1
|
Eliasen JN, Krall J, Frølund B, Kohlmeier KA. Sex-specific alterations in GABA receptor-mediated responses in laterodorsal tegmentum are associated with prenatal exposure to nicotine. Dev Neurobiol 2020; 80:178-199. [PMID: 32628361 DOI: 10.1002/dneu.22772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Smoking during pregnancy is associated with deleterious physiological and cognitive effects on the offspring, which are likely due to nicotine-induced alteration in the development of neurotransmitter systems. Prenatal nicotine exposure (PNE) in rodents is associated with changes in behaviors controlled in part by the pontine laterodorsal tegmentum (LDT), and LDT excitatory signaling is altered in a sex and age-dependent manner by PNE. As effects on GABAergic LDT signaling are unknown, we used calcium imaging to evaluate GABAA receptor- (GABAA R as well as GABAA -ρ R) and GABAB receptor (GABAB R)-mediated calcium responses in LDT brain slices from female and male PNE mice in two different age groups. Overall, in older PNE females, changes in calcium induced by stimulation of GABAA R and GABAB R, including GABAA -ρ R were shifted toward calcium rises. In both young and old males, PNE was associated with alterations in calcium mediated by all three receptors; however, the GABAA R was the most affected. These results show for the first time that PNE is associated with alterations in GABAergic transmission in the LDT in a sex- and age-dependent manner, and these data are the first to show PNE-associated alterations in functionality of GABA receptors in any nucleus. PNE-associated alterations in LDT GABAergic transmission within the LDT would be expected to alter output to target regions and could play a role in LDT-implicated, negative behavioral outcomes following gestational exposure to smoking. Accordingly, our data provide further supportive evidence of the importance of eliminating the consumption of nicotine during pregnancy.
Collapse
Affiliation(s)
- Jannik Nicklas Eliasen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Krall
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Sieghart W, Savić MM. International Union of Basic and Clinical Pharmacology. CVI: GABAA Receptor Subtype- and Function-selective Ligands: Key Issues in Translation to Humans. Pharmacol Rev 2018; 70:836-878. [DOI: 10.1124/pr.117.014449] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
3
|
Antagonistic effect of dopamine structural analogues on human GABAρ1 receptor. Sci Rep 2017; 7:17385. [PMID: 29234054 PMCID: PMC5727059 DOI: 10.1038/s41598-017-17530-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022] Open
Abstract
GABAergic and dopaminergic pathways are co-localized in several areas of the central nervous system and recently several reports have shown co-release of both neurotransmitters. The GABA-A receptor (β and ρ1 subunits) is modulated by dopamine (DA) and, interestingly, GABAρ1 can be modulated by several biogenic amines. Here we explored the effects of the metabolites of the dopaminergic pathway and other structural analogues of DA on GABAρ1 and the DA gated ion channel (LGC-53) from Caenorhabditis elegans expressed in Xenopus laevis oocytes. Our findings show an antagonistic effect of the metabolite 3-Methoxytyramine (3-MT, IC50 = 285 ± 30 µM) with similar potency compared to DA on induced GABA currents; however, it was inactive on LGC-53. The structural DA analogues and metabolites, 3, 4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 2-phenylethylamine (β-PEA) and 4-amino-1-butanol (4-AM-1-OH), antagonized GABAρ1 currents, whereas β-PEA acted as partial agonists on LGC-53, indicating that the putative binding sites of both receptors may share structural characteristics. These results suggest that the DA metabolites 3-MT, DOPAC and HVA modulate GABAρ1 and possibly affect the activity of the receptors that include this subunit in vivo.
Collapse
|
4
|
Persistent GABAA/C responses to gabazine, taurine and beta-alanine in rat hypoglossal motoneurons. Neuroscience 2016; 330:191-204. [PMID: 27246441 DOI: 10.1016/j.neuroscience.2016.05.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022]
Abstract
In hypoglossal motoneurons, a sustained anionic current, sensitive to a blocker of ρ-containing GABA receptors, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and insensitive to bicuculline, was previously shown to be activated by gabazine. In order to better characterize the receptors involved, the sensitivity of this atypical response to pentobarbital (30μM), allopregnanolone (0.3μM) and midazolam (0.5μM) was first investigated. Pentobarbital potentiated the response, whereas the steroid and the benzodiazepine were ineffective. The results indicate the involvement of hybrid heteromeric receptors, including at least a GABA receptor ρ subunit and a γ subunit, accounting for the pentobarbital-sensitivity. The effects of the endogenous β amino acids, taurine and β-alanine, which are released under various pathological conditions and show neuroprotective properties, were then studied. In the presence of the glycine receptor blocker strychnine (1μM), both taurine (0.3-1mM) and β-alanine (0.3mM) activated sustained anionic currents, which were partly blocked by TPMPA (100μM). Thus, both β amino acids activated ρ-containing GABA receptors in hypoglossal motoneurons. Bicuculline (20μM) reduced responses to taurine and β-alanine, but small sustained responses persisted in the presence of both strychnine and bicuculline. Responses to β-alanine were slightly increased by allopregnanolone, indicating a contribution of the bicuculline- and neurosteroid-sensitive GABAA receptors underlying tonic inhibition in these motoneurons. Since sustained activation of anionic channels inhibits most mature principal neurons, the ρ-containing GABA receptors permanently activated by taurine and β-alanine might contribute to some of their neuroprotective properties under damaging overexcitatory situations.
Collapse
|
5
|
Wong LW, Tae HS, Cromer BA. Role of the ρ1 GABA(C) receptor N-terminus in assembly, trafficking and function. ACS Chem Neurosci 2014; 5:1266-77. [PMID: 25347026 DOI: 10.1021/cn500220t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The GABAC receptor and closely related GABAA receptor are members of the pentameric ligand-gated ion channels (pLGICs) superfamily and mediate inhibitory fast synaptic transmission in the nervous system. Each pLGIC subunit comprises an N-terminal extracellular agonist-binding domain followed by a channel domain and a variable intracellular domain. Available structural information shows that the core of the agonist-binding domain is a β sandwich of ten β-strands, which form the agonist-binding pocket at the subunit interface. This β-sandwich is preceded by an N-terminal α-helix in eukaryotic structures but not in prokaryotic structures. The N-terminal α-helix has been shown to be functionally essential in α7 nicotinic acetylcholine receptors. Sequence analysis of GABAC and GABAA receptors predicts an α-helix in a similar position but preceded by 8 to 46 additional residues, of unknown function, which we term the N-terminal extension. To test the functional role of both the N-terminal extension and the putative N-terminal α-helix in the ρ1 GABAC receptor, we created a series of deletions from the N-terminus. The N-terminal extension was not functionally essential, but its removal did reduce both cell surface expression and cooperativity of agonist-gated channel function. Further deletion of the putative N-terminal α-helix abolished receptor function by preventing cell-surface expression. Our results further demonstrate the essential role of the N-terminal α-helix in the assembly and trafficking of eukaryotic pLGICs. They also provide evidence that the N-terminal extension, although not essential, contributes to receptor assembly, trafficking and conformational changes associated with ligand gating.
Collapse
Affiliation(s)
- Lik-Wei Wong
- Health
Innovation Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
- Department
of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Han-Shen Tae
- Health
Innovation Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Brett A. Cromer
- Health
Innovation Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
6
|
Beltrán González AN, Pomata PE, Goutman JD, Gasulla J, Chebib M, Calvo DJ. Benzodiazepine modulation of homomeric GABAAρ1 receptors: differential effects of diazepam and 4'-chlorodiazepam. Eur J Pharmacol 2014; 743:24-30. [PMID: 25246015 DOI: 10.1016/j.ejphar.2014.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/26/2022]
Abstract
GABA(A) receptors (GABA(A)Rs) are ligand-gated ion channels that mediate inhibitory neurotransmission in the central nervous system (CNS). They are members of the Cys-loop receptor family and display marked structural and functional heterogeneity. Many GABA(A)Rs receptor subtypes are allosterically modulated by benzodiazepines (BDZs), which are drugs extensively used as anxiolytics, sedative-hypnotics and anticonvulsants. One high-affinity site and at least three additional low-affinity sites for BDZ recognition have been identified in several heteromeric and homomeric variants of the GABA(A)Rs (e.g.: α1β2γ2, α1β2/3, β3, etc.). However, the modulation of homomeric GABA(A)ρRs by BDZs was not previously revealed, and these receptors, for a long a time, were assumed to be fully insensitive to the actions of these drugs. In the present study, human homomeric GABA(A)ρ1 receptors were expressed in Xenopus oocytes and GABA-evoked responses electrophysiologically recorded in the presence or absence of BDZs. GABA(A)ρ1 receptor-mediated responses were modulated by diazepam and 4'-chlorodiazepam in the micromolar range, in a concentration-dependent, voltage-independent and reversible manner. Diazepam produced potentiating effects on GABA-evoked Cl(-) currents and 4'-Cl diazepam induced biphasic effects depending on the GABA concentration, whereas Ro15-4513 and alprazolam were negative modulators. BDZ actions were insensitive to flumazenil. Other BDZs showed negligible activity at equivalent experimental conditions. Our results suggest that GABA(A)ρ1 receptor function can be selectively and differentially modulated by BDZs.
Collapse
Affiliation(s)
- Andrea N Beltrán González
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Pablo E Pomata
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Juan D Goutman
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Javier Gasulla
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Mary Chebib
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Daniel J Calvo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina.
| |
Collapse
|
7
|
Abstract
Amacrine cells are a morphologically and functionally diverse group of inhibitory interneurons. Morphologically, they have been divided into approximately 30 types. Although this diversity is probably important to the fine structure and function of the retinal circuit, the amacrine cells have been more generally divided into two subclasses. Glycinergic narrow-field amacrine cells have dendrites that ramify close to their somas, cross the sublaminae of the inner plexiform layer, and create cross talk between its parallel ON and OFF pathways. GABAergic wide-field amacrine cells have dendrites that stretch long distances from their soma but ramify narrowly within an inner plexiform layer sublamina. These wide-field cells are thought to mediate inhibition within a sublamina and thus within the ON or OFF pathway. The postsynaptic targets of all amacrine cell types include bipolar, ganglion, and other amacrine cells. Almost all amacrine cells use GABA or glycine as their primary neurotransmitter, and their postsynaptic receptor targets include the most common GABA(A), GABA(C), and glycine subunit receptor configurations. This review addresses the diversity of amacrine cells, the postsynaptic receptors on their target cells in the inner plexiform layer of the retina, and some of the inhibitory mechanisms that arise as a result. When possible, the effects of GABAergic and glycinergic inputs on the visually evoked responses of their postsynaptic targets are discussed.
