xylanase and β-glucanase. The supernatant of fermented had activities of strain TL106. It could degrade the fiber fraction and non-starch polysaccharides (arabinoxylans and β-glucan) of wheat and highland barley. The present study demonstrated that the degradation activity of TL106 to crude fiber which can potentially be applied as a feed additive to potentiate the digestion of plant feed by monogastric animals. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02599-7.
Collapse
Affiliation(s)
- Zhenda Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China.,College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China
| | - Yanzhen Duan
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China
| | - Chengling Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China.
| |
Collapse
|
15
|
Characterization of Cellulose-Degrading Bacteria Isolated from Soil and the Optimization of Their Culture Conditions for Cellulase Production. Appl Biochem Biotechnol 2022; 194:5060-5082. [PMID: 35687308 DOI: 10.1007/s12010-022-04002-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The characterization of bacteria with hydrolytic potential significantly contributes to the industries. Six cellulose-degrading bacteria were isolated from mixture soil samples collected at Kingfisher Lake and the University of Manitoba campus by Congo red method using carboxymethyl cellulose agar medium and identified as Paenarthrobacter sp. MKAL1, Hymenobacter sp. MKAL2, Mycobacterium sp. MKAL3, Stenotrophomonas sp. MKAL4, Chryseobacterium sp. MKAL5, and Bacillus sp. MKAL6. Their cellulase production was optimized by controlling different environmental and nutritional factors such as pH, temperature, incubation period, substrate concentration, nitrogen, and carbon sources using the dinitrosalicylic acid and response surface methods. Except for Paenarthrobacter sp. MKAL1, all strains are motile. Only Bacillus sp. MKAL6 was non-salt-tolerant and showed gelatinase activity. Sucrose enhanced higher cellulase activity of 78.87 ± 4.71 to 190.30 ± 6.42 U/mL in these strains at their optimum pH (5-6) and temperature (35-40 °C). The molecular weights of these cellulases were about 25 kDa. These bacterial strains could be promising biocatalysts for converting cellulose into glucose for industrial purposes.
Collapse
|
16
|
Wang SY, Herrera-Balandrano DD, Wang YX, Shi XC, Chen X, Jin Y, Liu FQ, Laborda P. Biocontrol Ability of the Bacillus amyloliquefaciens Group, B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, for the Management of Fungal Postharvest Diseases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6591-6616. [PMID: 35604328 DOI: 10.1021/acs.jafc.2c01745] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Bacillus amyloliquefaciens group, composed of B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, has recently emerged as an interesting source of biocontrol agents for the management of pathogenic fungi. In this review, all the reports regarding the ability of these species to control postharvest fungal diseases have been covered for the first time. B. amyloliquefaciens species showed various antifungal mechanisms, including production of antifungal lipopeptides and volatile organic compounds, competition for nutrients, and induction of disease resistance. Most reports discussed their use for the control of fruit diseases. Several strains were studied in combination with additives, improving their inhibitory efficacies. In addition, a few strains have been commercialized. Overall, studies showed that B. amyloliquefaciens species are a suitable environmentally friendly alternative for the control of postharvest diseases. However, there are still crucial knowledge gaps to improve their efficacy and host range.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | | | - Yan-Xia Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Yan Jin
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Feng-Quan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|
17
|
Pham VHT, Kim J, Shim J, Chang S, Chung W. Coconut Mesocarp-Based Lignocellulosic Waste as a Substrate for Cellulase Production from High Promising Multienzyme-Producing Bacillus amyloliquefaciens FW2 without Pretreatments. Microorganisms 2022; 10:microorganisms10020327. [PMID: 35208782 PMCID: PMC8877135 DOI: 10.3390/microorganisms10020327] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/05/2023] Open
Abstract
Facing the crucial issue of high cost in cellulase production from commercial celluloses, inexpensive lignocellulosic materials from agricultural wastes have been attractive. Therefore, several studies have focused on increasing the efficiency of cellulase production by potential microorganisms capable of secreting a high and diversified amount of enzymes using agricultural waste as valuable substrates. Especially, extremophilic bacteria play an important role in biorefinery due to their high value catalytic enzymes that are active even under harsh environmental conditions. Therefore, in this study, we aim to investigate the ability to produce cellulase from coconut-mesocarp of the potential bacterial strain FW2 that was isolated from kitchen food waste in South Korea. This strain was tolerant in a wide range of temperature (−6–75 °C, pH range (4.5–12)) and at high salt concentration up to 35% NaCl. The molecular weight of the purified cellulase produced from strain FW2 was estimated to be 55 kDa. Optimal conditions for the enzyme activity using commercial substrates were found to be 40–50 °C, pH 7.0–7.5, and 0–10% NaCl observed in 920 U/mL of CMCase, 1300 U/mL of Avicelase, and 150 U/mL of FPase. It was achieved in 650 U/mL, 720 U/mL, and 140 U/mL of CMCase, Avicelase, and FPase using coconut-mesocarp, respectively. The results revealed that enzyme production by strain FW2 may have significant commercial values for industry, argo-waste treatment, and other potential applications.
