Galler S. Molecular basis of the catch state in molluscan smooth muscles: a catchy challenge.
J Muscle Res Cell Motil 2008;
29:73-99. [PMID:
19039672 DOI:
10.1007/s10974-008-9149-6]
[Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 10/18/2008] [Indexed: 12/15/2022]
Abstract
The catch state (or 'catch') of molluscan smooth muscles is a passive holding state that occurs after cessation of stimulation. During catch, force and, in particular, resistance to stretch are maintained for long time periods with low (or no) energy consumption at basal intracellular free [Ca2+]. The catch state is initiated by Ca2+-stimulated dephosphorylation of the titin-like protein twitchin and is inhibited by cAMP-dependent phosphorylation of twitchin. In addition, catch is pH sensitive, but the reason for this is unknown. According to a traditional model, catch is due to slower cross-bridge cycles where myosin heads remain longer attached to the actin filaments after force generation, possibly caused by a hindered release of ADP from the myosin heads. However, this model was disproved by recent findings which showed that (i) inhibitors of myosin function, such as vanadate, do not affect catch force; (ii) factors which terminate the catch state do not accelerate myosin head detachment kinetics and (iii) a catch-like high resistance to stretch is still inducible when force development is prevented. Thus, catch probably involves passive linkage structures interconnecting the myofilaments (catch linkages). For example twitchin could (i) tie myosin heads to the thin filaments, (ii) mechanically lock them in a stretch resistant state or (iii) interconnect thick and thin filaments directly. However, it is questionable if these mechanisms are sufficient since twitchin seems to be about 15-times less abundant than myosin. Therefore, in addition, interconnections between thick filaments could exist, which could involve e.g. paramyosin or twitchin. Catch could even involve changes in the compliance of thick filaments. The function of myorod, found specifically in catch muscles in equal abundance with myosin, is not known. The suggestion is made here that catch linkages are present already during active contraction either as ratchet-like elements resisting stretch and not opposing shortening or in some kind of 'standby' mode ready to transform suddenly into the working mode by stretches or after Ca2+ removal following cessation of stimulation.
Collapse