1
|
Connelly F, Johnsson RD, Mulder RA, Hall ML, Lesku JA. Experimental playback of urban noise does not affect cognitive performance in captive Australian magpies. Biol Open 2024; 13:bio060535. [PMID: 39069816 PMCID: PMC11340814 DOI: 10.1242/bio.060535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Exposure of wildlife to anthropogenic noise is associated with disruptive effects. Research on this topic has focused on behavioural and physiological responses of animals to noise, with little work investigating links to cognitive function. Neurological processes that maintain cognitive performance can be impacted by stress and sleep disturbances. While sleep loss impairs cognitive performance in Australian magpies, it is unclear whether urban noise, which disrupts sleep, can impact cognition as well. To fill this gap, we explored how environmentally relevant urban noise affected the performance of wild-caught, city-living Australian magpies (Gymnorhina tibicen tyrannica) on a cognitive task battery including associative and reversal learning, inhibitory control, and spatial memory. Birds were housed and tested in a laboratory environment; sample sizes varied across tasks (n=7-9 birds). Tests were conducted over 4 weeks, during which all magpies were exposed to both an urban noise playback and a quiet control. Birds were presented with the entire test battery twice: following exposure to, and in the absence of, an anthropogenic noise playback; however, tests were always performed without noise (playback muted during testing). Magpies performed similarly in both treatments on all four tasks. We also found that prior experience with the associative learning task had a strong effect on performance, with birds performing better on their second round of trials. Like previous findings on Australian magpies tested on the same tasks in the wild under noisy conditions, we could not find any disruptive effects on cognitive performance in a controlled experimental laboratory setting.
Collapse
Affiliation(s)
- Farley Connelly
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
- Alameda County Resource Conservation District, Livermore, California 94550, USA
| | - Robin D. Johnsson
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Psychology, Franklin and Marshall College, Lancaster, Pennsylvania 17603, USA
| | - Raoul A. Mulder
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Michelle L. Hall
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Bush Heritage Australia, Melbourne, Victoria 3000, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - John A. Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
2
|
Blackburn G, Ashton BJ, Thornton A, Hunter H, Woodiss-Field S, Ridley AR. Investigating the relationship between physical cognitive tasks and a social cognitive task in a wild bird. Anim Cogn 2024; 27:52. [PMID: 39060612 PMCID: PMC11281958 DOI: 10.1007/s10071-024-01892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Despite considerable research into the structure of cognition in non-human animal species, there is still much debate as to whether animal cognition is organised as a series of discrete domains or an overarching general cognitive factor. In humans, the existence of general intelligence is widely accepted, but less work has been undertaken in animal psychometrics to address this question. The relatively few studies on non-primate animal species that do investigate the structure of cognition rarely include tasks assessing social cognition and focus instead on physical cognitive tasks. In this study, we tested 36 wild Western Australian magpies (Gymnorhina tibicen dorsalis) on a battery of three physical (associative learning, spatial memory, and numerical assessment) and one social (observational spatial memory) cognitive task, to investigate if cognition in this species fits a general cognitive factor model, or instead one of separate physical and social cognitive domains. A principal component analysis (PCA) identified two principal components with eigenvalues exceeding 1; a first component onto which all three physical tasks loaded strongly and positively, and a second component onto which only the social task (observational spatial memory) loaded strongly and positively. These findings provide tentative evidence for separate physical and social cognitive domains in this species, and highlight the importance of including tasks assessing both social and physical cognition in cognitive test batteries.
