1
|
Segesdi M, Brabant D, Cornette R, Houssaye A. How does the shape of the wing and hindlimb bones of aquatic birds relate to their locomotor abilities? Anat Rec (Hoboken) 2024; 307:3801-3829. [PMID: 38803316 DOI: 10.1002/ar.25512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Aquatic birds represent diverse ecologies and locomotion types. Some became flightless or lost the ability for effective terrestrial locomotion, yet, certain species excel in water, on land, and in air, despite differing physical characteristics associated with each medium. In this exploratory study, we intend to quantitatively analyze the morphological variety of multiple limb bones of aquatic birds using 3D geometric morphometrics. Morphological variation is mainly driven by phylogeny, which also affects size and locomotion. However, the shape of the ulna, including the proportion and orientation of the epiphyses is influenced by size and aquatic propulsive techniques even when phylogeny is taken into consideration. Certain trends, possibly linked to functions, can be observed too in other bones, notably in cases where phylogenetic and functional signals are probably mixed when some taxa only englobe species with similar functional requirements: penguins exhibit the most distinctive wing bone morphologies, highly adapted to wing-propulsion; advanced foot-propellers exhibit femur morphology that reduces proximal mobility but supports stability; knee structures, like cnemial crests of varied sizes and orientations, are crucial for muscle attachments and efficient movement in water and on land; taxa relying on their feet in water but retaining terrestrial abilities share features enabling swimming and walking postures. Size-linked changes distinguish the wing bones of non-wing-propelled taxa. For hindlimbs, larger size relates to robust bones probably linked to terrestrial abilities, but robustness in femora can be connected to foot-propulsion. These results help us better understand birds' skeletal adaptation and can be useful inferring extinct species' ecology.
Collapse
Affiliation(s)
- Martin Segesdi
- Department of Paleontology, ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Budapest, Hungary
- Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary
- Department of Paleontology and Geology, Hungarian Natural History Museum, Budapest, Hungary
| | - Delphine Brabant
- Plateforme Surfaçus, Délégation de l'Innovation Numérique, Direction générale déléguée aux collections, Muséum National d'Histoire Naturelle, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Alexandra Houssaye
- Mécanismes adaptatifs et évolution (MECADEV), UMR 7179, MNHN, Paris, France
| |
Collapse
|
2
|
Cerbus RT, Hiratani I, Kawaguchi K. Homeotic and nonhomeotic patterns in the tetrapod vertebral formula. Proc Natl Acad Sci U S A 2024; 121:e2411421121. [PMID: 39527744 PMCID: PMC11588047 DOI: 10.1073/pnas.2411421121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
Vertebrate development and phylogeny are intimately connected through the vertebral formula, the numerical distribution of vertebrae along the body axis into different categories such as neck and chest. A key window into this relationship is through the conserved Hox gene clusters. Hox gene expression boundaries align with vertebral boundaries, and their manipulation in model organisms often results in the transformation of one vertebral type into its neighbor, a homeotic transformation. If the variety in the vertebrate body plan is produced by homeotic shifts, then the number of adjacent vertebrae will be inversely related when making interspecies comparisons since the gain in one vertebra is due to the loss in its neighbor. To date, such a pattern across species consistent with homeotic transitions has only been found in the thoracolumbar vertebral count of mammals. To further investigate potential homeotic relationships in other vertebrate classes and along the entire body axis, we compiled a comprehensive dataset of complete tetrapod vertebral formulas and systematically searched for patterns by analyzing combinations of vertebrae. We uncovered mammalian homeotic patterns and found balances between distal vertebrae not anticipated by a Hox-vertebral homeotic relationship, including one that emerged during the progression from theropods to birds. We also identified correlations between vertebral counts and intergenic distances in the HoxB gene cluster which do not align with the common picture of a colinear relationship between Hox expression and vertebral categories. This quantitative approach revises our expectations for the diversity of a Hox-mediated vertebrate body plan.
