1
|
Reinwald C, Bauder JA, Karolyi F, Neulinger M, Jaros S, Metscher B, Krenn HW. Evolutionary functional morphology of the proboscis and feeding apparatus of hawk moths (Sphingidae: Lepidoptera). J Morphol 2022; 283:1390-1410. [PMID: 36059242 PMCID: PMC9825987 DOI: 10.1002/jmor.21510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
The morphology of the proboscis and associated feeding organs was studied in several nectar-feeding hawk moths, as well as a specialized honey-feeder and two supposedly nonfeeding species. The proboscis lengths ranged from a few millimeters to more than 200 mm. Despite the variation in proboscis length and feeding strategy, the principle external and internal composition of the galeae, the stipes pump, and the suction pump were similar across all species. The morphology of the smooth and slender proboscis is highly conserved among all lineages of nectar-feeding Sphingidae. Remarkably, they share a typical arrangement of the sensilla at the tip. The number and length of sensilla styloconica are independent from proboscis length. A unique proboscis morphology was found in the honey-feeding species Acherontia atropos. Here, the distinctly pointed apex displays a large subterminal opening of the food canal, and thus characterizes a novel type of piercing proboscis in Lepidoptera. In the probably nonfeeding species, the rudimentary galeae are not interlocked and the apex lacks sensilla styloconica; galeal muscles, however, are present. All studied species demonstrate an identical anatomy of the stipes, and suction pump, regardless of proboscis length and diet. Even supposedly nonfeeding Sphingidae possess all organs of the feeding apparatus, suggesting that their proboscis rudiments might still be functional. The morphometric analyses indicate significant positive correlations between galea lumen volume and stipes muscle volume as well as the volume of the food canal and the muscular volume of the suction pump. Size correlations of these functionally connected organs reflect morphological fine-tuning in the evolution of proboscis length and function.
Collapse
Affiliation(s)
| | | | - Florian Karolyi
- Department of Evolutionary BiologyUniversity of ViennaViennaAustria
| | | | - Sarah Jaros
- Department of Evolutionary BiologyUniversity of ViennaViennaAustria
| | - Brian Metscher
- Department of Evolutionary BiologyUniversity of ViennaViennaAustria
| | - Harald W. Krenn
- Department of Evolutionary BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
2
|
Stöckl AL, Kelber A. Fuelling on the wing: sensory ecology of hawkmoth foraging. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:399-413. [PMID: 30880349 PMCID: PMC6579779 DOI: 10.1007/s00359-019-01328-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 11/28/2022]
Abstract
Hawkmoths (Lepidoptera, Sphingidae) comprise around 1500 species, most of which forage on nectar from flowers in their adult stage, usually while hovering in front of the flower. The majority of species have a nocturnal lifestyle and are important nocturnal pollinators, but some species have turned to a diurnal lifestyle. Hawkmoths use visual and olfactory cues including CO2 and humidity to detect and recognise rewarding flowers; they find the nectary in the flowers by means of mechanoreceptors on the proboscis and vision, evaluate it with gustatory receptors on the proboscis, and control their hovering flight position using antennal mechanoreception and vision. Here, we review what is presently known about the sensory organs and sensory-guided behaviour that control feeding behaviour of this fascinating pollinator taxon. We also suggest that more experiments on hawkmoth behaviour in natural settings are needed to fully appreciate their sensory capabilities.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Almut Kelber
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden.
| |
Collapse
|
3
|
Ter Hofstede HM, Ratcliffe JM. Evolutionary escalation: the bat-moth arms race. ACTA ACUST UNITED AC 2017; 219:1589-602. [PMID: 27252453 DOI: 10.1242/jeb.086686] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Echolocation in bats and high-frequency hearing in their insect prey make bats and insects an ideal system for studying the sensory ecology and neuroethology of predator-prey interactions. Here, we review the evolutionary history of bats and eared insects, focusing on the insect order Lepidoptera, and consider the evidence for antipredator adaptations and predator counter-adaptations. Ears evolved in a remarkable number of body locations across insects, with the original selection pressure for ears differing between groups. Although cause and effect are difficult to determine, correlations between hearing and life history strategies in moths provide evidence for how these two variables influence each other. We consider life history variables such as size, sex, circadian and seasonal activity patterns, geographic range and the composition of sympatric bat communities. We also review hypotheses on the neural basis for anti-predator behaviours (such as evasive flight and sound production) in moths. It is assumed that these prey adaptations would select for counter-adaptations in predatory bats. We suggest two levels of support for classifying bat traits as counter-adaptations: traits that allow bats to eat more eared prey than expected based on their availability in the environment provide a low level of support for counter-adaptations, whereas traits that have no other plausible explanation for their origination and maintenance than capturing defended prey constitute a high level of support. Specific predator counter-adaptations include calling at frequencies outside the sensitivity range of most eared prey, changing the pattern and frequency of echolocation calls during prey pursuit, and quiet, or 'stealth', echolocation.
