1
|
Zhang Y, Chen J, Wang H, Gao X, Niu B, Li W, Wang H. Electrochemical biosensor based on copper sulfide/reduced graphene oxide/glucose oxidase construct for glucose detection. Anal Biochem 2025; 696:115696. [PMID: 39442603 DOI: 10.1016/j.ab.2024.115696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Due to the current increase in the number of people suffering from diabetes worldwide, how to monitor the blood glucose level in the human body has become an urgent problem to be solved nowadays. The electrochemical sensor method can be used for real-time glucose monitoring due to its advantages of real-time monitoring capability and high sensitivity. Reduced graphene oxide (rGO) has great potential for application in the field of sensors due to its advantages of large specific surface area, high stability, and good electrical and thermal conductivity. Meanwhile, the synergistic effect between two-dimensional transition metal sulfides and graphene can improve the electrochemical performance of materials due to their similar mechanical flexibility and strength. This article uses flake graphite, copper sulfate, and glucose oxidase (GOx) as raw materials to prepare CuS/rGO/GOx/GCE electrodes, and explores the performance of electrode electrocatalysis for glucose. The results showed that the prepared sensor was characterized by a low detection limit (1.75 nM) and a wide linear range (0.1-100 mM) for glucose detection, displaying a good overall detection performance, and its sensing mechanism and dynamic process were also investigated. In addition, the sensor has outstanding selectivity, anti-interference, repeatability, reproducibility and practicality.
Collapse
Affiliation(s)
- Yuchen Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Jiangnan Chen
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Huifang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Xianghua Gao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Baolong Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China.
| | - Wenfeng Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Hong Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| |
Collapse
|
2
|
Peng L, Zhu A, Ahmad W, Adade SYSS, Chen Q, Wei W, Chen X, Wei J, Jiao T, Chen Q. A three-channel biosensor based on stimuli-responsive catalytic activity of the Fe 3O 4@Cu for on-site detection of tetrodotoxin in fish. Food Chem 2024; 460:140566. [PMID: 39067423 DOI: 10.1016/j.foodchem.2024.140566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Tetrodotoxin (TTX), a lethal neurotoxin, poses a grave threat to human health. The available spectroscopic methods suffer from limitations such as complex procedures and inadequate on-site capabilities. In this study, we proposed a method using Fe3O4@Cu as a catalytic biosensor combined with SERS, colorimetry and image processing for TTX detection. Integrating the aptamer amplifies the specificity of the system and masks the catalytic activity of Fe3O4@Cu. The catalytic efficiency of Fe3O4@Cu in the H2O2-TMB reaction can quantify the concentration of TTX in the system. Consequently, oxidation of TMB (oxTMB) led to the generation and change of signals for SERS, colorimetry and image processing, enabling a three-channel quantitative detection of TTX. Under the optimal conditions, the detection limit of established SERS, colorimetry and image processing were 0.055, 2.127 and 0.243 ng/mL, respectively. This three-channel biosensor was applied to real samples, providing an accurate, stable and adaptable alternative for on-site TTX detection.
Collapse
Affiliation(s)
- Lijie Peng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | | | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
3
|
Divya P, Arjunan KP, Nair M, Rappai JP, Sandeep K. Analytical detection of the bioactive molecules dopamine, thyroxine, hydrogen peroxide, and glucose using CsPbBr 3 perovskite nanocrystals. RSC Adv 2024; 14:32648-32654. [PMID: 39411255 PMCID: PMC11475663 DOI: 10.1039/d4ra06576j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Qualitative and quantitative detection of biologically important molecules such as dopamine, thyroxine, hydrogen peroxide, and glucose, using newer and cheaper technology is of paramount importance in biology and medicine. Anion exchange in lead halide perovskites, on account of its good emission yield, facilitates the sensing of these molecules by the naked eye using ultraviolet light. Simple chemistry is used to generate chloride ions from analyte molecules. Dopamine and thyroxine have an amine functional group, which forms an adduct with an equivalent amount of volatile hydrochloric acid to yield chloride ions in solution. The reducing nature of hydrogen peroxide and glucose is used to generate chloride ions through a reaction with sodium hypochlorite in stoichiometric amounts. The emission of CsPbBr3-coated paper/glass substrates shifts to the blue region in the presence of chloride ions. This helps in the detection of the above biologically important molecules up to parts per million (ppm) levels by employing fundamental chemistry aspects and well-known anion exchange in perovskite nanocrystals. The preparation of better and more efficient sensors, which are predominantly important in science and technology, can thus be achieved by developing the above novel, cost-effective alternative sensing method.