Collapse
|
8
|
Lewis A, Wilson N, Stearns G, Johnson N, Nelson R, Brockerhoff SE. Celsr3 is required for normal development of GABA circuits in the inner retina. PLoS Genet 2011; 7:e1002239. [PMID: 21852962 PMCID: PMC3154962 DOI: 10.1371/journal.pgen.1002239] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/28/2011] [Indexed: 12/30/2022] Open
Abstract
The identity of the specific molecules required for the process of retinal circuitry formation is largely unknown. Here we report a newly identified zebrafish mutant in which the absence of the atypical cadherin, Celsr3, leads to a specific defect in the development of GABAergic signaling in the inner retina. This mutant lacks an optokinetic response (OKR), the ability to visually track rotating illuminated stripes, and develops a super-normal b-wave in the electroretinogram (ERG). We find that celsr3 mRNA is abundant in the amacrine and ganglion cells of the retina, however its loss does not affect synaptic lamination within the inner plexiform layer (IPL) or amacrine cell number. We localize the ERG defect pharmacologically to a late-stage disruption in GABAergic modulation of ON-bipolar cell pathway and find that the DNQX-sensitive fast b1 component of the ERG is specifically affected in this mutant. Consistently, we find an increase in GABA receptors on mutant ON-bipolar terminals, providing a direct link between the observed physiological changes and alterations in GABA signaling components. Finally, using blastula transplantation, we show that the lack of an OKR is due, at least partially, to Celsr3-mediated defects within the brain. These findings support the previously postulated inner retina origin for the b1 component and reveal a new role for Celsr3 in the normal development of ON visual pathway circuitry in the inner retina. Visual information is transmitted through the retina from photoreceptors to bipolars to ganglion cells, the output neurons connecting to the brain. This vertical transmission of information is modulated by inhibitory lateral interneurons. Normal vision requires the proper transmission and processing of these neuronal signals. In the inner retina, amacrine cells are the main class of inhibitory interneurons. They modulate the information from bipolar to ganglion cells and are functionally responsible for adjusting image brightness and for detecting motion. Physiological studies have revealed important aspects of the mechanisms of inhibitory modulation, and anatomical studies have identified the many amacrine subclasses and their non-random arrangement within the retina. Although cell–cell interactions are thought to be critical for establishing the important physiological and morphological features of this cell class, the precise molecules and their functions are mostly unknown. In this paper we report the discovery of a mutant that identifies the atypical cell adhesion molecule, Celsr3, as critical for proper development of GABA-signaling pathways in the inner retina.
Collapse
Affiliation(s)
- Alaron Lewis
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Neil Wilson
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - George Stearns
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Nicolas Johnson
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Ralph Nelson
- Basic Neurosciences Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Rockville, Maryland, United States of America
| | - Susan E. Brockerhoff
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
The inhibitory neurotransmitter, GABA, is a low-molecular-weight molecule that can achieve many low-energy conformations, which are recognized by GABA receptors and transporters. In this article, we assess the structure–activity relationship profiles of GABA analogs at the ionotropic ρ GABAC receptor. Such studies have significantly contributed to the design and development of potent and selective agonists and antagonists for this subclass of GABA receptors. With these tools in hand, the role of ρ GABAC receptors is slowly being realized. Of particular interest is the development of selective phosphinic acid analogs of GABA and their potential use in sleep disorders, inhibiting the development of myopia, and in improving learning and memory.
Collapse
|
10
|
Osolodkin DI, Chupakhin VI, Palyulin VA, Zefirov NS. Molecular modeling of ligand-receptor interactions in GABA C receptor. J Mol Graph Model 2008; 27:813-21. [PMID: 19167917 DOI: 10.1016/j.jmgm.2008.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 11/24/2008] [Accepted: 12/12/2008] [Indexed: 10/21/2022]
Abstract
A new homology model of the GABA binding site of the GABA(C) receptor was built. Natural agonist GABA and antagonist TPMPA were docked into the receptor and molecular dynamics simulation of the complexes was performed to clarify binding poses of the ligands. It was shown that orientation of the ligand is defined by salt bridges between the ligand and the arginine (Arg104) and glutamate residues (Glu194 and Glu196) of the binding site. Different behavior and binding poses for agonist and antagonist was demonstrated by molecular dynamics simulation along with differential movement of the loop C during agonist and antagonist binding. Binding orientations of the ligands revealed that main binding forces in the GABA binding site should be electrostatic ones.
Collapse
Affiliation(s)
- Dmitry I Osolodkin
- Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991 Moscow, Russia.
| | | | | | | |
Collapse
|
11
|
Qian H, Ripps H. Focus on molecules: the GABAC receptor. Exp Eye Res 2008; 88:1002-3. [PMID: 18983841 DOI: 10.1016/j.exer.2008.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
Affiliation(s)
- Haohua Qian
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, IL 60612, USA.
| | | |
Collapse
|
12
|
Electrophysiological evidence of GABAA and GABAC receptors on zebrafish retinal bipolar cells. Vis Neurosci 2008; 25:139-53. [PMID: 18442437 DOI: 10.1017/s0952523808080322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To refine inhibitory circuitry models for ON and OFF pathways in zebrafish retina, GABAergic properties of zebrafish bipolar cells were studied with two techniques: whole cell patch responses to GABA puffs in retinal slice, and voltage probe responses in isolated cells. Retinal slices documented predominantly axon terminal responses; isolated cells revealed mainly soma-dendritic responses. In the slice, GABA elicited a conductance increase, GABA responses were more robust at axon terminals than dendrites, and Erev varied with [Cl(-)]in. Axon terminals of ON- and OFF-type cells were similarly sensitive to GABA (30-40 pA peak current); axotomized cells were unresponsive. Bicuculline-sensitive, picrotoxin-sensitive, and picrotoxin-insensitive components were identified. Muscimol was as effective as GABA; baclofen was ineffective. Isolated bipolar cells were either intact or axotomized. Even in cells without an axon, GABA or muscimol (but not baclofen) hyperpolarized dendritic and somatic regions, suggesting significant distal expression. Median fluorescence change for GABA was -0.22 log units (approximately -16 mV); median half-amplitude dose was 0.4 microM. Reduced [Cl(-)]out blocked GABA responses. GABA hyperpolarized isolated ON-bipolar cells; OFF-cells were either unresponsive or depolarized. Hyperpolarizing GABA responses in isolated cells were bicuculline and TPMPA insensitive, but blocked or partially blocked by picrotoxin or zinc. In summary, axon terminals contain bicuculline-sensitive GABAA receptors and both picrotoxin-sensitive and insensitive GABAC receptors. Dendritic processes express zinc- and picrotoxin-sensitive GABAC receptors.
Collapse
|
13
|
A reciprocal connection between the ventral lateral geniculate nucleus and the pretectal nuclear complex and the superior colliculus: Anin vitrocharacterization in the rat. Vis Neurosci 2008; 25:39-51. [DOI: 10.1017/s0952523808080048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 11/14/2007] [Indexed: 11/07/2022]
Abstract
The ventral lateral geniculate nucleus (vLGN), the pretectal nuclear complex (PNC) and the superior colliculus (SC) are structures that all receive retinal input. All three structures are important relay stations of the subcortical visual system. They are strongly connected with each other and involved in circadian and/or visuomotor processes. However, the information transferred along these pathways is unknown and their possible functions are, therefore, not well understood. Here, we characterized multiple pathways between the vLGN, the PNC, and the SC electrophysiologically and anatomically in anin vitrostudy using acute rat brain slices. Using orthodromic and antidromic electrical stimulation, we first characterized vLGN neurons that receive pretectal input and those that project to the PNC. Morphological reconstructions of cells labeled after patch clamp recordings identified these neurons as geniculo-tectal neurons and as medium-sized multipolar neurons. We identified inhibitory connections in both pathways and we could show that inhibitory postsynaptic currents (IPSCs) evoked from the PNC in vLGN neurons are mediated only by GABAAreceptors, while IPSCs evoked in PNC neurons by vLGN stimulation are either mediated by both, GABAAand GABACreceptors or by a GABA receptor with mixed GABAAand GABACreceptor-like pharmacology. Finally, retrograde double labeling experiments with two different fluorescent dextran amines indicated that pretectal neurons which project to the ipsilateral vLGN also project to the ipsilateral SC.
Collapse
|
14
|
Li P, Slaughter M. Glycine receptor subunit composition alters the action of GABA antagonists. Vis Neurosci 2007; 24:513-21. [PMID: 17659095 DOI: 10.1017/s0952523807070368] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 04/11/2007] [Indexed: 11/07/2022]
Abstract
GABA receptor antagonists produce an unexpectedly significant inhibition of native glycine receptors in retina and in alpha1 or alpha2 homomeric glycine receptors (GlyRs) expressed in HEK 293 cells. In this study we evaluate this phenomenon in heteromeric glycine receptors, formed by mixing alpha1, alpha2, and beta subunits. Picrotoxinin, picrotin, SR95531, and bicuculline are all more effective antagonists at GlyRs containing alpha2 subunits than alpha1 subunits. Inclusion of beta subunits reduces the inhibitory potency of picrotoxinin and picrotin but increases the potency of SR95531 and bicuculline. As a result of these two factors, bicuculline is particularly poor at discriminating GABA and glycine receptors. Picrotin, which has been reported to be inactive at GABA receptors, blocks glycine currents in retina and in HEK293 cells, suggesting its utility as a selective glycine antagonist. However, picrotin is a more potent inhibitor of GABA than glycine in retinal neurons. We also tested if GABA and glycine receptor subunits can combine to form functional receptors. If GABAAR gamma2S subunits are co-expressed with GlyR alpha subunits, the mixed receptor is glycine-sensitive and GABA-insensitive. But the mixed receptor exhibits a non-competitive picrotoxinin inhibition that is not observed in the homomeric GlyRs. This suggests that glycine and GABA subunits can co-assemble to form functional glycine receptors.