Collapse
Affiliation(s)
- Rory T. Cerbus
- Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Ichiro Hiratani
- Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Kyogo Kawaguchi
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
- RIKEN Cluster for Pioneering Research, Kobe, Japan
- Institute for Physics of Intelligence, The University of Tokyo, Hongo, Tokyo113-0033, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo113-0033, Japan
| |
Collapse
|
3
|
Wang L, Liu X, Zhang Z. A comparative study on grasping-related muscles in five Accipitriformes species. Anat Rec (Hoboken) 2024; 307:3344-3354. [PMID: 38544399 DOI: 10.1002/ar.25433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 10/12/2024]
Abstract
Accipitriformes are diverse in their prey preferences and use their grasping feet for hunting. Little is known about the architectural design of muscles related to grasping among species of different sizes, diets, and foraging behaviors. In the present study, we report quantitative data and analysis of the pelvic musculature of the Japanese sparrowhawk (Accipiter gularis), Eurasian sparrowhawk (Accipiter nisus), common buzzard (Buteo buteo), northern goshawk (Accipiter gentilis), and cinereous vulture (Aegypius monachus). As expected, mass and architecture of the considered muscles were very different between the cinereous vulture and the four other species. The cinereous vulture allocates more mass and physiological cross-sectional area (PCSA) to the proximally inserted flexor muscles, which indicates the rudimentary grasping ability of the foot and is a myological reflection of its carrion preference. Furthermore, in the cinereous vulture, muscles were built with the lowest architectural index (AI) compared with the other species, and the intrinsic foot muscles were short-fibered, which is disadvantageous for rapid manipulation and foot dexterity. The other four species, as a whole, featured large flexor hallucis longus (FHL) muscles and better development of distally inserted flexors, reflecting their predatory lifestyle. Some differences were also found between the species that consumed birds and those that consumed mammals. The two avivorous species were superior in AI and fiber length of the intrinsic foot muscles which are suitable for good hunting speed and digit flexibility, the prerequisition for hunting agile prey.
Collapse
Affiliation(s)
- Lin Wang
- College of Life Sciences, Capital Normal University, Beijing, PR China
| | - Xiyuan Liu
- College of Life Sciences, Capital Normal University, Beijing, PR China
| | - Zihui Zhang
- College of Life Sciences, Capital Normal University, Beijing, PR China
| |
Collapse
|
4
|
Cross SRR, Marmol-Guijarro AC, Bates KT, Marrin JC, Tickle PG, Rose KA, Codd JR. Testing the form-function paradigm: body shape correlates with kinematics but not energetics in selectively-bred birds. Commun Biol 2024; 7:900. [PMID: 39048787 PMCID: PMC11269648 DOI: 10.1038/s42003-024-06592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
A central concept of evolutionary biology, supported by broad scale allometric analyses, asserts that changing morphology should induce downstream changes in locomotor kinematics and energetics, and by inference selective fitness. However, if these mechanistic relationships exist at local intraspecific scales, where they could provide substrate for fundamental microevolutionary processes, is unknown. Here, analyses of selectively-bred duck breeds demonstrate that distinct body shapes incur kinematic shifts during walking, but these do not translate into differences in energetics. A combination of modular relationships between anatomical regions, and a trade-off between limb flexion and trunk pitching, are shown to homogenise potential functional differences between the breeds, accounting for this discrepancy between form and function. This complex interplay between morphology, motion and physiology indicates that understanding evolutionary links between the avian body plan and locomotor diversity requires studying locomotion as an integrated whole and not key anatomical innovations in isolation.
Collapse
Affiliation(s)
- Samuel R R Cross
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Andres C Marmol-Guijarro
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- 3Diversity, Quito, Ecuador
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - John C Marrin
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Peter G Tickle
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Kayleigh A Rose
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, UK
| | - Jonathan R Codd
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Marek RD, Felice RN. The neck as a keystone structure in avian macroevolution and mosaicism. BMC Biol 2023; 21:216. [PMID: 37833771 PMCID: PMC10576348 DOI: 10.1186/s12915-023-01715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The origin of birds from non-avian theropod dinosaur ancestors required a comprehensive restructuring of the body plan to enable the evolution of powered flight. One of the proposed key mechanisms that allowed birds to acquire flight and modify the associated anatomical structures into diverse forms is mosaic evolution, which describes the parcelization of phenotypic traits into separate modules that evolve with heterogeneous tempo and mode. Avian mosaicism has been investigated with a focus on the cranial and appendicular skeleton, and as such, we do not understand the role of the axial column in avian macroevolution. The long, flexible neck of extant birds lies between the cranial and pectoral modules and represents an opportunity to study the contribution of the axial skeleton to avian mosaicism. RESULTS Here, we use 3D geometric morphometrics in tandem with phylogenetic comparative methods to provide, to our knowledge, the first integrative analysis of avian neck evolution in context with the head and wing and to interrogate how the interactions between these anatomical systems have influenced macroevolutionary trends across a broad sample of extant birds. We find that the neck is integrated with both the head and the forelimb. These patterns of integration are variable across clades, and only specific ecological groups exhibit either head-neck or neck-forelimb integration. Finally, we find that ecological groups that display head-neck and neck-forelimb integration tend to display significant shifts in the rate of neck morphological evolution. CONCLUSIONS Combined, these results suggest that the interaction between trophic ecology and head-neck-forelimb mosaicism influences the evolutionary variance of the avian neck. By linking together the biomechanical functions of these distinct anatomical systems, the cervical vertebral column serves as a keystone structure in avian mosaicism and macroevolution.