Collapse
Affiliation(s)
- Grace Blackburn
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia.
| | - Benjamin J Ashton
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Holly Hunter
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Sarah Woodiss-Field
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Amanda R Ridley
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
3
|
Chakroborty NK, Leboulle, Einspanier R, Menzel R. Behavioral and genetic correlates of heterogeneity in learning performance in individual honeybees, Apis mellifera. PLoS One 2024; 19:e0304563. [PMID: 38865313 PMCID: PMC11168654 DOI: 10.1371/journal.pone.0304563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Learning an olfactory discrimination task leads to heterogeneous results in honeybees with some bees performing very well and others at low rates. Here we investigated this behavioral heterogeneity and asked whether it was associated with particular gene expression patterns in the bee's brain. Bees were individually conditioned using a sequential conditioning protocol involving several phases of olfactory learning and retention tests. A cumulative score was used to differentiate the tested bees into high and low performers. The rate of CS+ odor learning was found to correlate most strongly with a cumulative performance score extracted from all learning and retention tests. Microarray analysis of gene expression in the mushroom body area of the brains of these bees identified a number of differentially expressed genes between high and low performers. These genes are associated with diverse biological functions, such as neurotransmission, memory formation, cargo trafficking and development.
Collapse
Affiliation(s)
- Neloy Kumar Chakroborty
- Institute Biology, Neurobiology, Freie Universität Berlin, Königin Luisestr, Berlin, Germany
| | - Leboulle
- Institute Biology, Neurobiology, Freie Universität Berlin, Königin Luisestr, Berlin, Germany
| | - Ralf Einspanier
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg, Berlin, Germany
| | - Randolf Menzel
- Institute Biology, Neurobiology, Freie Universität Berlin, Königin Luisestr, Berlin, Germany
| |
Collapse
|
4
|
Speechley EM, Ashton BJ, Thornton A, King SL, Simmons LW, Woodiss-Field SL, Ridley AR. Aggressive interactions influence cognitive performance in Western Australian magpies. Proc Biol Sci 2024; 291:20240435. [PMID: 38835280 DOI: 10.1098/rspb.2024.0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/09/2024] [Indexed: 06/06/2024] Open
Abstract
Extensive research has investigated the relationship between the social environment and cognition, suggesting that social complexity may drive cognitive evolution and development. However, evidence for this relationship remains equivocal. Group size is often used as a measure of social complexity, but this may not capture intraspecific variation in social interactions. Social network analysis can provide insight into the cognitively demanding challenges associated with group living at the individual level. Here, we use social networks to investigate whether the cognitive performance of wild Western Australian magpies (Gymnorhina tibicen dorsalis) is related to group size and individual social connectedness. We quantified social connectedness using four interaction types: proximity, affiliative, agonistic and vocal. Consistent with previous research on this species, individuals in larger groups performed better on an associative learning task. However, social network position was also related to cognitive performance. Individuals receiving aggressive interactions performed better, while those involved in aggressive interactions with more group members performed worse. Overall, this suggests that cognitive performance is related to specific types of social interaction. The findings from this study highlight the value of considering fine-grained metrics of sociality that capture the challenges associated with social life when testing the relationship between the social environment and cognition.
Collapse
Affiliation(s)
- Elizabeth M Speechley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia , Perth, Western Australia 6009, Australia
| | - Benjamin J Ashton
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia , Perth, Western Australia 6009, Australia
- School of Natural Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
| | - Stephanie L King
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia , Perth, Western Australia 6009, Australia
- School of Biological Sciences, University of Bristol , Bristol BS8 1TQ, UK
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia , Perth, Western Australia 6009, Australia
| | - Sarah L Woodiss-Field
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia , Perth, Western Australia 6009, Australia
| | - Amanda R Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia , Perth, Western Australia 6009, Australia
| |
Collapse
|
5
|
Speechley EM, Ashton BJ, Thornton A, Simmons LW, Ridley AR. Heritability of cognitive performance in wild Western Australian magpies. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231399. [PMID: 38481983 PMCID: PMC10933533 DOI: 10.1098/rsos.231399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 02/10/2024] [Indexed: 04/26/2024]
Abstract
Individual differences in cognitive performance can have genetic, social and environmental components. Most research on the heritability of cognitive traits comes from humans or captive non-human animals, while less attention has been given to wild populations. Western Australian magpies (Gymnorhina tibicen dorsalis, hereafter magpies) show phenotypic variation in cognitive performance, which affects reproductive success. Despite high levels of individual repeatability, we do not know whether cognitive performance is heritable in this species. Here, we quantify the broad-sense heritability of associative learning ability in a wild population of Western Australian magpies. Specifically, we explore whether offspring associative learning performance is predicted by maternal associative learning performance or by the social environment (group size) when tested at three time points during the first year of life. We found little evidence that offspring associative learning performance is heritable, with an estimated broad-sense heritability of just -0.046 ± 0.084 (confidence interval: -0.234/0.140). However, complementing previous findings, we find that at 300 days post-fledging, individuals raised in larger groups passed the test in fewer trials compared with individuals from small groups. Our results highlight the pivotal influence of the social environment on cognitive development.