Collapse
Affiliation(s)
- Ping Li
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York 14214, USA
| | | |
Collapse
|
15
|
Frazao R, Nogueira MI, Wässle H. Colocalization of synaptic GABA(C)-receptors with GABA (A)-receptors and glycine-receptors in the rodent central nervous system. Cell Tissue Res 2007; 330:1-15. [PMID: 17610086 DOI: 10.1007/s00441-007-0446-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
Fast inhibition in the nervous system is preferentially mediated by GABA- and glycine-receptors. Two types of ionotropic GABA-receptor, the GABA(A)-receptor and GABA(C)-receptor, have been identified; they have specific molecular compositions, different sensitivities to GABA, different kinetics, and distinct pharmacological profiles. We have studied, by immunocytochemistry, the synaptic localization of glycine-, GABA(A)-, and GABA(C)-receptors in rodent retina, spinal cord, midbrain, and brain-stem. Antibodies specific for the alpha1 subunit of the glycine-receptor, the gamma2 subunit of the GABA(A)-receptor, and the rho subunits of the GABA(C)-receptor have been applied. Using double-immunolabeling, we have determined whether these receptors are expressed at the same postsynaptic sites. In the retina, no such colocalization was observed. However, in the spinal cord, we found the colocalization of glycine-receptors with GABA(A)- or GABA(C)-receptors and the colocalization of GABA(A)- and GABA(C)-receptors in approximately 25% of the synapses. In the midbrain and brain-stem, GABA(A)- and GABA(C)-receptors were colocalized in 10%-15% of the postsynaptic sites. We discuss the possible expression of heteromeric (hybrid) receptors assembled from GABA(A)- and GABA(C)-receptor subunits. Our results suggest that GABA(A)- and GABA(C)-receptors are colocalized in a minority of synapses of the central nervous system.
Collapse
Affiliation(s)
- Renata Frazao
- Neuroanatomie, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, 60528, Frankfurt/Main, Germany
| | | | | |
Collapse
|
16
|
Ramsey DJ, Ripps H, Qian H. Streptozotocin-induced diabetes modulates GABA receptor activity of rat retinal neurons. Exp Eye Res 2007; 85:413-22. [PMID: 17662714 PMCID: PMC2001264 DOI: 10.1016/j.exer.2007.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 05/29/2007] [Accepted: 06/01/2007] [Indexed: 11/22/2022]
Abstract
Neural deficits suggestive of involvement of the GABA signaling pathway can often be detected early in the course of diabetic retinopathy, a leading cause of blindness in the United States. To examine in greater detail the nature of the neuronal changes associated with hyperglycemia, we investigated GABA receptor activity on retinal bipolar cells in streptozotocin-induced diabetic rats; cells from age-matched normal rats served as controls. Patch-clamp recordings from isolated rod-bipolar cells revealed that diabetes enhanced the whole cell currents elicited by GABA. Responses of the GABA(C) receptor, the predominant GABA receptor on rat rod bipolar cells, exhibited a greater sensitivity to GABA, larger maximum current responses, slower response kinetics, and a smaller single channel conductance among diabetic cells relative to those recorded from normal controls. Compared with the properties of homomeric rho1 and heteromeric rho1rho2 receptors formed in a heterologous expression system, these results suggested that there was a greater contribution from the rho1 subunit in the GABA(C) receptor-mediated response of diabetic cells. The levels of mRNA, measured with real-time RT-PCR, were consistent with this finding. There was a significant enhancement in the ratio of rho1/rho2 subunit expression in the retina of diabetic animals, although the levels of GABA rho1 subunit expression were comparable in diabetic and normal retinas. Taken together, the results suggest that diabetes modifies the subunit composition of the GABA(C) receptor on retinal neurons, most likely through its effect on the efficacy of gene transcription.
Collapse
Affiliation(s)
- David J. Ramsey
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
- Department of Physiology and Biophysics, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
- Department of Health Policy and Administration, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
| | - Harris Ripps
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
- Department of Physiology and Biophysics, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
| | - Haohua Qian
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
- Department of Physiology and Biophysics, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
| |
Collapse
|
17
|
Zhu Y, Ripps H, Qian H. A single amino acid in the second transmembrane domain of GABA rho receptors regulates channel conductance. Neurosci Lett 2007; 418:205-9. [PMID: 17398006 PMCID: PMC1942122 DOI: 10.1016/j.neulet.2007.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/08/2007] [Accepted: 03/11/2007] [Indexed: 10/23/2022]
Abstract
GABAC receptors, expressed predominately in vertebrate retina, are thought to be formed mainly by GABA rho subunits, each of which exhibits distinct physiological and pharmacological properties. In this study, the receptors formed by perch GABA rho subunits were expressed in HEK cells, and their single channel conductances were determined using noise analysis techniques. The receptors formed by the perch rho1A subunit gate a channel with a conductance of 0.2 pS, whereas the receptors formed by GABA rho2 subunits exhibit much higher channel conductances, i.e., 3.2 and 3.5 pS for perch rho2A and rho2B receptors, respectively. A comparison of the amino acid sequences of the channel-forming TMII regions of the various subunits suggested that a single amino acid at position 2' was a potential site for the large differential in conductance. We found that switching the serine residue at that site in the GABA rho2 subunit to the proline residue present in the rho1 subunit reduced the channel conductance to a level similar to that of the wild type rho1 receptor. Conversely, mutating proline to serine in the amino acid sequence of the rho1 receptor significantly increased its unitary conductance. These results indicate that a single amino acid in the TMII region plays an important role in determining the single channel conductance of the GABAC receptors.
Collapse
Affiliation(s)
- Yujie Zhu
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, IL 60612, USA
| | | | | |
Collapse
|
18
|
Farrant M, Kaila K. The cellular, molecular and ionic basis of GABA(A) receptor signalling. PROGRESS IN BRAIN RESEARCH 2007; 160:59-87. [PMID: 17499109 DOI: 10.1016/s0079-6123(06)60005-8] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
GABA(A) receptors mediate fast synaptic inhibition in the CNS. Whilst this is undoubtedly true, it is a gross oversimplification of their actions. The receptors themselves are diverse, being formed from a variety of subunits, each with a different temporal and spatial pattern of expression. This diversity is reflected in differences in subcellular targetting and in the subtleties of their response to GABA. While activation of the receptors leads to an inevitable increase in membrane conductance, the voltage response is dictated by the distribution of the permeant Cl(-) and HCO(3)(-) ions, which is established by anion transporters. Similar to GABA(A) receptors, the expression of these transporters is not only developmentally regulated but shows cell-specific and subcellular variation. Untangling all these complexities allows us to appreciate the variety of GABA-mediated signalling, a diverse set of phenomena encompassing both synaptic and non-synaptic functions that can be overtly excitatory as well as inhibitory.
Collapse
Affiliation(s)
- Mark Farrant
- Department of Pharmacology, UCL (University College London), Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
19
|
Qian H, Pan Y, Choi B, Ripps H. High pH accelerates GABA deactivation on perch-rho1B receptors. Neuroscience 2006; 142:1221-30. [PMID: 16920274 DOI: 10.1016/j.neuroscience.2006.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/01/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
The ionotropic GABA(C) receptor, formed by GABA rho subunits, is known to be modulated by a variety of endogenous compounds, as well as by changes in pH. In this study, we explore the proton sensitivity of the GABA rho subunits cloned from the perch retina, and report a novel action of high pH on the homomeric receptor formed by one of the GABA rho subunits, the perch-rho(1B) subunit. Raising extracellular pH to 9.5 significantly accelerated GABA deactivation responses elicited from oocytes expressing the perch-rho(1B) subunit, and reduced its sensitivity to GABA. The change in the kinetics of the GABA-offset response occurred without altering the maximum response amplitude, and the reduced GABA sensitivity was independent of membrane potential. Although acidification of the extracellular solution also accelerated GABA deactivation for all other GABA rho receptors examined in this study, the effects of high pH were unique to the homomeric receptor formed by the perch-rho(1B) subunit. In addition, we found that, unlike the effects on the response to the naturally occurring full agonist GABA, the responses elicited by partial agonists (imidazole-4-acetic acid (I4AA) and beta-alanine) in the presence of the high pH solution showed a significant reduction in the maximum response amplitude. When considered in terms of a model describing the activation of GABA(C) receptors, in which pH can potentially affect either the binding affinity or the rate of channel closure, the results were consistent with the view that external alkalization reduces the gating efficiency of the receptor. To identify the proton sensitive domain(s) of the perch-rho(1B) receptor, chimeras were constructed by domain swapping with other perch-rho subunits. Analysis of the pH sensitivities of the various chimeric receptors revealed that the alkaline-sensitive residues are located in the N-terminal region of the perch-rho(1B) subunit.
Collapse
MESH Headings
- Animals
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Female
- GABA Agonists/pharmacology
- Hydrogen-Ion Concentration
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Ligands
- Neural Inhibition/physiology
- Neurons/metabolism
- Oocytes
- Perches
- Protein Structure, Tertiary/drug effects
- Protein Structure, Tertiary/physiology
- Protons
- Receptors, GABA/chemistry
- Receptors, GABA/drug effects
- Receptors, GABA/metabolism
- Receptors, GABA-B/chemistry
- Receptors, GABA-B/drug effects
- Receptors, GABA-B/metabolism
- Synaptic Transmission/physiology
- Time Factors
- Xenopus
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- H Qian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
20
|
Yang J, Cheng Q, Takahashi A, Goubaeva F. Kinetic properties of GABA rho1 homomeric receptors expressed in HEK293 cells. Biophys J 2006; 91:2155-62. [PMID: 16798806 PMCID: PMC1557572 DOI: 10.1529/biophysj.106.085431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 06/09/2006] [Indexed: 11/18/2022] Open
Abstract
The rho1 subunit of the ionotropic GABA receptors is thought to contribute to the formation of the GABA(C) receptors with pharmacological and physiological properties distinct from those of GABA(A) receptors. Previous characterization of this subunit expressed in the Xenopus oocytes revealed an ion channel with slow activation and deactivation and no desensitization, quite different from the properties of GABA(C) receptors observed in native cells. We expressed the human rho1 subunit in human embryonic kidney (HEK) 293 cells and quantitatively characterized the kinetic properties of these receptors using a rapid drug application device. The rho1 subunit expressed in HEK293 cells exhibited pharmacological and kinetic properties qualitatively identical to those described when rho1 was expressed in the oocytes. An apparent desensitizing current observed during a constant GABA application was determined to be secondary to an E(Cl) shift. Detailed kinetic analyses and parameter estimation for a five-state kinetic model revealed that the channel is best described by a set of rate constants with a notably faster GABA unbinding K(off) rate compared to the parameters proposed for the same subunit expressed in the oocytes. The same subunit expressed in hippocampal neurons showed activation and deactivation kinetics identical to the current characterized in HEK293 cells. The kinetic properties of rho1 subunit expressed in a nonoocyte model system may be better described quantitatively by the rate constants presented here.
