1
|
Zhou T, NajafiKhoshnoo S, Esfandyarpour R, Kulinsky L. Dissolvable Calcium Alginate Microfibers Produced via Immersed Microfluidic Spinning. MICROMACHINES 2023; 14:318. [PMID: 36838018 PMCID: PMC9965352 DOI: 10.3390/mi14020318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Fabrication of micro- and nanofibers are critical for a wide range of applications from microelectronics to biotechnology. Alginate microfibers with diameters of tens to hundreds of microns play an important role in tissue engineering and fibers of these diameters are impossible to fabricate via electrospinning and can only be produced via fluidic spinning. Typically, microfluidic spinning based on photopolymerization produces fibers that are not easily dissolvable, while fluidic spinning with chemical cross-linking employs complex setups of microfabricated chips or coaxial needles, aimed at precise control of the fiber diameter; however, fluidic spinning introduces significant cost and complexity to the microfluidic setup. We demonstrate immersed microfluidic spinning where a calcium alginate microfiber is produced via displacement of alginate solution through a single needle that is immersed in a cross-linking bath of calcium chloride solution. The resulting diameter of the fiber is characterized and the fiber diameter and topology of the deposited fiber is related to the concentration of the alginate solution (2 wt%, 4 wt%, and 6 wt%), needle gauge (30 g, 25 g, and 20 g), and the volumetric flow rate of the alginate solution (1 mL/min, 2 mL/min, and 2.7 mL/min). The resulting fiber diameter is smaller than the internal diameter of the needle and this dependence is explained by the continuity of the flow and increased rate of fall of the liquid jet upon its issuing from the needle. The fiber diameter (demonstrated diameter of fibers range from 100 microns to 1 mm) depends weakly on the volumetric flow rate and depends strongly on the needle diameter. It also seems that for a smaller needle size, a greater concentration of alginate results in smaller diameter fibers and that this trend is not evident as the needle diameter is increased. In terms of topology of the deposited fiber, the higher wt% alginate fiber produces larger loops, while smaller wt% alginate solution yields a denser topology of the overlaid fiber loops. These fibers can be dissolved in DMEM/EDTA/DSC solution in 20-30 min (depending on the fiber diameter), leaving behind the hollow channels in the hydrogel matrix. We believe that the demonstrated simple setup of the immersed microfluidic spinning of the calcium alginate microfibers will be useful for creating tissue constructs, including the vascularized tissue implants.
Collapse
Affiliation(s)
- Tuo Zhou
- Mechanical and Aerospace Engineering, University of California Irvine, 5200 Engineering Hall, Irvine, CA 92627, USA
- Materials and Manufacturing Technology, University of California Irvine, 5200 Engineering Hall, Irvine, CA 92627, USA
| | - Sahar NajafiKhoshnoo
- Electrical Engineering and Computer Science, University of California Irvine, 5200 Engineering Hall, Irvine, CA 92627, USA
| | - Rahim Esfandyarpour
- Electrical Engineering and Computer Science, University of California Irvine, 5200 Engineering Hall, Irvine, CA 92627, USA
- Biomedical Engineering, University of California Irvine, 5200 Engineering Hall, Irvine, CA 92627, USA
| | - Lawrence Kulinsky
- Mechanical and Aerospace Engineering, University of California Irvine, 5200 Engineering Hall, Irvine, CA 92627, USA
| |
Collapse
|
2
|
Zhang X, Wang X, Fan W, Liu Y, Wang Q, Weng L. Fabrication, Property and Application of Calcium Alginate Fiber: A Review. Polymers (Basel) 2022; 14:3227. [PMID: 35956740 PMCID: PMC9371111 DOI: 10.3390/polym14153227] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022] Open
Abstract
As a natural linear polysaccharide, alginate can be gelled into calcium alginate fiber and exploited for functional material applications. Owing to its high hygroscopicity, biocompatibility, nontoxicity and non-flammability, calcium alginate fiber has found a variety of potential applications. This article gives a comprehensive overview of research on calcium alginate fiber, starting from the fabrication technique of wet spinning and microfluidic spinning, followed by a detailed description of the moisture absorption ability, biocompatibility and intrinsic fire-resistant performance of calcium alginate fiber, and briefly introduces its corresponding applications in biomaterials, fire-retardant and other advanced materials that have been extensively studied over the past decade. This review assists in better design and preparation of the alginate bio-based fiber and puts forward new perspectives for further study on alginate fiber, which can benefit the future development of the booming eco-friendly marine biomass polysaccharide fiber.