Collapse
Affiliation(s)
- Puthanveedu Divya
- Government Victoria College, Research Centre Under University of Calicut Palakkad 678001 India
| | - Kodompatta P Arjunan
- Government Victoria College, Research Centre Under University of Calicut Palakkad 678001 India
| | - Maya Nair
- Government Victoria College, Research Centre Under University of Calicut Palakkad 678001 India
| | - John P Rappai
- Government Victoria College, Research Centre Under University of Calicut Palakkad 678001 India
- Government Arts and Science College Ollu r Thrissur 680306 India
| | - Kulangara Sandeep
- Government Victoria College, Research Centre Under University of Calicut Palakkad 678001 India
| |
Collapse
|
4
|
Wang P, Wang B, Chen Y, Lin N, Zheng Z, Chen H, Wang W, He Y. Highly selective detection of breast cancer cells mediated by multi-aptamer and dye-loaded mesoporous silica nanoparticles. Mikrochim Acta 2024; 191:577. [PMID: 39240334 DOI: 10.1007/s00604-024-06664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
Multi-aptamer recognition of breast cancer cells (MCF-7) is utilized to achieve high specificity. The method comprises two parts, aptamer-functionalized mesoporous silica nanoparticles (MSNs) loaded with dissimilar dyes (thymolphthalein or curcumin) as signal transducers and aptamer-modified magnetic beads (MBs) as capture agents, which worked together to detect MCF-7 cells sensitively and accurately. The results indicated that the aptasensor has a linear detection range of 100 to 4000 cells and a detection threshold of 10 cells/mL. The method had been successfully employed to detect breast cancer cells in real blood samples to distinguish between breast cancer patients and healthy individuals. In conclusion, the development of the multi-aptamer-based colorimetric sensor offered a novel method for the highly selective detection of MCF-7 cells, contributing to the accurate identification of breast cancer.
Collapse
Affiliation(s)
- Panlin Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Bingbing Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yating Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Nan Lin
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Zixin Zheng
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Haoting Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| | - Ye He
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Liu P, Liang M, Liu Z, Long H, Cheng H, Su J, Tan Z, He X, Sun M, Li X, He S. Facile green synthesis of wasted hop-based zinc oxide nanozymes as peroxidase-like catalysts for colorimetric analysis. NANOSCALE 2024; 16:913-922. [PMID: 38108135 DOI: 10.1039/d3nr04336c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Hops are a common ingredient in beer production, and a considerable quantity of hops is usually discarded as a waste material once the brewing process is completed. Transforming this waste material into valuable nanomaterials offers a sustainable approach that has the potential to significantly mitigate environmental impact. Herein, a facile and green protocol for the production of zinc oxide nanozymes (ZnO NZs) using wasted hop extract (WHE) as a natural precursor was demonstrated. The process involved a hydrothermal synthesis method followed by a calcination step to form the final ZnO NZs. The results revealed that lupulon, the main β-acid in hops, particularly the phenolic hydroxy group, is primarily responsible for the biosynthesis of ZnO NZs. The WHE-ZnO NZs exhibited exceptional peroxidase-like (POD-like) activity and served as effective catalysts for the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). Analysis of the catalytic mechanism revealed that the POD-like activity of these WHE-ZnO NZs originated from their ability to expedite the transfer of electrons between TMB and H2O2, resulting in the enzymatic kinetics following the standard Michaelis-Menten mechanism. Furthermore, we developed a straightforward and user-friendly colorimetric technique for detecting both H2O2 and glucose. By utilizing the WHE-ZnO NZs as POD-like catalysts, we achieved a linear detection range of 1-1000 μM and a limit of detection of 0.24 μM (S/N = 3) for H2O2 detection and a linear range of 0-100 mM and a detection limit of 16.73 μM (S/N = 3) for glucose detection. These results highlighted the potential applications of our waste-to-resource approach for nanozyme synthesis in the field of analytical chemistry.
Collapse
Affiliation(s)
- Pei Liu
- Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian 223003, P. R. China.
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian 223003, P. R. China
| | - Mengdi Liang
- Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian 223003, P. R. China.
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian 223003, P. R. China
| | - Zhengwei Liu
- Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian 223003, P. R. China.
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian 223003, P. R. China
| | - Haiyu Long
- Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian 223003, P. R. China.
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian 223003, P. R. China
| | - Han Cheng
- Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian 223003, P. R. China.
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian 223003, P. R. China
| | - Jiahe Su
- Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian 223003, P. R. China.
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian 223003, P. R. China
| | - Zhongbiao Tan
- Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian 223003, P. R. China.
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science Soochow University, 215123, Suzhou, P.R. China
| | - Min Sun
- Huai'an Municipal Center for Disease Control and Prevention, Huaian, China
| | - Xiangqian Li
- Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian 223003, P. R. China.
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian 223003, P. R. China
| | - Shuai He
- Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian 223003, P. R. China.
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian 223003, P. R. China
| |
Collapse
|