Collapse
Affiliation(s)
- Hannah M Ter Hofstede
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - John M Ratcliffe
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6
| |
Collapse
|
4
|
|
5
|
Abstract
Insect hearing has independently evolved multiple times in the context of intraspecific communication and predator detection by transforming proprioceptive organs into ears. Research over the past decade, ranging from the biophysics of sound reception to molecular aspects of auditory transduction to the neuronal mechanisms of auditory signal processing, has greatly advanced our understanding of how insects hear. Apart from evolutionary innovations that seem unique to insect hearing, parallels between insect and vertebrate auditory systems have been uncovered, and the auditory sensory cells of insects and vertebrates turned out to be evolutionarily related. This review summarizes our current understanding of insect hearing. It also discusses recent advances in insect auditory research, which have put forward insect auditory systems for studying biological aspects that extend beyond hearing, such as cilium function, neuronal signal computation, and sensory system evolution.
Collapse
Affiliation(s)
- Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, D-37077 Göttingen, Germany;
| | - R Matthias Hennig
- Department of Biology, Behavioral Physiology, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany;
| |
Collapse
|
6
|
Nakano R, Takanashi T, Surlykke A. Moth hearing and sound communication. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:111-21. [DOI: 10.1007/s00359-014-0945-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
|
7
|
Zeng J, Xiang N, Jiang L, Jones G, Zheng Y, Liu B, Zhang S. Moth wing scales slightly increase the absorbance of bat echolocation calls. PLoS One 2011; 6:e27190. [PMID: 22096534 PMCID: PMC3212535 DOI: 10.1371/journal.pone.0027190] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/11/2011] [Indexed: 11/19/2022] Open
Abstract
Coevolutionary arms races between predators and prey can lead to a diverse range of foraging and defense strategies, such as countermeasures between nocturnal insects and echolocating bats. Here, we show how the fine structure of wing scales may help moths by slightly increasing sound absorbance at frequencies typically used in bat echolocation. Using four widespread species of moths and butterflies, we found that moth scales are composed of honeycomb-like hollows similar to sound-absorbing material, but these were absent from butterfly scales. Micro-reverberation chamber experiments revealed that moth wings were more absorbent at the frequencies emitted by many echolocating bats (40–60 kHz) than butterfly wings. Furthermore, moth wings lost absorbance at these frequencies when scales were removed, which suggests that some moths have evolved stealth tactics to reduce their conspicuousness to echolocating bats. Although the benefits to moths are relatively small in terms of reducing their target strengths, scales may nonetheless confer survival advantages by reducing the detection distances of moths by bats by 5–6%.
Collapse
Affiliation(s)
- Jinyao Zeng
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, People's Republic of China
| | - Ning Xiang
- School of Architecture, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Lei Jiang
- National Center for Nanoscience and Technology, Beijing, People's Republic of China
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Yongmei Zheng
- National Center for Nanoscience and Technology, Beijing, People's Republic of China
| | - Bingwan Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin, People's Republic of China
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
8
|
Moths produce extremely quiet ultrasonic courtship songs by rubbing specialized scales. Proc Natl Acad Sci U S A 2008; 105:11812-7. [PMID: 18695227 DOI: 10.1073/pnas.0804056105] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insects have evolved a marked diversity of mechanisms to produce loud conspicuous sounds for efficient communication. However, the risk of eavesdropping by competitors and predators is high. Here, we describe a mechanism for producing extremely low-intensity ultrasonic songs (46 dB sound pressure level at 1 cm) adapted for private sexual communication in the Asian corn borer moth, Ostrinia furnacalis. During courtship, the male rubs specialized scales on the wing against those on the thorax to produce the songs, with the wing membrane underlying the scales possibly acting as a sound resonator. The male's song suppresses the escape behavior of the female, thereby increasing his mating success. Our discovery of extremely low-intensity ultrasonic communication may point to a whole undiscovered world of private communication, using "quiet" ultrasound.