Collapse
Affiliation(s)
- Van Hong Thi Pham
- Department of Environmental Energy Engineering, Graduate School of Kyonggi University, Suwon 16227, Korea;
| | - Jaisoo Kim
- Department of Life Science, College of Natural Science of Kyonggi University, Suwon 16227, Korea;
| | - Jeahong Shim
- Soil and Fertilizer Management Division, Rural Development Administration, National Institute of Agricultural Science, Wanju 54875, Korea;
| | - Soonwoong Chang
- Department of Environmental Energy Engineering, College of Creative Engineering of Kyonggi University, Suwon 16227, Korea
- Correspondence: (S.C.); (W.C.); Tel.: +82-31-249-9755 (W.C.)
| | - Woojin Chung
- Department of Environmental Energy Engineering, College of Creative Engineering of Kyonggi University, Suwon 16227, Korea
- Correspondence: (S.C.); (W.C.); Tel.: +82-31-249-9755 (W.C.)
| |
Collapse
|
18
|
Bioprocess development for enhanced endoglucanase production by newly isolated bacteria, purification, characterization and in-vitro efficacy as anti-biofilm of Pseudomonas aeruginosa. Sci Rep 2021; 11:9754. [PMID: 33963217 PMCID: PMC8105381 DOI: 10.1038/s41598-021-87901-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/06/2021] [Indexed: 02/03/2023] Open
Abstract
Endoglucanase producing bacteria were isolated from Egyptian soils and the most active bacterial strain was identified as Bacillus subtilis strain Fatma/1. Plackett-Burman statistical design was carried out to assess the effect of seven process variables on endoglucanase production. Carboxymethyl cellulose (CMC), yeast extract and peptone were the most significant variables that enhanced the endoglucanase production and thus were selected for further optimization using face-centered central composite design. The highest yield of endoglucanase (32.37 U/mL) was obtained in run no. 9, using 18 g/L CMC, 8 g/L peptone, 7 g/L yeast extract and 0.1 g/L FeSO4.7H2O. The optimized medium showed about eightfold increase in endoglucanase production compared to the unoptimized medium. The produced crude enzyme was further purified by ammonium sulfate precipitation, then DEAE-Sepharose CL6B column. The purified enzyme was shown to have a molecular weight of 37 kDa. The enzyme showed maximum activity at pH 8.0, temperature of 50 °C, incubation time of 60 min. The half-life time (T1/2) was 139.53 min at 50 °C, while being 82.67 min at 60 °C. Endoglucanase at concentration of 12 U/mL effectively removed 84.61% of biofilm matrix of Pseudomonas aeruginosa with marked reduction in carbohydrate content of the biofilm from 63.4 to 7.9 μg.
Collapse
|
19
|
Khalid A, Ye M, Wei C, Dai B, Yang R, Huang S, Wang Z. Production of β-glucanase and protease from Bacillus velezensis strain isolated from the manure of piglets. Prep Biochem Biotechnol 2020; 51:497-510. [PMID: 33108947 DOI: 10.1080/10826068.2020.1833344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study, a strain producing β-glucanase and protease, identified as Bacillus velezensis Y1, was isolated from the manure of piglet. We attempted to produce β-glucanase and protease after optimization of various process parameters with the submerged fermentation. The effects of each factor on producing β-glucanase and protease were as follows: temperature > time > pH > loaded liquid volume. The properties of the β-glucanase showed that the most suitable reaction temperature was 65 °C and pH was 6.0. However for protease optimum reaction temperature was 50 °C, and pH was 6.0. The amplified PCR fragments of β-glucanase and protease were 1434 bp containing an open reading frame of 1413 bp encoding a protein with 444 amino acids and 1752 bp containing an open reading frame of 1521 bp encoding a protein with 506 amino acids, respectively. So, the study demonstrated a viable approach of using newly identified B. velezensis Y1 strain for the maximum yield of two industrially important enzymes.
Collapse
Affiliation(s)
- Anam Khalid
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Miao Ye
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Chunjie Wei
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Binghong Dai
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Ru Yang
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Shoujun Huang
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
20
|
Cai Y, Huang Y, Huang X, Fan Z, Yu T. Efficient biodegradation of organic matter using a thermophilic bacterium and development of a cost-effective culture medium for industrial use. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:686-696. [PMID: 32107954 DOI: 10.1080/10934529.2020.1732173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Microorganisms with efficient organic matter degradation ability are essential for organic waste treatment. In this study, a thermophilic bacterium, Bacillus thermoliquefaciens, was identified to have excellent cellulase, amylase, and protease activity, and provided efficient degradation of food waste. This is the first report on the organic matter degradation potential of B. thermoliquefaciens. Using a "one-variable-at-a-time" approach and response surface methodology, the optimal culture conditions for B. thermoliquefaciens were determined to be a 5% inoculation level, 50 °C culture temperature, 25 mL filling volumes in 250 mL flasks, and 180 rpm shaking for 24 h. The optimized medium was formulated as 1 g Na2HPO4, 1 g KH2PO4, 0.05 g MgSO4, 3 g NaCl, 0.05 g CaCl2, 11.44 g wheat bran powder, 4.92 g soybean meal, and 1 L distilled water at pH 7.12. The maximum biomass attained was 1.57 ± 0.153 × 109 CFU/mL. The cost of this medium was 4.18 times less than that before optimization. This promising result lays a foundation for future industrial application of this bacterium to the degradation of organic waste.