Collapse
Affiliation(s)
- Jay Yang
- Department of Anesthesiology, Columbia University College of Physicians & Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
21
|
Harvey VL, Duguid IC, Krasel C, Stephens GJ. Evidence that GABA rho subunits contribute to functional ionotropic GABA receptors in mouse cerebellar Purkinje cells. J Physiol 2006; 577:127-39. [PMID: 16945976 PMCID: PMC2000691 DOI: 10.1113/jphysiol.2006.112482] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ionotropic gamma-amino butyric acid (GABA) receptors composed of heterogeneous molecular subunits are major mediators of inhibitory responses in the adult CNS. Here, we describe a novel ionotropic GABA receptor in mouse cerebellar Purkinje cells (PCs) using agents reported to have increased affinity for rho subunit-containing GABA(C) over other GABA receptors. Exogenous application of the GABA(C)-preferring agonist cis-4-aminocrotonic acid (CACA) evoked whole-cell currents in PCs, whilst equimolar concentrations of GABA evoked larger currents. CACA-evoked currents had a greater sensitivity to the selective GABA(C) antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) than GABA-evoked currents. Focal application of agonists produced a differential response profile; CACA-evoked currents displayed a much more pronounced attenuation with increasing distance from the PC soma, displayed a slower time-to-peak and exhibited less desensitization than GABA-evoked currents. However, CACA-evoked currents were also completely blocked by bicuculline, a selective agent for GABA(A) receptors. Thus, we describe a population of ionotropic GABA receptors with a mixed GABA(A)/GABA(C) pharmacology. TPMPA reduced inhibitory synaptic transmission at interneurone-Purkinje cell (IN-PC) synapses, causing clear reductions in miniature inhibitory postsynaptic current (mIPSC) amplitude and frequency. Combined application of NO-711 (a selective GABA transporter subtype 1 (GAT-1) antagonist) and SNAP-5114 (a GAT-(2)/3/4 antagonist) induced a tonic GABA conductance in PCs; however, TPMPA had no effect on this current. Immunohistochemical studies suggest that rho subunits are expressed predominantly in PC soma and proximal dendritic compartments with a lower level of expression in more distal dendrites; this selective immunoreactivity contrasted with a more uniform distribution of GABA(A) alpha1 subunits in PCs. Finally, co-immunoprecipitation studies suggest that rho subunits can form complexes with GABA(A) receptor alpha1 subunits in the cerebellar cortex. Overall, these data suggest that rho subunits contribute to functional ionotropic receptors that mediate a component of phasic inhibitory GABAergic transmission at IN-PC synapses in the cerebellum.
Collapse
Affiliation(s)
- Victoria L Harvey
- School of Pharmacy, University of Reading, Whiteknights, PO Box 228, Reading RG6 6AJ, UK
| | | | | | | |
Collapse
|
22
|
Liu J, Li GL, Yang XL. An ionotropic GABA receptor with novel pharmacology at bullfrog cone photoreceptor terminals. Neurosignals 2006; 15:13-25. [PMID: 16825800 DOI: 10.1159/000094384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 11/19/2022] Open
Abstract
Characteristics of ionotropic gamma-aminobutyric acid (GABA) receptors at bullfrog cone terminals were studied by patch clamp techniques in isolated cell and retinal slice preparations. GABA-induced inward currents from isolated cones reversed in polarity at a potential, very close to the chloride equilibrium potential, and they were completely suppressed by picrotoxin. Unexpectedly, the GABA current was dose-dependently potentiated by the well-known GABA(A) receptor antagonist bicuculline (BIC), but was suppressed by gabazine, another GABA(A) antagonist, and imidazole-4-acetic acid (I4AA), a GABA(C) receptor antagonist. Similarly, currents induced by both GABA(A) agonist muscimol and GABA(C) agonist cis-4-aminocrotonic acid (CACA) were also potentiated by BIC. Furthermore, currents induced from cones by GABA and kainate-caused depolarization of horizontal cells in retinal slice preparations were both potentiated by BIC. All these results suggest that the ionotropic GABA receptor at the bullfrog cone terminal exhibits novel pharmacology, distinct from both traditional GABA(A) and GABA(C) receptors.
Collapse
Affiliation(s)
- Jian Liu
- Institute of Neurobiology, Institute of Brain Science, Fudan University, Shanghai, PR China
| | | | | |
Collapse
|
23
|
Pan Y, Ripps H, Qian H. Random assembly of GABA rho1 and rho2 subunits in the formation of heteromeric GABA(C) receptors. Cell Mol Neurobiol 2006; 26:289-305. [PMID: 16767514 DOI: 10.1007/s10571-006-9001-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 02/08/2006] [Indexed: 10/24/2022]
Abstract
1. Various combinations of the rho subunits (rho(1A), rho(1B), rho(2A), rho(2B)) of GABA(C) receptors cloned from white perch retina were expressed in Xenopus oocytes, and electrophysiological and pharmacological methods were used to test their ability to co-assemble into heteromeric receptors. Simultaneous injection of the two subunits, irrespective of their relative proportions, led invariably to the formation of a preponderance of heteromeric receptors. 2. The GABA deactivation responses elicited from these cells could be described by a single exponential decay, and their pharmacological responses deviated significantly from those expected of a simple mixture of two homomeric rho(1) and rho(2) receptors. In contrast, a double exponential function comprising fast and slow components was required to fit the GABA deactivation responses elicited from oocytes sequentially expressing rho(1) and rho(2) subunits, a condition that favors the formation of a mixture of homomeric rho(1) and rho(2) receptors. 3. Both the GABA-response kinetics and the sensitivity to picrotoxin of the heteromeric perch rho(1B)rho(2A) receptor varied with the proportion of the subunit RNA injected, indicating there is no fixed stoichiometry for their co-assembly into heteromeric rho(1)rho(2) receptors. 4. If native GABA(C) receptors in retinal neurons behave in a similar manner as in the oocyte expression system, these finding suggest that the properties of their GABA(C) receptors are likely to be influenced by the transcription/translation efficiency of GABA rho subunit genes.
Collapse
Affiliation(s)
- Yi Pan
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, USA
| | | | | |
Collapse
|
24
|
Huang SH, Duke RK, Chebib M, Sasaki K, Wada K, Johnston GAR. Mixed antagonistic effects of bilobalide at ρ1 GABAC receptor. Neuroscience 2006; 137:607-17. [PMID: 16300902 DOI: 10.1016/j.neuroscience.2005.08.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 08/16/2005] [Accepted: 08/26/2005] [Indexed: 11/28/2022]
Abstract
Bilobalide was found to be a moderately potent antagonist with a weak use-dependent effect at recombinant human rho(1) GABA(C) receptors expressed in Xenopus oocytes using two-electrode voltage clamp methodology. Antagonism of bilobalide at homomeric rho(1) GABA(C) receptors appeared to be mixed. At low concentration, bilobalide (3 microM) caused a parallel right shift and surmountable GABA maximal response of the GABA dose-response curve characteristic of a competitive antagonist. At high concentrations, bilobalide (10-100 microM) caused nonparallel right shifts and reduced maximal GABA responses of GABA dose-response curves characteristic of a noncompetitive antagonist. The potency of bilobalide appears to be dependent on the concentrations of GABA and was more potent at lower GABA concentrations. The mechanism of action of bilobalide at rho(1) GABA(C) receptors appears to be similar to that of the chloride channel blocker picrotoxinin.
Collapse
Affiliation(s)
- S H Huang
- Adrien Albert Laboratory of Medicinal Chemistry, Department of Pharmacology D06, Faculty of Medicine, The University of Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Sieghart W. Structure, pharmacology, and function of GABAA receptor subtypes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2006; 54:231-63. [PMID: 17175817 DOI: 10.1016/s1054-3589(06)54010-4] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Werner Sieghart
- Division of Biochemistry and Molecular Biology, Center for Brain Research, and Section of Biochemical Psychiatry, University Clinic for Psychiatry, Medical University Vienna, Austria
| |
Collapse
|
26
|
Song XQ, Meng F, Ramsey DJ, Ripps H, Qian H. The GABA rho1 subunit interacts with a cellular retinoic acid binding protein in mammalian retina. Neuroscience 2005; 136:467-75. [PMID: 16198491 DOI: 10.1016/j.neuroscience.2005.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 07/14/2005] [Accepted: 08/04/2005] [Indexed: 11/15/2022]
Abstract
Interactions between the intracellular domain of ligand-gated membrane receptors and cytoplasmic proteins play important roles in their assembly, clustering, and function. In addition, protein-protein interactions may provide an alternative mechanism by which neurotransmitters activate intracellular pathways. In this study, we report a novel interaction between the GABA rho1 subunit and cellular retinoic acid binding protein in mammalian retina that could serve as a link between the GABA signaling pathway and the control of gene expression in neurons. The interaction between the intracellular loop of the human GABA rho subunit and cellular retinoic acid binding protein was identified using a CytoTrap XR yeast two-hybrid system, and was further confirmed by co-precipitation of the human GABA rho subunit and cellular retinoic acid binding protein from baboon retinal samples. The cellular retinoic acid binding protein binding domain on the human rho1 subunit was located to the C-terminal region of human GABA rho subunit, and the interaction of the human GABA rho subunit with cellular retinoic acid binding protein could be antagonized by a peptide derived from within the binding domain of the rho1 subunit. Since cellular retinoic acid binding protein is a carrier protein for retinoic acid, we investigated the effect of GABA on retinoic acid activity in neuroblastoma cells containing endogenously expressed cellular retinoic acid binding protein. In the absence of the rho1 receptor, these cells showed enhanced neurite outgrowth when exposed to retinoic acid and GABA had no effect on their response to retinoic acid. In contrast, cells stably transfected with the human rho1 subunit showed a significantly reduced sensitivity to retinoic acid when exposed to GABA. These results suggest that the GABA receptor subunit effectively altered gene expression through its interaction with the cellular retinoic acid binding protein pathway.