Collapse
Affiliation(s)
- Elizabeth M. Speechley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Benjamin J. Ashton
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, UK
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Amanda R. Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
6
|
Johnsson RD, Connelly F, Lesku JA, Roth TC. Australian magpies. Curr Biol 2024; 34:R41-R43. [PMID: 38262352 DOI: 10.1016/j.cub.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Robin D. Johnsson and colleagues introduce Australian magpies, which are not actually magpies.
Collapse
Affiliation(s)
- Robin D Johnsson
- Department of Psychology, Franklin and Marshall College, Lancaster, PA, USA
| | - Farley Connelly
- Alameda County Resource Conservation District, Livermore, CA, USA
| | - John A Lesku
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, VIC, Australia.
| | - Timothy C Roth
- Department of Psychology, Franklin and Marshall College, Lancaster, PA, USA
| |
Collapse
|
7
|
McCallum E, Shaw RC. Repeatability and heritability of inhibitory control performance in wild toutouwai ( Petroica longipes). ROYAL SOCIETY OPEN SCIENCE 2023; 10:231476. [PMID: 38026029 PMCID: PMC10646466 DOI: 10.1098/rsos.231476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Despite increasing interest in the evolution of inhibitory control, few studies have examined the validity of widespread testing paradigms, the long-term repeatability and the heritability of this cognitive ability in the wild. We investigated these aspects in the inhibitory control performance of wild toutouwai (North Island robin; Petroica longipes), using detour and reversal learning tasks. We assessed convergent validity by testing whether individual performance correlated across detour and reversal learning tasks. We then further evaluated task validity by examining whether individual performance was confounded by non-cognitive factors. We tested a subset of subjects twice in each task to estimate the repeatability of performance across a 1-year period. Finally, we used a population pedigree to estimate the heritability of task performance. Individual performance was unrelated across detour and reversal learning tasks, indicating that these measured different cognitive abilities. Task performance was not influenced by body condition, boldness or prior experience, and showed moderate between-year repeatability. Yet despite this individual consistency, we found no evidence that task performance was heritable. Our findings suggest that detour and reversal learning tasks measure consistent individual differences in distinct forms of inhibitory control in toutouwai, but this variation may be environmentally determined rather than genetic.
Collapse
Affiliation(s)
- Ella McCallum
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, Wellington, New Zealand
| | - Rachael C. Shaw
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
8
|
van den Heuvel K, Quinn JL, Kotrschal A, van Oers K. Artificial selection for reversal learning reveals limited repeatability and no heritability of cognitive flexibility in great tits ( Parus major). Proc Biol Sci 2023; 290:20231067. [PMID: 37464752 PMCID: PMC10354490 DOI: 10.1098/rspb.2023.1067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Cognitive flexibility controls how animals respond to changing environmental conditions. Individuals within species vary considerably in cognitive flexibility but the micro-evolutionary potential in animal populations remains enigmatic. One prerequisite for cognitive flexibility to be able to evolve is consistent and heritable among-individual variation. Here we determine the repeatability and heritability of cognitive flexibility among great tits (Parus major) by performing an artificial selection experiment on reversal learning performance using a spatial learning paradigm over three generations. We found low, yet significant, repeatability (R = 0.15) of reversal learning performance. Our artificial selection experiment showed no evidence for narrow-sense heritability of associative or reversal learning, while we confirmed the heritability of exploratory behaviour. We observed a phenotypic, but no genetic, correlation between associative and reversal learning, showing the importance of prior information on reversal learning. We found no correlation between cognitive and personality traits. Our findings emphasize that cognitive flexibility is a multi-faceted trait that is affected by memory and prior experience, making it challenging to retrieve reliable values of temporal consistency and assess the contribution of additive genetic variation. Future studies need to identify what cognitive components underlie variation in reversal learning and study their between-individual and additive genetic components.