Collapse
Affiliation(s)
- Ryan D Marek
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK.
| | - Ryan N Felice
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Genetics, Evolution, and Environment, University College London, London, UK
| |
Collapse
|
6
|
Marek RD. A surrogate forelimb: Evolution, function and development of the avian cervical spine. J Morphol 2023; 284:e21638. [PMID: 37708511 DOI: 10.1002/jmor.21638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
The neck is a critical portion of the avian spine, one that works in tandem with the beak to act as a surrogate forelimb and allows birds to manipulate their surroundings despite the lack of a grasping capable hand. Birds display an incredible amount of diversity in neck morphology across multiple anatomical scales-from varying cervical counts down to intricate adaptations of individual vertebrae. Despite this morphofunctional disparity, little is known about the drivers of this enormous variation, nor how neck evolution has shaped avian macroevolution. To promote interest in this system, I review the development, function and evolution of the avian cervical spine. The musculoskeletal anatomy, basic kinematics and development of the avian neck are all documented, but focus primarily upon commercially available taxa. In addition, recent work has quantified the drivers of extant morphological variation across the avian neck, as well as patterns of integration between the neck and other skeletal elements. However, the evolutionary history of the avian cervical spine, and its contribution to the diversification and success of modern birds is currently unknown. Future work should aim to broaden our understanding of the cervical anatomy, development and kinematics to include a more diverse selection of extant birds, while also considering the macroevolutionary drivers and consequences of this important section of the avian spine.
Collapse
Affiliation(s)
- Ryan D Marek
- Department of Cell and Developmental Biology, Centre for Integrative Anatomy, University College London, London, UK
| |
Collapse
|
7
|
Brinkworth A, Green E, Li Y, Oyston J, Ruta M, Wills MA. Bird clades with less complex appendicular skeletons tend to have higher species richness. Nat Commun 2023; 14:5817. [PMID: 37726273 PMCID: PMC10509246 DOI: 10.1038/s41467-023-41415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
Species richness is strikingly uneven across taxonomic groups at all hierarchical levels, but the reasons for this heterogeneity are poorly understood. It is well established that morphological diversity (disparity) is decoupled from taxonomic diversity, both between clades and across geological time. Morphological complexity has been much less studied, but there is theory linking complexity with differential diversity across groups. Here we devise an index of complexity from the differentiation of the fore and hind limb pairs for a sample of 983 species of extant birds. We test the null hypothesis that this index of morphological complexity is uncorrelated with clade diversity, revealing a significant and negative correlation between the species richness of clades and the mean morphological complexity of those clades. Further, we find that more complex clades tend to occupy a smaller number of dietary and habitat niches, and that this proxy for greater ecological specialisation correlates with lower species richness. Greater morphological complexity in the appendicular skeleton therefore appears to hinder the generation and maintenance of species diversity. This may result from entrenchment into morphologies and ecologies that are less capable of yielding further diversity.
Collapse
Affiliation(s)
- Andrew Brinkworth
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AZ, UK.
| | - Emily Green
- Joseph Banks Laboratories, Department of Life Sciences, University of Lincoln, Green Lane, Lincoln, LN6 7DL, UK
| | - Yimeng Li
- Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jack Oyston
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AZ, UK
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Marcello Ruta
- Joseph Banks Laboratories, Department of Life Sciences, University of Lincoln, Green Lane, Lincoln, LN6 7DL, UK
| | - Matthew A Wills
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AZ, UK
| |
Collapse
|
8
|
Allometry reveals trade-offs between Bergmann's and Allen's rules, and different avian adaptive strategies for thermoregulation. Nat Commun 2023; 14:1101. [PMID: 36843121 PMCID: PMC9968716 DOI: 10.1038/s41467-023-36676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/10/2023] [Indexed: 02/28/2023] Open
Abstract
Animals tend to decrease in body size (Bergmann's rule) and elongate appendages (Allen's rule) in warm climates. However, it is unknown whether these patterns depend on each other or constitute independent responses to the thermal environment. Here, based on a global phylogenetic comparative analysis across 99.7% of the world's bird species, we show that the way in which the relative length of unfeathered appendages co-varies with temperature depends on body size and vice versa. First, the larger the body, the greater the increase in beak length with temperature. Second, the temperature-based increase in tarsus length is apparent only in larger birds, whereas in smaller birds, tarsus length decreases with temperature. Third, body size and the length of beak and tarsus interact with each other to predict the species' environmental temperature. These findings suggest that the animals' body size and shape are products of an evolutionary compromise that reflects distinct alternative thermoregulatory adaptations.