Collapse
Affiliation(s)
- X-Q Song
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
The gamma-aminobutyric acid type C (GABA(C)) receptor is a ligand-gated chloride channel with distinct physiological and pharmacological properties. Although the exact subunit composition of native GABA(C) receptors has yet to be firmly established, there is general agreement that GABA rho subunits participate in their formation. Recent studies on white perch suggest that certain GABA rho subunits can co-assemble with the GABA(A) receptor gamma2 subunit to form a heteromeric receptor with electrophysiological properties that correspond more closely to the native GABA(C) receptor on retinal neurons than any of the homomeric rho receptors. In the present study we examined the interactions among various perch GABA rho and gamma2 subunits. When co-expressed in Xenopus oocytes, the gamma2 subunit co-immunoprecipitated with Flag-tagged perch rho1A, rho1B, and rho2B subunits, but not with the Flag-tagged perch rho2A subunit. Immunocytochemical studies indicated that the membrane surface expression of the gamma2 subunit was detected only when it was co-expressed with perch rho1A, rho1B, or rho2B subunit, but not with the perch rho2A subunit or when expressed alone. In addition, co-immunoprecipitation of perch rho1B and gamma2 subunits was also detected in protein samples of the teleost retina. Taken together, these findings suggest that a heteromeric rho(gamma2) receptor could represent one form of GABA(C) receptor on retinal neurons.
Collapse
Affiliation(s)
- Yi Pan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | |
Collapse
|
28
|
Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 2005; 6:215-29. [PMID: 15738957 DOI: 10.1038/nrn1625] [Citation(s) in RCA: 1601] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The proper functioning of the adult mammalian brain relies on the orchestrated regulation of neural activity by a diverse population of GABA (gamma-aminobutyric acid)-releasing neurons. Until recently, our appreciation of GABA-mediated inhibition focused predominantly on the GABA(A) (GABA type A) receptors located at synaptic contacts, which are activated in a transient or 'phasic' manner by GABA that is released from synaptic vesicles. However, there is growing evidence that low concentrations of ambient GABA can persistently activate certain subtypes of GABA(A) receptor, which are often remote from synapses, to generate a 'tonic' conductance. In this review, we consider the distinct roles of synaptic and extrasynaptic GABA receptor subtypes in the control of neuronal excitability.
Collapse
Affiliation(s)
- Mark Farrant
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
29
|
Lukasiewicz PD, Eggers ED, Sagdullaev BT, McCall MA. GABAC receptor-mediated inhibition in the retina. Vision Res 2005; 44:3289-96. [PMID: 15535996 DOI: 10.1016/j.visres.2004.07.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Indexed: 11/28/2022]
Abstract
Inhibition at bipolar cell axon terminals regulates excitatory signaling to ganglion cells and is mediated, in part, by GABAC receptors. We investigated GABAC receptor-mediated inhibition using pharmacological approaches and genetically altered mice that lack GABAC receptors. Responses to applied GABA showed distinct time courses in various bipolar cell classes, attributable to different proportions of GABAA and GABAC receptors. The elimination of GABAC receptors in GABAC null mice reduced and shortened GABA-activated currents and light-evoked inhibitory synaptic currents (L-IPSCs) in rod bipolar cells. ERG measurements and recordings from the optic nerve showed that inner retinal function was altered in GABAC null mice. These data suggest that GABAC receptors determine the time course and extent of inhibition at bipolar cell terminals that, in turn, modulates the magnitude of excitatory transmission from bipolar cells to ganglion cells.
Collapse
Affiliation(s)
- Peter D Lukasiewicz
- Department of Ophthalmology, Washington University School of Medicine, Campus Box 8096, 660 South Euclid Avenue, Saint Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
30
|
Pan Y, Khalili P, Ripps H, Qian H. Pharmacology of GABAC receptors: responses to agonists and antagonists distinguish A- and B-subtypes of homomeric rho receptors expressed in Xenopus oocytes. Neurosci Lett 2004; 376:60-5. [PMID: 15694275 DOI: 10.1016/j.neulet.2004.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 11/01/2004] [Accepted: 11/11/2004] [Indexed: 10/26/2022]
Abstract
GABA(C) receptors, expressed predominantly in vertebrate retina, are thought to be formed mainly by GABA rho subunits. Five GABA rho subunits have been cloned from white perch retina, four of which form functional homooligomeric receptors when expressed in Xenopus oocytes. These rho subtypes, classified as rho1A, rho1B, rho2A and rho2B receptors based on amino acid sequence alignment, exhibit distinct temporal and pharmacological properties. To examine further the pharmacological properties associated with the various rho receptor subtypes, we investigated the effects of a selective GABA(C) receptor antagonist, TPMPA, on the GABA-mediated activity of receptors formed in Xenopus oocytes by the four GABA rho subunits. In addition, we recorded the activation profiles of beta-alanine, taurine, and glycine, three amino acids that modulate neuronal activity in various parts of the CNS and are purported to be rho receptor agonists. TPMPA effectively inhibited GABA-elicited responses on A-type receptors, whereas B-type receptors exhibited a relatively low sensitivity to the drug. A-type and B-type receptors also displayed distinctly different reactions to agonists. Both taurine and glycine-activated the B-type receptors, whereas these agents had no detectable effect on A-type receptors. Similarly, beta-alanine evoked large responses from B-type receptors, but was far less effective on A-type receptors. These results indicate that, in addition to the characteristic response properties identified previously, there is a pattern of pharmacological reactions that further distinguishes the A- and B-subtypes of GABA rho receptor.
Collapse
Affiliation(s)
- Yi Pan
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Picrotoxin is a plant alkaloid that is often used to block the activity of neuronal GABA and glycine receptors. However, the mechanism by which picrotoxin inhibits these receptors is still in debate. In this study, we investigated the picrotoxin inhibition on perch-rho subunits expressed heterologously in Xenopus laevis oocytes, and on native GABA(C) receptors of perch bipolar cells. Both competitive and noncompetitive mechanisms were observed for picrotoxin inhibition of the GABA(C) receptor. In oocytes expressing the rho1A subunit, terminating simultaneously the coapplication of GABA and picrotoxin induced a large rebound of membrane current. In addition, picrotoxin significantly accelerated the kinetics of GABA responses, particularly in the relaxation (offset) phase of GABA currents. Both current rebound and the large acceleration of GABA relaxation were unique to picrotoxin inhibition and were not observed with the competitive antagonist (1,2,5,6-tetrahydropyridin-4-yl)-methylphosphinic acid or the allosteric modulator zinc. The change in kinetics induced by picrotoxin was also observed on receptors formed by other GABA rho subunits, as well as on the GABA(C) receptors of retinal bipolar cells. Based on these observations, we proposed a model in which picrotoxin binds to the GABA(C) receptor in both channel open and closed states. Overall, this model provides a remarkably good approximation of the experimental findings we observed for picrotoxin inhibition of GABA(C) receptors. These results support an allosteric mechanism of picrotoxin inhibition of ligand-gated chloride channels.
Collapse
Affiliation(s)
- Haohua Qian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor St., Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
32
|
Milligan CJ, Buckley NJ, Garret M, Deuchars J, Deuchars SA. Evidence for inhibition mediated by coassembly of GABAA and GABAC receptor subunits in native central neurons. J Neurosci 2004; 24:7241-50. [PMID: 15317850 PMCID: PMC6729776 DOI: 10.1523/jneurosci.1979-04.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Revised: 06/28/2004] [Accepted: 06/28/2004] [Indexed: 11/21/2022] Open
Abstract
Fast inhibition in the nervous system is commonly mediated by GABA(A) receptors comprised of 2alpha/2beta/1gamma subunits. In contrast, GABA(C) receptors containing only rho subunits (rho1-rho3) have been predominantly detected in the retina. However, here using reverse transcription-PCR and in situ hybridization we show that mRNA encoding the rho1 subunit is highly expressed in brainstem neurons. Immunohistochemistry localized the rho1 subunit to neurons at light and electron microscopic levels, where it was detected at synaptic junctions. Application of the GABA(C) receptor agonist cis-4-aminocrotonic acid (100-800 microM) requires the rho1 subunit to elicit responses, which surprisingly are blocked independently by antagonists to GABA(A) (bicuculline, 10 microM) and GABA(C) [(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA); 40-160 microM] receptors. Responses to GABA(C) agonists were also enhanced by the GABA(A) receptor modulator pentobarbitone (300 microM). Spontaneous and evoked IPSPs were reduced in amplitude but never abolished by TPMPA, but were completely blocked by bicuculline. We therefore tested the hypothesis that GABA(A) and GABA(C) subunits formed a heteromeric receptor. Immunohistochemistry indicated that rho1 and alpha1 subunits were colocalized at light and electron microscopic levels. Electrophysiology revealed that responses to GABA(C) receptor agonists were enhanced by the GABA(A) receptor modulator zolpidem (500 nm), which acts on the alpha1 subunit when the gamma2 subunit is also present. Finally, coimmunoprecipitation indicated that the rho1 subunit formed complexes that also containedalpha1 and gamma2 subunits. Taken together these separate lines of evidence suggest that the effects of GABA in central neurons can be mediated by heteromeric complexes of GABA(A) and GABA(C) receptor subunits.