Collapse
Affiliation(s)
- Yiting Cai
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yining Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Xuedi Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhuoying Fan
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Ting Yu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
21
|
Feng Y, Wang L, Khan A, Zhao R, Wei S, Jing X. Fermented wheat bran by xylanase-producing Bacillus cereus boosts the intestinal microflora of broiler chickens. Poult Sci 2020; 99:263-271. [PMID: 32416810 PMCID: PMC7587633 DOI: 10.3382/ps/pez482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Wheat bran, while a nutritious and economic feed ingredient, contents high levels of non-starch polysaccharides which entraps nutrients and interferes digestion and absorption. To study the influence of fermented wheat bran by xylanase-producing Bacillus cereus on growth performance and intestinal microflora of broiler chickens, a total of 180 broilers (21-day-old, mixed of male and female) were randomly divided into 3 treatments, with 6 replicates in each treatment and 10 broilers in each replicate: 1) control check (CK), corn-soybean meal-based diet; 2) wheat bran group (WB), 5% of the corn were replaced with wheat bran; and 3) fermented wheat bran group (FWB), 5% of the corn were replaced with fermented wheat bran. Growth performance was determined in the period of 21- to 42-day-old. Intestinal digestive enzyme activities and microbiota diversity were analyzed on day 42. No differences were observed on growth performance among treatments (P > 0.05). The activity of amylase in the duodenum of FWB was 1.56 times higher than CK (P < 0.05). The Chao1 index of microbiota in cecum of FWB increased 24.26% compared with CK (P < 0.01). The amount of Bifidobacteriaceae in cecum of WB was 29.1 times and 15.8 times higher than CK and FWB (P < 0.05) respectively. Principal co-ordinates analysis in cecum revealed the dissimilarity microbiota among treatments. In summary, the use of fermented wheat bran to partially replace corn (5%) in diets had no adverse effect on growth performance and triggered beneficial effects such as increasing duodenal amylase activity and intestinal microflora abundance in broiler chickens. These observations support that solid-state fermentation by xylanase-producing Bacillus cereus is feasible approach to pre-treat wheat bran for feedstuff industry.
Collapse
Affiliation(s)
- Yan Feng
- College of Life and Science, Shanxi Agricultural University, 030801, China.
| | - Lei Wang
- College of Life and Science, Shanxi Agricultural University, 030801, China
| | - Ajab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, 030801, China
| | - Rui Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, 030801, China
| | - Siang Wei
- College of Life and Science, Shanxi Agricultural University, 030801, China
| | - Xiaoyuan Jing
- College of Life and Science, Shanxi Agricultural University, 030801, China
| |
Collapse
|
22
|
Li M, Zhou H, Xu T, Zi X. Effect of cassava foliage on the performance, carcass characteristics and gastrointestinal tract development of geese. Poult Sci 2019; 98:2133-2138. [PMID: 30608561 DOI: 10.3382/ps/pey567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/08/2018] [Indexed: 11/20/2022] Open
Abstract
Cassava foliage is a by-product of cassava and has been widely used in animal feed. However, little information is available on its utilization for geese. In this study, we investigated the effects of cassava foliage on the performance, carcass characteristics, and gastrointestinal tract development of geese. A total of 108 28-day-old Hainan indigenous male geese with similar body weight were randomly divided into 3 groups with 6 pens of 6 geese per group and fed for 42 D on either the control diet of ground maize, soybean meal, and wheat bran or the experimental diet of ground maize, soybean meal, and wheat bran supplemented with 5% or 10% cassava foliage, respectively. On day 70, their body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), feed conversion ratio (FCR), carcass characteristics, and gastrointestinal tract development were compared. The results showed that cassava foliage diet significantly improved goose's BW (P < 0.05), ADG (P < 0.05), and ADFI (P < 0.05), affected carcass characteristics such as relative meat content (P < 0.05) and abdominal fat content (P < 0.05), and facilitated goose's gastrointestinal tract development. These findings suggested that incorporating cassava foliage into the diet of geese (day 28-70) could have positive effects, and supplementing 5% cassava foliage was more beneficial than 10%.
Collapse
Affiliation(s)
- Mao Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, Hainan, China.,College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, Shanxi, China
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, Hainan, China.,Institute of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, Hainan, China
| | - Tieshan Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, Hainan, China
| | - Xuejuan Zi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, Hainan, China.,Institute of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, Hainan, China
| |
Collapse
|