Collapse
|
9
|
Morphological Correlates of Locomotion in the Aquatic and the Terrestrial Phases of Pleurodeles waltl Newts from Southwestern Iberia. DIVERSITY 2023. [DOI: 10.3390/d15020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Animals capable of moving in different environments might face conflicting selection on morphology, thus posing trade-offs on the relationships between morphology and locomotor performance in each of these environments. Moreover, given the distinct ecological roles of the sexes, these relationships can be sexually dimorphic. In this article, I studied the relationships between morphological traits and locomotor performance in male and female semiaquatic Pleurodeles waltl newts in their aquatic and their terrestrial stages. Morphology was sexually dimorphic: males have proportionally longer limbs and tails, as well as a better body condition (only in the aquatic phase), whereas females were larger and had greater body mass in both phases. Nonetheless, these morphological differences did not translate into sexual divergence in locomotor performance in either stage. This finding suggests other functions for the morphological traits measured, among which only SVL showed a positive relationship with locomotor performance in both stages, whereas the effect of SMI was negative only in the terrestrial stage, and that of tail length was positive only in the aquatic stage. In any case, the morphological correlates of terrestrial and aquatic locomotion did not conflict, which suggests no trade-off between both locomotory modes in the newts studied.
Collapse
|
10
|
Riegner MF, Bassar RD. Morphological Covariance and Onset of Foot Prehensility as Indicators of Integrated Evolutionary Dynamics in the Herons (Ardeidae). Integr Org Biol 2023; 5:obad010. [PMID: 37122592 PMCID: PMC10132848 DOI: 10.1093/iob/obad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
The ultimate form an organism attains is based, in part, on the rate and timing of developmental trajectories and on compensatory relationships between morphological traits. For example, there is often an inverse correlation between the relative size of an organism's head and the length of its legs. Avian examples with a disproportionately small head and long legs include ostriches (Struthionidae), flamingos (Phoenicopteridae), cranes (Gruidae), and stilts (Recurvirostridae). To determine whether a possible compensatory relationship exists between relative head size and hind-limb length in a typically long-legged family of birds-the Ardeidae-we measured and analyzed skull dimensions (length, width, and height of cranium, and bill length) and skeletal hind-limb dimensions (femur, tibiotarsus, and tarsometatarsus) of the 12 North American species (north of Mexico) and of 12 additional taxa, including the morphologically divergent Agamia and Cochlearius. We found that Ardea species exhibit the smallest relative head sizes associated with the longest legs, while Butorides, Nycticorax, Nyctanassa, and Cochlearius have among the largest heads relative to hind-limb length. Furthermore, both positive and negative allometries occur in paired comparisons between the three hind-limb bones, expressed in tall morphotypes having disproportionately short femurs while short-legged morphotypes exhibit disproportionately long femurs; we show that this relationship has implications for foraging behavior. Moreover, the nestlings of short-legged herons exhibit functional precociality of the hind limbs through an early onset of prehensile ability of the feet to grasp branches, which is later expressed in adult foraging mode. This developmentally accelerated prehensile function in small-bodied species may be attributed, in part, to selection for predator avoidance in the early nestling stage.
Collapse
Affiliation(s)
- M F Riegner
- Environmental Studies Department, Prescott College, Prescott, AZ 86301, USA
| | - R D Bassar
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
11
|
Lee S, Lee YN, Currie PJ, Sissons R, Park JY, Kim SH, Barsbold R, Tsogtbaatar K. A non-avian dinosaur with a streamlined body exhibits potential adaptations for swimming. Commun Biol 2022; 5:1185. [PMID: 36456823 PMCID: PMC9715538 DOI: 10.1038/s42003-022-04119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022] Open
Abstract
Streamlining a body is a major adaptation for aquatic animals to move efficiently in the water. Whereas diving birds are well known to have streamlined bodies, such body shapes have not been documented in non-avian dinosaurs. It is primarily because most known non-avian theropods are terrestrial, barring a few exceptions. However, clear evidence of streamlined bodies is absent even in the purported semiaquatic groups. Here we report a new theropod, Natovenator polydontus gen. et sp. nov., from the Upper Cretaceous of Mongolia. The new specimen includes a well-preserved skeleton with several articulated dorsal ribs that are posterolaterally oriented to streamline the body as in diving birds. Additionally, the widely arched proximal rib shafts reflect a dorsoventrally compressed ribcage like aquatic reptiles. Its body shape suggests that Natovenator was a potentially capable swimming predator, and the streamlined body evolved independently in separate lineages of theropod dinosaurs.