Collapse
Affiliation(s)
- Carol J Milligan
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9NQ, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Hartmann K, Stief F, Draguhn A, Frahm C. Ionotropic GABA receptors with mixed pharmacological properties of GABAA and GABAC receptors. Eur J Pharmacol 2004; 497:139-46. [PMID: 15306198 DOI: 10.1016/j.ejphar.2004.06.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 06/22/2004] [Indexed: 11/17/2022]
Abstract
Ionotropic gamma-aminobutyric acid (GABA) receptors form a large family of molecular isoforms with distinct properties. We have characterized a distinct new type of GABA receptors in CA1 pyramidal cells in rat hippocampal slices. Somatic application of GABA induced currents which were partially suppressed by (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA), a specific antagonist of GABA(C) receptors. This sensitivity was enhanced when we evoked the currents by the GABA(C) receptor agonist cis-4-aminocrotonic acid (CACA). However, both GABA- and CACA-evoked currents were sensitive towards bicuculline and thus lack the defining feature of GABA(C) receptors, which are insensitive towards this antagonist. Spontaneous miniature post-synaptic currents (mIPSCs) revealed a similar pharmacological behaviour. We conclude that juvenile CA1 pyramidal cells express a fraction of ionotropic GABA receptors with mixed pharmacological properties of both, GABA(A) and GABA(C) receptors.
Collapse
Affiliation(s)
- Kristin Hartmann
- Johannes-Müller-Institut für Physiologie, Universitätsklinikum Charité, Humboldt-Universität Berlin, Tucholskystrasse 2, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
34
|
Martínez-Torres A, Miledi R. Expression of functional receptors by the human gamma-aminobutyric acid A gamma 2 subunit. Proc Natl Acad Sci U S A 2004; 101:3220-3. [PMID: 14981251 PMCID: PMC365770 DOI: 10.1073/pnas.0308682101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
gamma-Aminobutyric acid A (GABA(A)) receptors are heteromeric membrane proteins formed mainly by various combinations of alpha, beta, and gamma subunits; and it is commonly thought that the gamma 2 subunit alone does not form functional receptors. In contrast, we found that cDNA encoding the gamma 2L subunit of the human GABA(A) receptor, injected alone into Xenopus oocytes, expressed functional GABA receptors whose properties were investigated by using the two-microelectrode voltage-clamp technique. GABA elicited desensitizing membrane currents that recovered after a few minutes' wash. Repetitive applications of GABA induced a "run-up" of GABA currents that nearly doubled the amplitude of the first response. The GABA currents inverted direction at about -30 mV, indicating that they are carried mainly by Cl(-) ions. The homomeric gamma 2L receptors were also activated by beta-alanine > taurine > glycine, and, like some types of heteromeric GABA(A) receptors, the gamma 2L receptors were blocked by bicuculline and were potentiated by pentobarbital and flunitrazepam. These results indicate that the human gamma 2L subunit is capable of forming fully functional GABA receptors by itself in Xenopus oocytes and suggest that the roles proposed for the various subunits that make up the heteromeric GABA(A) receptors in situ require further clarification.
Collapse
Affiliation(s)
- Ataúlfo Martínez-Torres
- Laboratory of Cellular and Molecular Neurobiology, Department of Neurobiology and Behavior, University of California, McGaugh Hall 1115, Irvine, CA 92697-4550, USA.
| | | |
Collapse
|
35
|
Boué-Grabot E, Emerit MB, Toulmé E, Séguéla P, Garret M. Cross-talk and co-trafficking between rho1/GABA receptors and ATP-gated channels. J Biol Chem 2004; 279:6967-75. [PMID: 14660627 DOI: 10.1074/jbc.m307772200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gamma-aminobutyric-acid (GABA) and ATP ionotropic receptors represent two structurally and functionally different classes of neurotransmitter-gated channels involved in fast synaptic transmission. We demonstrate here that, when the inhibitory rho1/GABA and the excitatory P2X2 receptor channels are co-expressed in Xenopus oocytes, activation of one channel reduces the currents mediated by the other one. This reciprocal inhibitory cross-talk is a receptor-mediated phenomenon independent of agonist cross-modulation, membrane potential, direction of ionic flux, or channel densities. Functional interaction is disrupted when the cytoplasmic C-terminal domain of P2X2 is deleted or in competition experiments with minigenes coding for the C-terminal domain of P2X2 or the main intracellular loop of rho1 subunits. We also show a physical interaction between P2X2 and rho1 receptors expressed in oocytes and the co-clustering of these receptors in transfected hippocampal neurons. Co-expression with P2X2 induces retargeting and recruitment of mainly intracellular rho1/GABA receptors to surface clusters. Therefore, molecular and functional cross-talk between inhibitory and excitatory ligand-gated channels may regulate synaptic strength both by activity-dependent current occlusion and synaptic receptors co-trafficking.
Collapse
Affiliation(s)
- Eric Boué-Grabot
- CNRS Unité Mixte de Recherche 5543, Université Victor Segalen Bordeaux 2, 33076 Bordeaux cedex, France.
| | | | | | | | | |
Collapse
|
36
|
Zheng W, Xie W, Zhang J, Strong JA, Wang L, Yu L, Xu M, Lu L. Function of gamma-aminobutyric acid receptor/channel rho 1 subunits in spinal cord. J Biol Chem 2003; 278:48321-9. [PMID: 12970343 DOI: 10.1074/jbc.m307930200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gamma-Aminobutyric acid (GABA) receptor/channel rho 1 subunits are important components in inhibitory pathways in the central nervous system. However, the precise locations and roles of these receptors in the central nervous system are unknown. We studied the expression localization of GABA receptor/channel rho 1 subunit in mouse spinal cord and dorsal root ganglia (DRG). The immunohistochemistry results indicated that GABA receptor/channel rho 1 subunits were expressed in mouse spinal cord superficial dorsal horn (lamina I and lamina II) and in DRG. To understand the functions of the GABA receptor/channel rho 1 subunit in these crucial sites of sensory transmission in vivo, we generated GABA receptor/channel rho 1 subunit mutant mice (rho 1-/-). GABA receptor/channel rho 1 subunit expression in the rho 1-/- mice was eliminated completely, whereas the gross neuroanatomical structures of the rho 1-/- mice spinal cord and DRG were unchanged. Electrophysiological recording showed that GABA-mediated spinal cord response was altered in the rho 1-/- mice. A decreased threshold for mechanical pain in the rho 1-/- mice compared with control mice was observed with the von Frey filament test. These findings indicate that the GABA receptor/channel rho 1 subunit plays an important role in modulating spinal cord pain transmission functions in vivo.
Collapse
MESH Headings
- Animals
- Blotting, Southern
- Central Nervous System/metabolism
- DNA, Complementary/metabolism
- Electrophysiology
- Exons
- Female
- Ganglia, Spinal/metabolism
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Fluorescence
- Models, Genetic
- Mutation
- Pain
- Receptors, GABA/chemistry
- Receptors, GABA/genetics
- Receptors, GABA/metabolism
- Recombinant Proteins/metabolism
- Retina/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- Wei Zheng
- Division of Molecular Medicine, Harbor-UCLA Medical Center, The David Geffen School of Medicine University of California Los Angeles, Torrance, California 90502, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The mouse has become a key animal model for ocular research. This situation reflects the fact that genes implicated in human retinal disorders or in mammalian retinal function may be readily manipulated in the mouse. Visual electrophysiology provides a means to examine retinal function in mutant mice, and stimulation and recording protocols have been developed that allow the activity of many classes of retinal neurons to be examined and which take into account unique features of the mouse retina. Here, we review the mouse visual electrophysiology literature, covering techniques used to record the mouse electroretinogram and visual evoked potential, and how these have been applied to characterize the functional implications of gene mutation or manipulation in the mouse retina.
Collapse
Affiliation(s)
- Neal S Peachey
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
38
|
Semyanov A, Kullmann DM. Relative picrotoxin insensitivity distinguishes ionotropic GABA receptor-mediated IPSCs in hippocampal interneurons. Neuropharmacology 2002; 43:726-36. [PMID: 12367618 DOI: 10.1016/s0028-3908(02)00123-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Inhibitory GABAergic signalling in the hippocampus plays an important role in synchronizing principal cells and regulating the excitability of this seizure-prone structure. Distinct mechanisms modulate release from GABAergic terminals in the hippocampus, depending on whether the postsynaptic partner is an interneuron or a principal cell. Here, we report that postsynaptic ionotropic GABA receptors in principal cells and interneurons also show a striking pharmacological difference. The broad-spectrum antagonist picrotoxin (PTX) was less potent at blocking IPSCs evoked in stratum radiatum interneurons than in pyramidal neurons in the CA1 region. GABA-evoked currents in membrane patches from interneurons showed a smaller mean unitary conductance than in patches from pyramidal neurons. Because retinal GABA(C) receptors show decreased picrotoxin sensitivity and conductance, we examined the effect of the GABA(C) receptor agonist cis-aminocrotonic acid (CACA). Although this agent evoked picrotoxin-resistant currents in interneurons, these were enhanced by the GABA(A) allosteric modulator pentobarbital. Moreover, both picrotoxin-resistant IPSCs and CACA-evoked currents were blocked by the GABA(A) receptor-selective antagonist bicuculline. The presence of relatively picrotoxin-resistant GABA(A) receptors in interneurons provides a potential target for agents to modulate the activity of sub-populations of hippocampal neurons.