Collapse
Affiliation(s)
- Xiaolin Zhang
- School of Textile-Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, Ministry of Education, Xi’an 710048, China
| | - Xinran Wang
- School of Textile-Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, Ministry of Education, Xi’an 710048, China
| | - Wei Fan
- School of Textile-Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, Ministry of Education, Xi’an 710048, China
| | - Yi Liu
- School of Textile-Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, Ministry of Education, Xi’an 710048, China
| | - Qi Wang
- School of Textile-Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, Ministry of Education, Xi’an 710048, China
| | - Lin Weng
- Department of Chemical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
3
|
Joshi J, Homburg SV, Ehrmann A. Atomic Force Microscopy (AFM) on Biopolymers and Hydrogels for Biotechnological Applications-Possibilities and Limits. Polymers (Basel) 2022; 14:1267. [PMID: 35335597 PMCID: PMC8949482 DOI: 10.3390/polym14061267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Atomic force microscopy (AFM) is one of the microscopic techniques with the highest lateral resolution. It can usually be applied in air or even in liquids, enabling the investigation of a broader range of samples than scanning electron microscopy (SEM), which is mostly performed in vacuum. Since it works by following the sample surface based on the force between the scanning tip and the sample, interactions have to be taken into account, making the AFM of irregular samples complicated, but on the other hand it allows measurements of more physical parameters than pure topography. This is especially important for biopolymers and hydrogels used in tissue engineering and other biotechnological applications, where elastic properties, surface charges and other parameters influence mammalian cell adhesion and growth as well as many other effects. This review gives an overview of AFM modes relevant for the investigations of biopolymers and hydrogels and shows several examples of recent applications, focusing on the polysaccharides chitosan, alginate, carrageenan and different hydrogels, but depicting also a broader spectrum of materials on which different AFM measurements are reported in the literature.
Collapse
Affiliation(s)
- Jnanada Joshi
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Sarah Vanessa Homburg
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
4
|
Petre DG, Leeuwenburgh SCG. The Use of Fibers in Bone Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:141-159. [PMID: 33375900 DOI: 10.1089/ten.teb.2020.0252] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bone tissue engineering aims to restore and maintain the function of bone by means of biomaterial-based scaffolds. This review specifically focuses on the use of fibers in biomaterials used for bone tissue engineering as suitable environment for bone tissue repair and regeneration. We present a bioinspired rationale behind the use of fibers in bone tissue engineering and provide an overview of the most common fiber fabrication methods, including solution, melt, and microfluidic spinning. Subsequently, we provide a brief overview of the composition of fibers that are used in bone tissue engineering, including fibers composed of (i) natural polymers (e.g., cellulose, collagen, gelatin, alginate, chitosan, and silk, (ii) synthetic polymers (e.g., polylactic acid [PLA], polycaprolactone, polyglycolic acid [PGA], polyethylene glycol, and polymer blends of PLA and PGA), (iii) ceramic fibers (e.g., aluminium oxide, titanium oxide, and zinc oxide), (iv) metallic fibers (e.g., titanium and its alloys, copper and magnesium), and (v) composite fibers. In addition, we review the most relevant fiber modification strategies that are used to enhance the (bio)functionality of these fibers. Finally, we provide an overview of the applicability of fibers in biomaterials for bone tissue engineering, with a specific focus on mechanical, pharmaceutical, and biological properties of fiber-functionalized biomaterials for bone tissue engineering. Impact statement Natural bone is a complex composite material composed of an extracellular matrix of mineralized fibers containing living cells and bioactive molecules. Consequently, the use of fibers in biomaterial-based scaffolds offers a wide variety of opportunities to replicate the functional performance of bone. This review provides an overview of the use of fibers in biomaterials for bone tissue engineering, thereby contributing to the design of novel fiber-functionalized bone-substituting biomaterials of improved functionality regarding their mechanical, pharmaceutical, and biological properties.
Collapse
Affiliation(s)
- Daniela Geta Petre
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Sander C G Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Melo P, Montalbano G, Fiorilli S, Vitale-Brovarone C. 3D Printing in Alginic Acid Bath of In-Situ Crosslinked Collagen Composite Scaffolds. MATERIALS 2021; 14:ma14216720. [PMID: 34772251 PMCID: PMC8588345 DOI: 10.3390/ma14216720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
Bone-tissue regeneration is a growing field, where nanostructured-bioactive materials are designed to replicate the natural properties of the target tissue, and then are processed with technologies such as 3D printing, into constructs that mimic its natural architecture. Type I bovine collagen formulations, containing functional nanoparticles (enriched with therapeutic ions or biomolecules) or nanohydroxyapatite, are considered highly promising, and can be printed using support baths. These baths ensure an accurate deposition of the material, nonetheless their full removal post-printing can be difficult, in addition to undesired reactions with the crosslinking agents often used to improve the final structural integrity of the scaffolds. Such issues lead to partial collapse of the printed constructs and loss of geometrical definition. To overcome these limitations, this work presents a new alternative approach, which consists of adding a suitable concentration of crosslinking agent to the printing formulations to promote the in-situ crosslinking of the constructs prior to the removal of the support bath. To this aim, genipin, chosen as crosslinking agent, was added (0.1 wt.%) to collagen-based biomaterial inks (containing either 38 wt.% mesoporous bioactive glasses or 65 wt.% nanohydroxyapatite), to trigger the crosslinking of collagen and improve the stability of the 3D printed scaffolds in the post-processing step. Moreover, to support the material deposition, a 15 wt.% alginic acid solution was used as a bath, which proved to sustain the printed structures and was also easily removable, allowing for the stable processing of high-resolution geometries.