Collapse
Affiliation(s)
- Krista van den Heuvel
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands, The Netherlands
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - John L. Quinn
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, T23 N73K4, Ireland
- Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
| | - Alexander Kotrschal
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands, The Netherlands
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| |
Collapse
|
9
|
Templeton CN, O’Connor A, Strack S, Meraz F, Herranen K. Traffic noise inhibits inhibitory control in wild-caught songbirds. iScience 2023; 26:106650. [PMID: 37168571 PMCID: PMC10165181 DOI: 10.1016/j.isci.2023.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/08/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Anthropogenic noise is ubiquitous across environments and can have negative effects on animals, ranging from physiology to community structure. Recent work with captive-bred zebra finches demonstrated that traffic noise also affects cognitive performance. We examined whether these results extend to animals that have experienced noise in the wild. We collected black-capped chickadees from areas frequently exposed to road traffic noise and tested them on a detour reaching task, a commonly used measure of inhibitory control. Those chickadees exposed to traffic noise playback had much lower performance on the task than control birds, indicating that noise negatively impacts inhibitory control. These data corroborate previous findings in lab-reared zebra finches. Furthermore, these results suggest that prior experience with traffic noise is not sufficient for animals to habituate to noise and overcome its negative effects on cognitive performance. Instead, noise-induced cognitive effects might have broad impacts on animal species living in noise-polluted habitats.
Collapse
Affiliation(s)
| | - Amber O’Connor
- Department of Biology, Pacific University, Forest Grove, OR 97116, USA
| | - Sarah Strack
- Department of Biology, Pacific University, Forest Grove, OR 97116, USA
| | - Franco Meraz
- Department of Biology, Pacific University, Forest Grove, OR 97116, USA
| | - Katri Herranen
- Department of Biology, Pacific University, Forest Grove, OR 97116, USA
| |
Collapse
|
10
|
Sollis JG, Ashton BJ, Speechley EM, Ridley AR. Repeated testing does not confound cognitive performance in the Western Australian magpie (Cracticus tibicen dorsalis). Anim Cogn 2023; 26:579-588. [PMID: 36222936 DOI: 10.1007/s10071-022-01699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/03/2022] [Accepted: 09/15/2022] [Indexed: 11/01/2022]
Abstract
A robust understanding of cognitive variation at the individual level is essential to understand selection for and against cognitive traits. Studies of animal cognition often assume that within-individual performance is highly consistent. When repeated tests of individuals have been conducted, the effects of test order (the overall sequence in which different tests are conducted) and test number (the ordinal number indicating when a specific test falls within a sequence)-in particular the potential for individual performance to improve with repeated testing-have received limited attention. In our study, we investigated test order and test number effects on individual performance in three inhibitory control tests in Western Australian magpies (Cracticus tibicen dorsalis). We presented adult magpies with three novel inhibitory control tasks (detour-reaching apparatuses) in random order to test whether experience of cognitive testing and the order in which the apparatuses were presented were predictors of cognitive performance. We found that neither test number nor test order had an effect on cognitive performance of individual magpies when presenting different variants of inhibitory control tasks. This suggests that repeated testing of the same cognitive trait, using causally identical but visually distinct cognitive tasks, does not confound cognitive performance. We recommend that repeated testing effects of cognitive performance in other species be studied to broadly determine the validity of repeated testing in animal cognition studies.