Collapse
Affiliation(s)
- Alexey Semyanov
- University College London, Institute of Neurology, Queen Square, UK
| | | |
Collapse
|
39
|
Qian H, Pan Y. Co-assembly of GABA rho subunits with the GABA(A) receptor gamma(2) subunit cloned from white perch retina. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 103:62-70. [PMID: 12106692 DOI: 10.1016/s0169-328x(02)00140-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although it is well established that GABA(C) receptors are comprised in part of GABA rho subunits, the exact subunit composition of neuronal GABA(C) receptors is yet to be determined. A detailed comparison of GABA(C)-mediated neuronal responses elicited from retinal neurons with those obtained from receptors formed by GABA rho subunits revealed a number of significant differences both in the kinetics and the pharmacology of the responses. Our previous studies indicated that the human GABA(A) receptor gamma(2) subunit could co-assemble with one (rho(1B)) of the white perch GABA rho subunits to form a heterooligomeric receptor with properties that resembled those of the GABA(C) receptors on white perch bipolar cells. In this study, we cloned the white perch gamma(2) subunit, and investigated its co-assembly with four white perch GABA rho subunits. When expressed in Xenopus oocytes, perch gamma(2) and rho(1B) subunits form heterooligomeric receptors with distinct properties: the GABA-elicited responses have fast kinetics and are sensitive to pentobarbital modulation. The enhancement of GABA-elicited responses by pentobarbital on the heterooligomeric receptors could be eliminated by a single mutation in the third transmembrane domain of the gamma(2) subunit, indicating that pentobarbital sensitivity is mediated by the incorporated gamma(2) subunit. On the other hand, co-expression of the perch gamma(2) subunit with the other perch GABA rho subunits produced no detectable changes in the kinetics of GABA-elicited response or the sensitivity to pentobarbital modulation. These results suggest that the gamma(2) subunit can co-assemble only with one (rho(1B)), but not with other white perch GABA rho subunits.
Collapse
Affiliation(s)
- Haohua Qian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, Chicago, IL 60612, USA.
| | | |
Collapse
|
40
|
Elimination of the rho1 subunit abolishes GABA(C) receptor expression and alters visual processing in the mouse retina. J Neurosci 2002. [PMID: 12019334 DOI: 10.1523/jneurosci.22-10-04163.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibition is crucial for normal function in the nervous system. In the CNS, inhibition is mediated primarily by the amino acid GABA via activation of two ionotropic GABA receptors, GABA(A) and GABA(C). GABA(A) receptor composition and function have been well characterized, whereas much less is known about native GABA(C) receptors. Differences in molecular composition, anatomical distributions, and physiological properties strongly suggest that GABA(A) receptors and GABA(C) receptors have distinct functional roles in the CNS. To determine the functional role of GABA(C) receptors, we eliminated their expression in mice using a knock-out strategy. Although native rodent GABA(C) receptors are composed of rho1 and rho2 subunits, we show that after rho1 subunit expression was selectively eliminated there was no GABA(C) receptor expression. We assessed GABA(C) receptor function in the retina because GABA(C) receptors are highly expressed on the axon terminals of rod bipolar cells and because this site modulates the visual signal to amacrine and ganglion cells. In GABA(C)rho1 null mice, GABA-evoked responses, normally mediated by GABA(C) receptors, were eliminated, and signaling from rod bipolar cells to third order cells was altered. These data demonstrate that elimination of the GABA(C)rho1 subunit, via gene targeting, results in the absence of GABA(C) receptors in the retina and selective alterations in normal visual processing.
Collapse
|
41
|
Didelon F, Sciancalepore M, Savic' N, Mladinic' M, Bradbury A, Cherubini E. gamma-Aminobutyric acidA rho receptor subunits in the developing rat hippocampus. J Neurosci Res 2002; 67:739-44. [PMID: 11891787 DOI: 10.1002/jnr.10178] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RT-PCR approach was used to estimate the expression of gamma-aminobutyric acid (GABA)(A) rho receptor subunits in the hippocampus of neonatal and adult rats. All three rho subunits were detected at postnatal day (P) 2, the rho3 subunit being expressed at an extremely low level. The rho1 and rho2 products appeared to be developmentally regulated; they were found to be more pronounced in adulthood. In another set of experiments, to correlate gene expression with receptor function, GABA(A) rho subunit mRNAs were detected with single-cell RT-PCR in CA3 pyramidal cells (from P3-P4 hippocampal slices), previously characterized with electrophysiological experiments for their bicuculline-sensitive or -insensitive responses to GABA. In 6 of 19 cells (31%), pressure application of GABA evoked at -70 mV inward currents that persisted in the presence of 100 microM bicuculline (314 plus minus 129 pA). RT-PCR performed in two of these neurons revealed the presence of rho1 and rho2 subunits, the latter being present with the alpha2 subunit. A rho2 subunit was also found in 1 neuron (among 9) exhibiting a response to GABA, which was completely abolished by bicuculline. This might be due to the lack of putative accessory GABA(A) subunits that can coassemble with rho2 to make functional receptors. Similar experiments from 10 P15 CA3 pyramidal cells failed to reveal any rho1-3 transcripts. However, these neurons abundantly express alpha3 subunits. It is likely that in CA3 pyramidal cells of neonatal and adult hippocampus GABA(A) rho subunits are present but at very low levels of expression.
Collapse
Affiliation(s)
- Frédéric Didelon
- Neuroscience Program and Istituto Nazionale Fisica della Materia (INFM), International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Vien J, Duke RK, Mewett KN, Johnston GAR, Shingai R, Chebib M. trans-4-Amino-2-methylbut-2-enoic acid (2-MeTACA) and (+/-)-trans-2-aminomethylcyclopropanecarboxylic acid ((+/-)-TAMP) can differentiate rat rho3 from human rho1 and rho2 recombinant GABA(C) receptors. Br J Pharmacol 2002; 135:883-90. [PMID: 11861315 PMCID: PMC1573190 DOI: 10.1038/sj.bjp.0704432] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. This study investigated the effects of a number of GABA analogues on rat rho3 GABA(C) receptors expressed in Xenopus oocytes using 2-electrode voltage clamp methods. 2. The potency order of agonists was muscimol (EC(50)=1.9 +/- 0.1 microM) (+)-trans-3-aminocyclopentanecarboxylic acids ((+)-TACP; EC(50)=2.7 +/- 0.9 microM) trans-4-aminocrotonic acid (TACA; EC(50)=3.8 +/-0.3 microM) GABA (EC(50)=4.0 +/- 0.3 microM) > thiomuscimol (EC(50)=24.8 +/- 2.6 microM) > (+/-)-cis-2-aminomethylcyclopropane-carboxylic acid ((+/-)-CAMP; EC(50)=52.6 +/-8.7 microM) > cis-4-aminocrotonic acid (CACA; EC(50)=139.4 +/- 5.2 microM). 3. The potency order of antagonists was (+/-)-trans-2-aminomethylcyclopropanecarboxylic acid ((+/-)-TAMP; K(B)=4.8+/-1.8 microM) (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA; K(B)=4.8 +/-0.8 microM) > (piperidin-4-yl)methylphosphinic acid (P4MPA; K(B)=10.2+/-2.3 microM) 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP; K(B)=10.2+/-0.3 microM) imidazole-4-acetic acid (I4AA; K(B)=12.6+/-2.7 microM) > 3-aminopropylphosphonic acid (3-APA; K(B)=35.8+/-13.5 microM). 4. trans-4-Amino-2-methylbut-2-enoic acid (2-MeTACA; 300 microM) had no effect as an agonist or an antagonist indicating that the C2 methyl substituent is sterically interacting with the ligand-binding site of rat rho3 GABA(C) receptors. 5. 2-MeTACA affects rho1 and rho2 but not rho3 GABA(C) receptors. In contrast, (plus minus)-TAMP is a partial agonist at rho1 and rho2 GABA(C) receptors, while at rat rho3 GABA(C) receptors it is an antagonist. Thus, 2-MeTACA and (+/-)-TAMP could be important pharmacological tools because they may functionally differentiate between rho1, rho2 and rho3 GABA(C) receptors in vitro.
Collapse
Affiliation(s)
- Jimmy Vien
- Department of Pharmacology, University of Sydney, NSW 2006, Australia
| | - Rujee K Duke
- Department of Pharmacology, University of Sydney, NSW 2006, Australia
| | - Kenneth N Mewett
- Department of Pharmacology, University of Sydney, NSW 2006, Australia
| | | | - Ryuzo Shingai
- Department of Welfare Engineering, Faculty of Engineering, Iwate University, Morioka, Japan
| | - Mary Chebib
- Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
- Author for correspondence:
| |
Collapse
|
43
|
Shen DW, Higgs MH, Salvay D, Olney JW, Lukasiewicz PD, Romano C. Morphological and electrophysiological evidence for an ionotropic GABA receptor of novel pharmacology. J Neurophysiol 2002; 87:250-6. [PMID: 11784747 DOI: 10.1152/jn.00620.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence from toxicological studies suggested that an ionotropic GABA receptor of novel pharmacology (picrotoxin-insensitive, bicuculline-sensitive) exists in the chick embryo retina. In this report, we provide direct morphological and electrophysiological evidence for the existence of such an iGABA receptor. Chick embryo retinas (14-16 days old) incubated in the presence of kainic acid showed pronounced histopathology in all retinal layers. Maximal protection from this toxicity required a combination of bicuculline and picrotoxin. Individual application of the antagonists indicated that a picrotoxin-insensitive, bicuculline-sensitive GABA receptor is likely to be present on ganglion and amacrine, but not bipolar, cells. GABA currents in embryonic and mature chicken retinal neurons were measured by whole cell patch clamp. GABA was puffed at the dendritic processes in the IPL. Picrotoxin (500 microM, in the bath) eliminated all (>95%) the GABA current in the majority of ganglion and amacrine cells tested, but many cells possessed a substantial picrotoxin-insensitive component. This current was eliminated by bicuculline (200 microM). This current was not a transporter-associated current, since it was not altered by GABA transport blockers or sodium removal. The current-voltage relation was linear and reversed near E(Cl), as expected for a ligand-gated chloride current. Both pentobarbital and lorazepam enhanced the picrotoxin-insensitive current. We conclude that chicken retinal ganglion and amacrine cells express a GABA receptor that is GABA-A-like, in that it can be blocked by bicuculline, and positively modulated by barbiturates and benzodiazepines, but is insensitive to the noncompetitive blocker picrotoxin. Understanding the molecular properties of this receptor will be important for understanding both physiological GABA neurotransmission and the pathology of GABA receptor overactivation.