Collapse
Affiliation(s)
- Sungjin Lee
- grid.31501.360000 0004 0470 5905School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
| | - Yuong-Nam Lee
- grid.31501.360000 0004 0470 5905School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
| | - Philip J. Currie
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, AB Canada
| | - Robin Sissons
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, AB Canada
| | - Jin-Young Park
- grid.31501.360000 0004 0470 5905School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
| | - Su-Hwan Kim
- grid.31501.360000 0004 0470 5905School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
| | - Rinchen Barsbold
- grid.425564.40000 0004 0587 3863Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Khishigjav Tsogtbaatar
- grid.425564.40000 0004 0587 3863Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| |
Collapse
|
12
|
Maher AE, Burin G, Cox PG, Maddox TW, Maidment SCR, Cooper N, Schachner ER, Bates KT. Body size, shape and ecology in tetrapods. Nat Commun 2022; 13:4340. [PMID: 35896591 PMCID: PMC9329317 DOI: 10.1038/s41467-022-32028-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Body size and shape play fundamental roles in organismal function and it is expected that animals may possess body proportions that are well-suited to their ecological niche. Tetrapods exhibit a diverse array of body shapes, but to date this diversity in body proportions and its relationship to ecology have not been systematically quantified. Using whole-body skeletal models of 410 extinct and extant tetrapods, we show that allometric relationships vary across individual body segments thereby yielding changes in overall body shape as size increases. However, we also find statistical support for quadratic relationships indicative of differential scaling in small-medium versus large animals. Comparisons of locomotor and dietary groups highlight key differences in body proportions that may mechanistically underlie occupation of major ecological niches. Our results emphasise the pivotal role of body proportions in the broad-scale ecological diversity of tetrapods. Here, the authors examine how body size, shape, and segment proportions correspond to ecology in models of 410 tetrapods. They find variable allometric relationships, differential scaling in small and large animals, and body proportions as a potential niche occupation mechanism.
Collapse
Affiliation(s)
- Alice E Maher
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Gustavo Burin
- Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK
| | - Philip G Cox
- Department of Archaeology and Hull York Medical School, University of York, PalaeoHub, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Thomas W Maddox
- School of Veterinary Science, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Small Animal Teaching Hospital, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK
| | - Susannah C R Maidment
- Department of Earth Sciences, Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK
| | - Natalie Cooper
- Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK
| | - Emma R Schachner
- Department of Cell Biology & Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
13
|
Fukuhara A, Gunji M, Masuda Y. Comparative anatomy of quadruped robots and animals: a review. Adv Robot 2022. [DOI: 10.1080/01691864.2022.2086018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Akira Fukuhara
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | - Megu Gunji
- Department of Life Sciences, Faculty of Life Sciences, Toyo University, Gunma, Japan
| | - Yoichi Masuda
- Department of Mechanical Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
14
|
Sigrest P, Inman DJ. Avian whiffling-inspired gaps provide an alternative method for roll control. BIOINSPIRATION & BIOMIMETICS 2022; 17:046014. [PMID: 35609597 DOI: 10.1088/1748-3190/ac7303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Some bird species exhibit a flight behavior known as whiffling, in which the bird flies upside-down during landing, predator evasion, or courtship displays. Flying inverted causes the flight feathers to twist, creating gaps in the wing's trailing edge. It has been suggested that these gaps decrease lift at a potentially lower energy cost, enabling the bird to maneuver and rapidly descend. Thus, avian whiffling has parallels to an uncrewed aerial vehicle (UAV) using spoilers for rapid descent and ailerons for roll control. However, while whiffling has been previously described in the biological literature, it has yet to directly inspire aerodynamic design. In the current research, we investigated if gaps in a wing's trailing edge, similar to those caused by feather rotation during whiffling, could provide an effective mechanism for UAV control, particularly rapid descent and banking. To address this question, we performed a wind tunnel test of 3D printed wings with a varying amount of trailing edge gaps and compared the lift and rolling moment coefficients generated by the gapped wings to a traditional spoiler and aileron. Next, we used an analytical analysis to estimate the force and work required to actuate gaps, spoiler, and aileron. Our results showed that gapped wings did not reduce lift as much as a spoiler and required more work. However, we found that at high angles of attack, the gapped wings produced rolling moment coefficients equivalent to upwards aileron deflections of up to 32.7° while requiring substantially less actuation force and work. Thus, while the gapped wings did not provide a noticeable benefit over spoilers for rapid descent, a whiffling-inspired control surface could provide an effective alternative to ailerons for roll control. These findings suggest a novel control mechanism that may be advantageous for small fixed-wing UAVs, particularly energy-constrained aircraft.