Collapse
Affiliation(s)
- Priscila Melo
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (P.M.); (G.M.); (C.V.-B.)
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Giorgia Montalbano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (P.M.); (G.M.); (C.V.-B.)
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (P.M.); (G.M.); (C.V.-B.)
- Correspondence:
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (P.M.); (G.M.); (C.V.-B.)
| |
Collapse
|
6
|
Magnani JS, Montazami R, Hashemi NN. Recent Advances in Microfluidically Spun Microfibers for Tissue Engineering and Drug Delivery Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:185-205. [PMID: 33940929 DOI: 10.1146/annurev-anchem-090420-101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, the unique and tunable properties of microfluidically spun microfibers have led to tremendous advancements for the field of biomedical engineering, which have been applied to areas such as tissue engineering, wound dressing, and drug delivery, as well as cell encapsulation and cell seeding. In this article, we analyze the most recent advances in microfluidics and microfluidically spun microfibers, with an emphasis on biomedical applications. We explore in detail these new and innovative experiments, how microfibers are made, the experimental purpose of making microfibers, and the future work that can be done as a result of these new types of microfibers. We also focus on the applications of various materials used to fabricate microfibers, as well as their many promises and limitations.
Collapse
Affiliation(s)
- Joseph Scott Magnani
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA;
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA;
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA;
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
7
|
Weng L, Zhang X, Fan W, Lu Y. Development of the inorganic nanoparticles reinforced alginate‐based hybrid fiber for wound care and healing. J Appl Polym Sci 2021. [DOI: 10.1002/app.51228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lin Weng
- Department of Chemical Engineering Xi'an Jiaotong University Xi'an China
| | - Xiaolin Zhang
- School of Textile Science and Engineering Xi'an Polytechnic University Xi'an China
- Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University) Ministry of Education Xi'an China
| | - Wei Fan
- School of Textile Science and Engineering Xi'an Polytechnic University Xi'an China
- Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University) Ministry of Education Xi'an China
| | - Yao Lu
- School of Textile Science and Engineering Xi'an Polytechnic University Xi'an China
- Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University) Ministry of Education Xi'an China
| |
Collapse
|
8
|
Wu R, Kim T. Review of microfluidic approaches for fabricating intelligent fiber devices: importance of shape characteristics. LAB ON A CHIP 2021; 21:1217-1240. [PMID: 33710187 DOI: 10.1039/d0lc01208d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shape characteristics, which include the physical dimensions (scale), apparent morphology, surface features, and structure, are essential factors of fibrous materials and determine many of their properties. Microfluidic technologies have recently been proposed as an approach for producing one-dimensional (1D) fibers with controllable shape characteristics and particle alignment, which impart specific functionality to the fiber. Moreover, superfine 1D fibers with a high surface area and ordered structure have many potential applications as they can be directly braided or woven into textiles, clothes, and tissues with two- or three-dimensional (2D or 3D) structures. Previous reviews of microfluidic spinning have not focus on the importance of the shape characteristic on fiber performance and their use in intelligent fiber design. Here, the latest achievements in microfluidic approaches for fiber-device fabrication are reviewed considering the underlying preparation principles, shape characteristics, and functionalization of the fibers. Additionally, intelligent fiber devices with shapes tailored by microfluidic approaches are discussed, including 1D sensors and actuators, luminous fibers, and devices for encoding, energy harvesting, water collection, and tissue engineering applications. Finally, recent progress, challenges, and future perspectives of the microfluidic approaches for fiber device fabrication are discussed.