Collapse
|
9
|
Triblehorn JD, Ghose K, Bohn K, Moss CF, Yager DD. Free-flight encounters between praying mantids (Parasphendale agrionina) and bats (Eptesicus fuscus). J Exp Biol 2008; 211:555-62. [DOI: 10.1242/jeb.005736] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThrough staged free-flight encounters between echolocating bats and praying mantids, we examined the effectiveness of two potential predator-evasion behaviors mediated by different sensory modalities: (1) power dive responses triggered by bat echolocation detected by the mantis ultrasound-sensitive auditory system, and (2) `last-ditch' maneuvers triggered by bat-generated wind detected by the mantis cercal system. Hearing mantids escaped more often than deafened mantids (76% vs 34%, respectively; hearing conveyed 42%advantage). Hearing mantis escape rates decreased when bat attack sequences contained very rapid increases in pulse repetition rates (escape rates <40%for transition slopes >16 p.p.s. 10 ms–1; escape rates>60% for transition slopes <16 p.p.s. 10 ms–1). This suggests that echolocation attack sequences containing very rapid transitions(>16 p.p.s. 10 ms–1) could circumvent mantis/insect auditory defenses. However, echolocation attack sequences containing such transitions occurred in only 15% of the trials. Since mantis ultrasound-mediated responses are not 100% effective, cercal-mediated evasive behaviors triggered by bat-generated wind could be beneficial as a backup/secondary system. Although deafened mantids with functioning cerci did not escape more often than deafened mantids with deactivated cerci (35%vs 32%, respectively), bats dropped mantids with functioning cerci twice as frequently as mantids with deactivated cerci. This latter result was not statistically reliable due to small sample sizes, since this study was not designed to fully evaluate this result. It is an interesting observation that warrants further investigation, however, especially since these dropped mantids always survived the encounter.
Collapse
Affiliation(s)
- J. D. Triblehorn
- Department of Psychology, University of Maryland, College Park, MD 20742,USA
| | - K. Ghose
- Department of Psychology, University of Maryland, College Park, MD 20742,USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - K. Bohn
- Department of Psychology, University of Maryland, College Park, MD 20742,USA
| | - C. F. Moss
- Department of Psychology, University of Maryland, College Park, MD 20742,USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - D. D. Yager
- Department of Psychology, University of Maryland, College Park, MD 20742,USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
10
|
Abstract
This study identifies the cuticular metathoracic structures in earless cockroaches that are the homologs to the peripheral auditory components in their sister taxon, praying mantids, and defines the nature of the cuticular transition from earless to eared in the Dictyoptera. The single, midline ear of mantids comprises an auditory chamber with complex walls that contain the tympana and chordotonal transduction elements. The corresponding area in cockroaches, between the furcasternum and coxae, has many socketed hairs arranged in discrete fields and the Nerve 7 chordotonal organ, the homolog of the mantis tympanal organ. The Nerve 7 chordotonal organ attaches at the apex of the lateral ventropleurite (LVp), which has the same shape and general structure as an auditory chamber wall. High-speed video shows that when the coxa moves toward the midline, the LVp rotates medially to stimulate socketed hairs, and also moves like a triangular hinge giving the chordotonal organ maximal in-out stimulation. Formation of the mantis auditory chamber from the LVp and adjacent structures would involve only enlargement, a shift toward the midline, and a mild rotation. Almost all proprioceptive function would be lost, which may constitute the major cost of building and maintaining the mantis ear. Isolation from leg movement dictates the position of the mantis ear in the midline and the rigid frame, formed by the cuticular knobs, which protects the chordotonal organs.
Collapse
Affiliation(s)
- David D Yager
- Department of Psychology and Neuroscience, Cognitive Science Program, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
11
|
Soutar AR, Fullard JH. Nocturnal anti-predator adaptations in eared and earless Nearctic Lepidoptera. Behav Ecol 2004. [DOI: 10.1093/beheco/arh103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Abstract
Insects are capable of detecting a broad range of acoustic signals transmitted through air, water, or solids. Auditory sensory organs are morphologically diverse with respect to their body location, accessory structures, and number of sensilla, but remarkably uniform in that most are innervated by chordotonal organs. Chordotonal organs are structurally complex Type I mechanoreceptors that are distributed throughout the insect body and function to detect a wide range of mechanical stimuli, from gross motor movements to air-borne sounds. At present, little is known about how chordotonal organs in general function to convert mechanical stimuli to nerve impulses, and our limited understanding of this process represents one of the major challenges to the study of insect auditory systems today. This report reviews the literature on chordotonal organs innervating insect ears, with the broad intention of uncovering some common structural specializations of peripheral auditory systems, and identifying new avenues for research. A general overview of chordotonal organ ultrastructure is presented, followed by a summary of the current theories on mechanical coupling and transduction in monodynal, mononematic, Type 1 scolopidia, which characteristically innervate insect ears. Auditory organs of different insect taxa are reviewed, focusing primarily on tympanal organs, and with some consideration to Johnston's and subgenual organs. It is widely accepted that insect hearing organs evolved from pre-existing proprioceptive chordotonal organs. In addition to certain non-neural adaptations for hearing, such as tracheal expansion and cuticular thinning, the chordotonal organs themselves may have intrinsic specializations for sound reception and transduction, and these are discussed. In the future, an integrated approach, using traditional anatomical and physiological techniques in combination with new methodologies in immunohistochemistry, genetics, and biophysics, will assist in refining hypotheses on how chordotonal organs function, and, ultimately, lead to new insights into the peripheral mechanisms underlying hearing in insects.
Collapse
Affiliation(s)
- Jayne E Yack
- Department of Biology, College of Natural Sciences, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|