Collapse
Affiliation(s)
- Piper Sigrest
- Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Daniel J Inman
- Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
15
|
Abourachid A, Gagnier B, Furet M, Cornette R, Delapre A, Hackert R, Wenger P. Modeling intervertebral articulation: The rotule à doigt mechanical joint (RAD) in birds and mammals. J Anat 2021; 239:1287-1299. [PMID: 34291452 PMCID: PMC8602019 DOI: 10.1111/joa.13517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
The vertebrate skeleton is composed of articulated bones. Most of the articulations are classically described using mechanical joints, except the intervertebral joint. The aim of this study was to identify a joint model with the same mechanical features as the cervical joints. On the neck vertebrae, six articular surfaces participate in the joint: the cranial part of the centrum and the facets of the two prezygapophyses of a vertebra articulate on the caudal part of the centrum and the two articular facets of the postzygapophyses of the previous vertebra. We used the intervertebral joints of the birds neck to identify the mechanical joint representing intervertebral linkage. This link was described in the literature as a joint allowing two or three rotations and no translation. These features correspond to the rotule à doigt (RAD) joint, a ball and socket joint with a pin. We compared the RAD joint to the postaxial intervertebral joints of the avian neck and found it a suitable model to determine the geometrical features involved in the joint mobility. The difference in the angles of virtual axes linking the geometrical center of the centrum to the zygapophysis surfaces determines the mean dorsoventral flexion of the joint. It also helps to limit longitudinal rotation. The orientation of the zygapophysis surfaces determines the range of motion in both dorsoventral and lateral flexion. The overall system prevents dislocation. The model was validated on 13 joints of a vulture neck and 11 joints of a swallow neck and on one joint (C6-C7) in each of three mammal species: the wolf (Canis lupus), mole (Talpa europaea), and human (Homo sapiens). The RAD mechanical joint was found in all vertebral articulations. This validation of the model on different species shows that the RAD intervertebral joint model makes it possible to extract the parameters that guide and limit the mobility of the cervical spine from the complex shape of the vertebrae and to compare them in interspecific studies.
Collapse
Affiliation(s)
- Anick Abourachid
- Mécanismes Adaptatifs et Evolution (Mecadev) Museum National d’Histoire NaturelleCNRSSorbonne UniversitéParis Cedex 05France
| | - Benoît Gagnier
- Mécanismes Adaptatifs et Evolution (Mecadev) Museum National d’Histoire NaturelleCNRSSorbonne UniversitéParis Cedex 05France
| | | | - Raphael Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB) – UMR 7205Muséum National d'Histoire NaturelleCNRSSorbonne UniversitéEPHEUniversité des AntillesParisFrance
| | - Arnaud Delapre
- Institut de Systématique, Evolution, Biodiversité (ISYEB) – UMR 7205Muséum National d'Histoire NaturelleCNRSSorbonne UniversitéEPHEUniversité des AntillesParisFrance
| | - Remi Hackert
- Mécanismes Adaptatifs et Evolution (Mecadev) Museum National d’Histoire NaturelleCNRSSorbonne UniversitéParis Cedex 05France
| | | |
Collapse
|
16
|
Weldon SA, Münsterberg AE. Somite development and regionalisation of the vertebral axial skeleton. Semin Cell Dev Biol 2021; 127:10-16. [PMID: 34690064 DOI: 10.1016/j.semcdb.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022]
Abstract
A critical stage in the development of all vertebrate embryos is the generation of the body plan and its subsequent patterning and regionalisation along the main anterior-posterior axis. This includes the formation of the vertebral axial skeleton. Its organisation begins during early embryonic development with the periodic formation of paired blocks of mesoderm tissue called somites. Here, we review axial patterning of somites, with a focus on studies using amniote model systems - avian and mouse. We summarise the molecular and cellular mechanisms that generate paraxial mesoderm and review how the different anatomical regions of the vertebral column acquire their specific identity and thus shape the body plan. We also discuss the generation of organoids and embryo-like structures from embryonic stem cells, which provide insights regarding axis formation and promise to be useful for disease modelling.
Collapse
Affiliation(s)
- Shannon A Weldon
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
17
|
Palecek AM, Novak MV, Blob RW. Wading through water: effects of water depth and speed on the drag and kinematics of walking Chilean flamingos, Phoenicopterus chilensis. J Exp Biol 2021; 224:272138. [PMID: 34505127 DOI: 10.1242/jeb.242988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/03/2021] [Indexed: 01/14/2023]
Abstract
Wading behaviours, in which an animal walks while partially submerged in water, are present in a variety of taxa including amphibians, reptiles, mammals and birds. Despite the ubiquity of wading behaviours, few data are available to evaluate how animals adjust their locomotion to accommodate changes in water depth. Because drag from water might impose additional locomotor costs, wading animals might be expected to raise their feet above the water up to a certain point until such behaviours lead to awkward steps and are abandoned. To test for such mechanisms, we measured drag on models of the limbs of Chilean flamingos (Phoenicopterus chilensis) and measured their limb and body kinematics as they walked and waded through increasing depths of water in a zoo enclosure. Substantial drag was incurred by models of both open- and closed-toed feet, suggesting that flamingos could avoid some locomotor costs by stepping over water, rather than through it, during wading. Step height was highest while wading through intermediate water depths and while wading at a faster speed. Stride length increased with increasing water depth and velocity, and the limb joints generally flexed more while moving through intermediate water depths. However, movements of the head and neck were not strongly correlated with water depth or velocity. Our results show a wide range of kinematic changes that occur to allow wading birds to walk through different water depths, and have implications for better understanding the locomotor strategies employed by semi-aquatic species.