Collapse
Affiliation(s)
- Ronghui Wu
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | | |
Collapse
|
9
|
Chang B, Jin J, Zhou Q. Surface Tension-Based Alignment of Microfibers on Hydrophilic-Superhydrophobic Grooved Surfaces. MICROMACHINES 2020; 11:mi11110973. [PMID: 33138311 PMCID: PMC7716217 DOI: 10.3390/mi11110973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 11/21/2022]
Abstract
Alignment and orderly distribution of microfibers have a major effect on the mechanical, electrical, and thermal properties of the fiber reinforced materials, biomimetic materials, and soft microsensors. However, it is still a challenging task to precisely align and distribute microfibers and construct complex patterns. This paper proposes a surface tension-based method to align and orderly distribute microfibers. A model was developed to simulate the surface tension driven alignment of the microfiber. We designed and fabricated hydrophilic–superhydrophobic grooved surfaces. We demonstrated that the microfibers can self-align to the hydrophilic–superhydrophobic grooves with different geometries. We studied the influence of the volume of the droplet and bias on the alignment success rate. The results indicate that the process can tolerate large variations of the bias and the volume, unless the volume is not enough to cover the groove. We further investigated the influence of the width of the groove on the alignment accuracy. The results show that the alignment accuracy is largely depending on the size difference between the groove and the microfiber; the better the size of the groove matches the size of the fiber, the higher the alignment accuracy will be achieved. The proposed method has great potential in construction of complex microstructures using microfibers.
Collapse
Affiliation(s)
- Bo Chang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
- Correspondence:
| | - Jialong Jin
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Quan Zhou
- School of Electrical Engineering, Aalto University, FI-00076 Aalto, Finland;
| |
Collapse
|
10
|
Patel BB, McNamara MC, Pesquera-Colom LS, Kozik EM, Okuzonu J, Hashemi NN, Sakaguchi DS. Recovery of Encapsulated Adult Neural Progenitor Cells from Microfluidic-Spun Hydrogel Fibers Enhances Proliferation and Neuronal Differentiation. ACS OMEGA 2020; 5:7910-7918. [PMID: 32309700 PMCID: PMC7160838 DOI: 10.1021/acsomega.9b04214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Because of the limitations imposed by traditional two-dimensional (2D) cultures, biomaterials have become a major focus in neural and tissue engineering to study cell behavior in vitro. 2D systems fail to account for interactions between cells and the surrounding environment; these cell-matrix interactions are important to guide cell differentiation and influence cell behavior such as adhesion and migration. Biomaterials provide a unique approach to help mimic the native microenvironment in vivo. In this study, a novel microfluidic technique is used to encapsulate adult rat hippocampal stem/progenitor cells (AHPCs) within alginate-based fibrous hydrogels. To our knowledge, this is the first study to encapsulate AHPCs within a fibrous hydrogel. Alginate-based hydrogels were cultured for 4 days in vitro and recovered to investigate the effects of a 3D environment on the stem cell fate. Post recovery, cells were cultured for an additional 24 or 72 h in vitro before fixing cells to determine if proliferation and neuronal differentiation were impacted after encapsulation. The results indicate that the 3D environment created within a hydrogel is one factor promoting AHPC proliferation and neuronal differentiation (19.1 and 13.5%, respectively); however, this effect is acute. By 72 h post recovery, cells had similar levels of proliferation and neuronal differentiation (10.3 and 8.3%, respectively) compared to the control conditions. Fibrous hydrogels may better mimic the natural micro-environment present in vivo and be used to encapsulate AHPCs, enhancing cell proliferation and selective differentiation. Understanding cell behavior within 3D scaffolds may lead to the development of directed therapies for central nervous system repair and rescue.
Collapse
Affiliation(s)
- Bhavika B Patel
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, United States
- Neuroscience Program, Iowa State University, Ames, Iowa 50011, United States
| | - Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Laura S Pesquera-Colom
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, United States
- Biology Program, Iowa State University, Ames, Iowa 50010, United States
| | - Emily M Kozik
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, United States
- Biology Program, Iowa State University, Ames, Iowa 50010, United States
| | - Jasmin Okuzonu
- Department of Biological and Chemical Engineering, Iowa State University, Ames, Iowa 50010, United States
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Donald S Sakaguchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, United States
- Neuroscience Program, Iowa State University, Ames, Iowa 50011, United States
- Biology Program, Iowa State University, Ames, Iowa 50010, United States
| |
Collapse
|
11
|
Zaarour B, Zhu L, Huang C, Jin X. A mini review on the generation of crimped ultrathin fibers via electrospinning: Materials, strategies, and applications. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4876] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bilal Zaarour
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University Shanghai China
- Textile Industries Mechanical Engineering and Techniques Department, Faculty of Mechanical and Electrical EngineeringDamascus University Damascus Syria
| | - Lei Zhu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University Shanghai China
| | - Chen Huang
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University Shanghai China
| | - Xiangyu Jin
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University Shanghai China
| |
Collapse
|