Collapse
Affiliation(s)
- D-W Shen
- Department of Ophthalmology and Visual Science, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
44
|
Chebib M, Duke RK, Allan RD, Johnston GA. The effects of cyclopentane and cyclopentene analogues of GABA at recombinant GABA(C) receptors. Eur J Pharmacol 2001; 430:185-92. [PMID: 11711030 DOI: 10.1016/s0014-2999(01)01390-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pharmacological effects of the enantiomers of cis-3-aminocyclopentanecarboxylic acids ((+)- and (-)-CACP), the enantiomers of trans-3-aminocyclopentanecarboxylic acids ((+)- and (-)-TACP), and the enantiomers of 4-aminocyclopent-1-ene-1-carboxylic acids ((+)- and (-)-4-ACPCA) were studied on human homomeric rho(1) and rho(2) GABA(C) receptors expressed in Xenopus oocytes using two-electrode voltage clamp methods. These compounds are conformationally restricted analogues of gamma-aminobutyric acid (GABA) held in a five-membered ring. (+)-TACP (EC(50) (rho(1))=2.7+/-0.2 microM; EC(50) (rho(2))=1.45+/-0.22 microM), (+)-CACP (EC(50) (rho(1))=26.1+/-1.1 microM; EC(50) (rho(2))=20.1+/-2.1 microM) and (-)-CACP (EC(50) (rho(1))=78.5+/-3.5 microM; EC(50) (rho(2))=63.8+/-23.3 microM) were moderately potent partial agonists at rho(1) and rho(2) GABA(C) receptors, while (-)-TACP (100 microM inhibited 56% and 62% of the current produced by 1 microM GABA at rho(1) and rho(2) receptors, respectively) was a weak partial agonist with low intrinsic activity at these receptors. In contrast, (+)-4-ACPCA (K(i) (rho(1))=6.0+/-0.1 microM; K(i) (rho(2))=4.7+/-0.3 microM) did not activate GABA(C) rho(1) and rho(2) receptors but potently inhibited the action of GABA at these receptors, while (-)-4-ACPCA had little effect as either an agonist or an antagonist. The affinity order at both GABA(C) rho(1) and rho(2) receptors was (+)-TACP>(+)-4-ACPCA >> (+)-CACP>(-)-CACP >> (-)-TACP >> (-)-4-ACPCA. This study shows that the cyclopentane and cyclopentene analogues of GABA affect GABA(C) receptors in a unique manner, defining a preferred stereochemical orientation of the amine and carboxylic acid groups when binding to GABA(C) receptors. This is exemplified by the partial agonist, (+)-TACP, and the antagonist, (+)-4-ACPCA.
Collapse
Affiliation(s)
- M Chebib
- Faculty of Pharmacy, Department of Pharmacology, The University of Sydney, NSW 2006, Sydney, Australia.
| | | | | | | |
Collapse
|
45
|
Abstract
In the central nervous system inhibitory neurotransmission is primarily achieved through activation of receptors for gamma-aminobutyric acid (GABA). Three types of GABA receptors have been identified on the basis of their pharmacological and electrophysiological properties. The predominant type, termed GABA(A), and a recently identified GABA(C) type, form ligand-gated chloride channels, whereas GABA(B) receptors activate separate cation channels via G proteins. Based on their homology to nicotinic acetylcholine receptors, GABA(C) receptors are believed to be oligomeric protein complexes composed of five subunits in a pentameric arrangement. To date up to five different GABA(C) receptors subunits have been identified in various species. Recent studies have shed new light on the biological characteristics of GABA(C) receptors, including the chromosomal localization of its subunit genes and resulting links to deseases, the cloning of new splice variants, the identification of GABA(C) receptor-associated proteins, the identification of domains involved in subunit assembly, and finally structure/function studies examining functional consequences of introduced mutations. This review summarizes recent data in view of the molecular structure of GABA(C) receptors and presents new insights into the biological function of this protein in the retina.
Collapse
Affiliation(s)
- R Enz
- Emil-Fischer Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
46
|
Abstract
Control of nerve-cell excitability is crucial for normal brain function. Two main groups of inhibitory neurotransmitter receptors--GABA(A) and glycine receptors--fulfil a significant part of this role. To mediate fast synaptic inhibition effectively, these receptors need to be localized and affixed opposite nerve terminals that release the appropriate neurotransmitter at multiple sites on postsynaptic neurons. But for this to occur, neurons require intracellular anchoring molecules, as well as mechanisms that ensure the efficient turnover and transport of mature, functional inhibitory synaptic receptor proteins. This review describes the dynamic regulation of synaptic GABA(A) and glycine receptors and discusses recent advances in this rapidly evolving field.
Collapse
Affiliation(s)
- S J Moss
- MRC Laboratory of Molecular Cell Biology and Department of Pharmacology, University College, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
47
|
Zhang D, Pan ZH, Awobuluyi M, Lipton SA. Structure and function of GABA(C) receptors: a comparison of native versus recombinant receptors. Trends Pharmacol Sci 2001; 22:121-32. [PMID: 11239575 DOI: 10.1016/s0165-6147(00)01625-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In less than a decade our knowledge of the GABA(C) receptor, a new type of Cl(-)-permeable ionotropic GABA receptor, has greatly increased based on studies of both native and recombinant receptors. Careful comparison of properties of native and recombinant receptors has provided compelling evidence that GABA receptor rho-subunits are the major molecular components of GABA(C) receptors. Three distinct rho-subunits from various species have been cloned and the pattern of their expression in the retina, as well as in various brain regions, has been established. The pharmacological profile of GABA(C) receptors has been refined and more specific drugs have been developed. Molecular determinants that underlie functional properties of the receptors have been assigned to specific amino acid residues in rho-subunits. This information has helped determine the subunit composition of native receptors, as well as the molecular basis underlying subtle variations among GABA(C) receptors in different species. Finally, GABA(C) receptors play a unique functional role in retinal signal processing via three mechanisms: (1) slow activation; (2) segregation from other inhibitory receptors; and (3) contribution to multi-neuronal pathways.
Collapse
Affiliation(s)
- D Zhang
- Center for Neuroscience and Aging, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
48
|
Abstract
GABA(C) receptors contain rho subunits and mediate feedback inhibition from retinal amacrine cells to bipolar cells. We previously identified the cytoskeletal protein MAP1B as a rho1 subunit anchoring protein. Here, we analyze the structural basis and functional significance of the MAP1B-rho1 interaction. Twelve amino acids at the C terminus of the large intracellular loop of rho1 (and also rho2) are sufficient for interaction with MAP1B. Disruption of the MAP1B-rho interaction in bipolar cells in retinal slices decreased the EC(50) of their GABA(C) receptors, doubling the receptors' current at low GABA concentrations without affecting their maximum current at high concentrations. Thus, anchoring to the cytoskeleton lowers the sensitivity of GABA(C) receptors and provides a likely site for functional modulation of GABA(C) receptor-mediated inhibition.
Collapse
|
49
|
Billups D, Hanley JG, Orme M, Attwell D, Moss SJ. GABAC receptor sensitivity is modulated by interaction with MAP1B. J Neurosci 2000; 20:8643-50. [PMID: 11102469 PMCID: PMC6773065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2000] [Revised: 09/13/2000] [Accepted: 09/18/2000] [Indexed: 02/18/2023] Open
Abstract
GABA(C) receptors contain rho subunits and mediate feedback inhibition from retinal amacrine cells to bipolar cells. We previously identified the cytoskeletal protein MAP1B as a rho1 subunit anchoring protein. Here, we analyze the structural basis and functional significance of the MAP1B-rho1 interaction. Twelve amino acids at the C terminus of the large intracellular loop of rho1 (and also rho2) are sufficient for interaction with MAP1B. Disruption of the MAP1B-rho interaction in bipolar cells in retinal slices decreased the EC(50) of their GABA(C) receptors, doubling the receptors' current at low GABA concentrations without affecting their maximum current at high concentrations. Thus, anchoring to the cytoskeleton lowers the sensitivity of GABA(C) receptors and provides a likely site for functional modulation of GABA(C) receptor-mediated inhibition.
Collapse
MESH Headings
- Amino Acid Transport Systems, Neutral
- Animals
- Binding Sites/genetics
- Binding, Competitive/drug effects
- Binding, Competitive/genetics
- Blotting, Western
- COS Cells
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Dose-Response Relationship, Drug
- GABA Antagonists/pharmacology
- Glutathione Transferase/genetics
- Glycine Agents/pharmacology
- Glycine Plasma Membrane Transport Proteins
- In Vitro Techniques
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Mutagenesis, Site-Directed
- Patch-Clamp Techniques
- Peptides/genetics
- Peptides/pharmacology
- Phosphinic Acids/pharmacology
- Protein Structure, Tertiary/genetics
- Pyridines/pharmacology
- Receptors, GABA/genetics
- Receptors, GABA/metabolism
- Receptors, GABA-B
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Retina/drug effects
- Retina/metabolism
- Transfection
- gamma-Aminobutyric Acid/metabolism
- gamma-Aminobutyric Acid/pharmacokinetics
Collapse
Affiliation(s)
- D Billups
- Laboratory for Molecular Cell Biology, Department of Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Abstract
Protein MAP1B was recently reported to link GABA(C) receptors to the cytoskeleton at neuronal synapses. This interaction was demonstrated in the mammalian retina, where GABA(C) receptors were thought to be exclusively expressed in bipolar cells. Our previous studies on cultured photoreceptors suggested however the presence of GABA(C) receptors in cones. To further investigate GABA(C) receptor expression in cones, we measured GABA responses in mammalian photoreceptors in situ, and we examined the distribution of the receptor and that of protein MAP1B in the mammalian outer retina. Photoreceptors were recorded from flat-mounted retinas of retinal degeneration mice at an age when the retina becomes cone-dominated after rod cell death. GABA(A) and GABA(C)-gated currents were produced only in cones but not rods. Recording freshly dissociated retinal cells from wild-type C57 mice confirmed the presence of GABA(A) and GABA(C) receptors in cones. Immunohistochemical labeling of mouse and rat retinal sections localized GABA(C) receptors to cone terminals that were identified by peanut agglutinin lectin staining. As expected from previous studies on bipolar cells, the punctate immunostaining was not restricted to cone terminals in the outer plexiform layer. MAP1B immunolabeling was obtained in rat and pig retinas and was similarly found in cone terminals identified by the peanut agglutinin lectin staining. These results provide physiological and histological evidence that cones receive a GABA feedback in the mammalian retina and are consistent with the notion that protein MAP1B links GABA(C) receptors to the cytoskeleton at postsynaptic sites.
Collapse
|