Collapse
Affiliation(s)
- Joseph G Sollis
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia.
| | - Benjamin J Ashton
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia.,School of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Elizabeth M Speechley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Amanda R Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
11
|
Soravia C, Ashton BJ, Thornton A, Ridley AR. General cognitive performance declines with female age and is negatively related to fledging success in a wild bird. Proc Biol Sci 2022; 289:20221748. [PMID: 36541175 PMCID: PMC9768653 DOI: 10.1098/rspb.2022.1748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Identifying the causes and fitness consequences of intraspecific variation in cognitive performance is fundamental to understand how cognition evolves. Selection may act on different cognitive traits separately or jointly as part of the general cognitive performance (GCP) of the individual. To date, few studies have examined simultaneously whether individual cognitive performance covaries across different cognitive tasks, the relative importance of individual and social attributes in determining cognitive variation, and its fitness consequences in the wild. Here, we tested 38 wild southern pied babblers (Turdoides bicolor) on a cognitive test battery targeting associative learning, reversal learning and inhibitory control. We found that a single factor explained 59.5% of the variation in individual cognitive performance across tasks, suggestive of a general cognitive factor. GCP varied by age and sex; declining with age in females but not males. Older females also tended to produce a higher average number of fledglings per year compared to younger females. Analysing over 10 years of breeding data, we found that individuals with lower general cognitive performance produced more fledglings per year. Collectively, our findings support the existence of a trade-off between cognitive performance and reproductive success in a wild bird.
Collapse
Affiliation(s)
- Camilla Soravia
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Benjamin J. Ashton
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Amanda R. Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Ashton BJ, Thornton A, Speechley EM, Ridley AR. Does trappability and self-selection influence cognitive performance? ROYAL SOCIETY OPEN SCIENCE 2022; 9:220473. [PMID: 36117861 PMCID: PMC9470268 DOI: 10.1098/rsos.220473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Recent research has highlighted how trappability and self-selection-the processes by which individuals with particular traits may be more likely to be caught or to participate in experiments-may be sources of bias in studies of animal behaviour and cognition. It is crucial to determine whether such biases exist, and if they do, what effect they have on results. In this study, we investigated if trappability (quantified through 'ringing status'-whether or not a bird had been trapped for ringing) and self-selection are sources of bias in a series of associative learning experiments spanning 5 years in the Western Australian magpie (Gymnorhina tibicen dorsalis). We found no evidence of self-selection, with no biases in task participation associated with sex, age, group size or ringing status. In addition, we found that there was no effect of trappability on cognitive performance. These findings give us confidence in the results generated in the animal cognition literature and add to a growing body of literature seeking to determine potential sources of bias in studies of animal behaviour, and how they influence the generalizability and reproducibility of findings.
Collapse
Affiliation(s)
- Benjamin J. Ashton
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn TR10 9FE, UK
| | - Elizabeth M. Speechley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Amanda R. Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
13
|
Ashton BJ, Thornton A, Cauchoix M, Ridley AR. Long-term repeatability of cognitive performance. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220069. [PMID: 35620015 PMCID: PMC9128854 DOI: 10.1098/rsos.220069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/29/2022] [Indexed: 05/03/2023]
Abstract
Measures of cognitive performance, derived from psychometric tasks, have yielded important insights into the factors governing cognitive variation. However, concerns remain over the robustness of these measures, which may be susceptible to non-cognitive factors such as motivation and persistence. Efforts to quantify short-term repeatability of cognitive performance have gone some way to address this, but crucially the long-term repeatability of cognitive performance has been largely overlooked. Quantifying the long-term repeatability of cognitive performance provides the opportunity to determine the stability of cognitive phenotypes and the potential for selection to act on them. To this end, we quantified long-term repeatability of cognitive performance in wild Australian magpies over a three-year period. Cognitive performance was repeatable in two out of four cognitive tasks-associative learning and reversal-learning performance was repeatable, but spatial memory and inhibitory control performance, although trending toward significance, was not. Measures of general cognitive performance, obtained from principal components analyses carried out on each cognitive test battery, were highly repeatable. Together, these findings provide evidence that at least some cognitive phenotypes are stable, which in turn has important implications for our understanding of cognitive evolution.
Collapse
Affiliation(s)
- Benjamin J. Ashton
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn TR10 9FE, UK
| | - Maxime Cauchoix
- Station d'Ecologie Théorique et Expérimentale du CNRS (UMR5321), Moulis, France
| | - Amanda R. Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|