Collapse
Affiliation(s)
- Amanda M Palecek
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Megan V Novak
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
18
|
Frongia GN, Naitana S, Farina V, Gadau SD, Stefano MD, Muzzeddu M, Leoni G, Zedda M. Correlation between wing bone microstructure and different flight styles: The case of the griffon vulture (gyps fulvus) and greater flamingo (phoenicopterus roseus). J Anat 2021; 239:59-69. [PMID: 33650143 PMCID: PMC8197951 DOI: 10.1111/joa.13411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/30/2022] Open
Abstract
Flying is the main means of locomotion for most avian species, and it requires a series of adaptations of the skeleton and of feather distribution on the wing. Flight type is directly associated with the mechanical constraints during flight, which condition both the morphology and microscopic structure of the bones. Three primary flight styles are adopted by avian species: flapping, gliding, and soaring, with different loads among the main wing bones. The purpose of this study was to evaluate the cross-sectional microstructure of the most important skeletal wing bones, humerus, radius, ulna, and carpometacarpus, in griffon vultures (Gyps fulvus) and greater flamingos (Phoenicopterus roseus). These two species show a flapping and soaring flight style, respectively. Densitometry, morphology, and laminarity index were assessed from the main bones of the wing of 10 griffon vultures and 10 flamingos. Regarding bone mineral content, griffon vultures generally displayed a higher mineral density than flamingos. Regarding the morphology of the crucial wing bones involved in flight, while a very slightly longer humerus was observed in the radius and ulna of flamingos, the ulna in griffons was clearly longer than other bones. The laminarity index was significantly higher in griffons. The results of the present study highlight how the mechanics of different types of flight may affect the biomechanical properties of the wing bones most engaged during flight.
Collapse
Affiliation(s)
| | | | | | | | - Marco D. Stefano
- Departments of Internal Medicine, Gerontology and Bone Metabolic Disease SectionMolinette HospitalUniversity of TurinItaly
| | - Marco Muzzeddu
- Bonassai Breeding and Wildlife Recovery CenterRegional Forest Agency FoReSTASCagliariItaly
| | - Giovanni Leoni
- Department of Veterinary MedicineUniversity of SassariItaly
| | - Marco Zedda
- Department of Veterinary MedicineUniversity of SassariItaly
| |
Collapse
|
19
|
Marek RD, Falkingham PL, Benson RBJ, Gardiner JD, Maddox TW, Bates KT. Evolutionary versatility of the avian neck. Proc Biol Sci 2021; 288:20203150. [PMID: 33653136 PMCID: PMC7934994 DOI: 10.1098/rspb.2020.3150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bird necks display unparalleled levels of morphological diversity compared to other vertebrates, yet it is unclear what factors have structured this variation. Using three-dimensional geometric morphometrics and multivariate statistics, we show that the avian cervical column is a hierarchical morpho-functional appendage, with varying magnitudes of ecologically driven osteological variation at different scales of organization. Contrary to expectations given the widely varying ecological functions of necks in different species, we find that regional modularity of the avian neck is highly conserved, with an overall structural blueprint that is significantly altered only by the most mechanically demanding ecological functions. Nevertheless, the morphologies of vertebrae within subregions of the neck show more prominent signals of adaptation to ecological pressures. We also find that both neck length allometry and the nature of neck elongation in birds are different from other vertebrates. In contrast with mammals, neck length scales isometrically with head mass and, contrary to previous work, we show that neck elongation in birds is achieved predominantly by increasing vertebral lengths rather than counts. Birds therefore possess a cervical spine that may be unique in its versatility among extant vertebrates, one that, since the origin of flight, has adapted to function as a surrogate forelimb in varied ecological niches.
Collapse
Affiliation(s)
- Ryan D Marek
- Department of Musculoskeletal & Ageing Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Peter L Falkingham
- Biological and Environmental Sciences, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Roger B J Benson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - James D Gardiner
- Department of Musculoskeletal & Ageing Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Thomas W Maddox
- Department of Musculoskeletal & Ageing Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
20
|
Bell A, Chiappe LM. Anatomy of Parahesperornis: Evolutionary Mosaicism in the Cretaceous Hesperornithiformes (Aves). Life (Basel) 2020; 10:life10050062. [PMID: 32422986 PMCID: PMC7281208 DOI: 10.3390/life10050062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
The Hesperornithiformes constitute the first known avian lineage to secondarily lose flight in exchange for the evolution of a highly derived foot-propelled diving lifestyle, thus representing the first lineage of truly aquatic birds. First unearthed in the 19th century, and today known from numerous Late Cretaceous (Cenomanian-Maastrichtian) sites distributed across the northern hemisphere, these toothed birds have become icons of early avian evolution. Initially erected as a taxon in 1984 by L. D. Martin, Parahesperornis alexi is known from the two most complete hesperornithiform specimens discovered to date and has yet to be fully described. P. alexi thus contributes significantly to our understanding of hesperornithiform birds, despite often being neglected in favor of the iconic Hesperornis. Here, we present a full anatomical description of P. alexi based upon the two nearly complete specimens in the collections of the University of Kansas Natural History Museum, as well as an extensive comparison to other hesperornithiform taxa. This study reveals P. alexi to possess a mosaic of basal and derived traits found among other hesperornithiform taxa, indicating a transitional form in the evolution of these foot-propelled diving birds. This study describes broad evolutionary patterns within the Hesperornithiformes, highlighting the significance of these birds as not only an incredible example of the evolution of ecological specializations, but also for understanding modern bird evolution, as they are the last known divergence of pre-modern bird diversification.
Collapse
|
21
|
Terray L, Plateau O, Abourachid A, Böhmer C, Delapré A, de la Bernardie X, Cornette R. Modularity of the Neck in Birds (Aves). Evol Biol 2020. [DOI: 10.1007/s11692-020-09495-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Böhmer C, Prevoteau J, Duriez O, Abourachid A. Gulper, ripper and scrapper: anatomy of the neck in three species of vultures. J Anat 2019; 236:701-723. [PMID: 31885086 DOI: 10.1111/joa.13129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2019] [Indexed: 12/28/2022] Open
Abstract
The head-neck system of birds is a highly complex structure that performs a variety of demanding and competing tasks. Morphofunctional adaptations to feeding specializations have previously been identified in the head and neck, but performance is also influenced by other factors such as its phylogenetic history. In order to minimize the effects of this factor, we here analyzed the anatomy of three closely related vultures that distinctly differ in feeding strategy. Vultures, as obligate scavengers, have occupied a special ecological niche by exclusively feeding on carrion. However, competition among sympatric vultures led to ecological differences such as preference of certain types of food from a carcass. Via comparative dissections we systematically described the craniocervical anatomy in the Griffon vulture (Gyps fulvus), the Cinereous vulture (Aegypius monachus) and the Hooded vulture (Necrosyrtes monachus) that exploit the same food resources in different ways. Our results revealed differences in the number of cervical vertebrae, in the morphology of the atlas-axis complex as well as in the neck musculature despite overall similarities in the musculoskeletal system. Gulpers, rippers and scrappers adopt specific postures while feeding from a carcass, but the cervical vertebral column is indispensable to position the head during all kinds of behavior. The great range of demands may explain the conservation of the overall muscle topography of the neck across the studied taxa.
Collapse
Affiliation(s)
- Christine Böhmer
- MECADEV UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | - Jocerand Prevoteau
- MECADEV UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | - Olivier Duriez
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS-Université de Montpellier-EPHE-Université Paul Valery, Montpellier Cedex 5, France
| | - Anick Abourachid
- MECADEV UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
23
|
Böhmer C, Furet M, Fasquelle B, Wenger P, Chablat D, Chevallereau C, Abourachid A. Combining precision and power to maximize performance: a case study of the woodpecker’s neck. Comput Methods Biomech Biomed Engin 2019. [DOI: 10.1080/10255842.2020.1713463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- C. Böhmer
- Département Adaptations du Vivant, Muséum National d’Histoire Naturelle, UMR 7179 CNRS/MNHN, Paris, France
| | - M. Furet
- Laboratoire des Sciences du Numérique de Nantes (LS2N), CNRS, Ecole centrale de Nantes, Nantes, France
| | - B. Fasquelle
- Laboratoire des Sciences du Numérique de Nantes (LS2N), CNRS, Ecole centrale de Nantes, Nantes, France
| | - P. Wenger
- Laboratoire des Sciences du Numérique de Nantes (LS2N), CNRS, Ecole centrale de Nantes, Nantes, France
| | - D. Chablat
- Laboratoire des Sciences du Numérique de Nantes (LS2N), CNRS, Ecole centrale de Nantes, Nantes, France
| | - C. Chevallereau
- Laboratoire des Sciences du Numérique de Nantes (LS2N), CNRS, Ecole centrale de Nantes, Nantes, France
| | - A. Abourachid
- Département Adaptations du Vivant, Muséum National d’Histoire Naturelle, UMR 7179 CNRS/MNHN, Paris, France
| |
Collapse
|