1
|
Takemura K, Motomura T, Takagi Y. Nanoscale Surface Metal-Coating Method without Pretreatment for High-Magnification Biological Observation and Applications. Biomimetics (Basel) 2024; 9:588. [PMID: 39451794 PMCID: PMC11504977 DOI: 10.3390/biomimetics9100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Biospecimen imaging is essential across various fields. In particular, a considerable amount of research has focused on developing pretreatment techniques, ranging from freeze-drying to the use of highly conductive polymers, and on advancements in instrumentation, such as cryogenic electron microscopy. These specialized techniques and equipment have facilitated nanoscale and microscale bioimaging. However, user access to these environments remains limited. This study introduced a novel technique to achieve high conductivity in bioimaging by employing a magnetically controlled sputtering cathode to facilitate low-temperature deposition and low-electron bombardment. This approach allows for the convenient high-magnification observation of highly structured three-dimensional specimens, such as pill bugs and butterfly wings, and fragile specimens, such as single-cell protozoan parasites, using metal deposition only. Furthermore, it is easily accessible in the field of bioimaging because it does not require any pretreatment and enables surface analysis of biospecimens with an electron microscope using only a single pretreatment process. Protozoa, which are microorganisms, were successfully observed at high magnification without structural changes due to thermal denaturation. Furthermore, metallic film deposition and electrochemical signal measurements using these metallic films were achieved in pill bugs.
Collapse
Affiliation(s)
- Kenshin Takemura
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu 841-0052, Saga, Japan;
| | - Taisei Motomura
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu 841-0052, Saga, Japan;
| | - Yuko Takagi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan;
| |
Collapse
|
2
|
Caves EM, Davis AL, Johnsen S. Nanoscale ultrastructures increase the visual conspicuousness of signalling traits in obligate cleaner shrimps. J Exp Biol 2024; 227:jeb248064. [PMID: 39119671 PMCID: PMC11418175 DOI: 10.1242/jeb.248064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Signal theory predicts organisms should evolve signals that are conspicuous to intended receivers in natural signalling environments. Cleaner shrimps remove ectoparasites from reef fish clients and many signal their intent to clean by whipping long, white antennae. As white is a reliably conspicuous colour in aquatic environments, we hypothesized that selection has acted to increase broad-spectrum antennal reflectance in cleaners. Using scanning electron microscopy, optical models and reflectance measurements, we found that the antennae in three obligate cleaner species from two families (Palaemonidae and Lysmatidae) had thick (∼6 µm) chitinous layers or densely packed high refractive index spheres (300-400 nm diameter), which models show increase reflectance (400-700 nm). Two facultative and non-cleaning species had no visible antennae ultrastructure beyond the chitinous exoskeleton. Antennae reflectance was significantly higher in obligate cleaners than in facultative and non-cleaning species. Our results suggest that some obligate cleaners may have evolved ultrastructures that increase the conspicuousness of their antennae as signals.
Collapse
Affiliation(s)
- Eleanor M. Caves
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| | | | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Caves EM, Davis AL, Nowicki S, Johnsen S. Backgrounds and the evolution of visual signals. Trends Ecol Evol 2024; 39:188-198. [PMID: 37802667 DOI: 10.1016/j.tree.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
Color signals which mediate behavioral interactions across taxa and contexts are often thought of as color 'patches' - parts of an animal that appear colorful compared to other parts of that animal. Color patches, however, cannot be considered in isolation because how a color is perceived depends on its visual background. This is of special relevance to the function and evolution of signals because backgrounds give rise to a fundamental tradeoff between color signal detectability and discriminability: as its contrast with the background increases, a color patch becomes more detectable, but discriminating variation in that color becomes more difficult. Thus, the signal function of color patches can only be fully understood by considering patch and background together as an integrated whole.
Collapse
Affiliation(s)
- Eleanor M Caves
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | - Stephen Nowicki
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
4
|
Thayer RC, Patel NH. A meta-analysis of butterfly structural colors: their color range, distribution and biological production. J Exp Biol 2023; 226:jeb245940. [PMID: 37937662 DOI: 10.1242/jeb.245940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Butterfly scales are among the richest natural sources of optical nanostructures, which produce structural color and iridescence. Several recurring nanostructure types have been described, such as ridge multilayers, gyroids and lower lamina thin films. While the optical mechanisms of these nanostructure classes are known, their phylogenetic distributions and functional ranges have not been described in detail. In this Review, we examine a century of research on the biological production of structural colors, including their evolution, development and genetic regulation. We have also created a database of more than 300 optical nanostructures in butterflies and conducted a meta-analysis of the color range, abundance and phylogenetic distribution of each nanostructure class. Butterfly structural colors are ubiquitous in short wavelengths but extremely rare in long wavelengths, especially red. In particular, blue wavelengths (around 450 nm) occur in more clades and are produced by more kinds of nanostructures than other hues. Nanostructure categories differ in prevalence, phylogenetic distribution, color range and brightness. For example, lamina thin films are the least bright; perforated lumen multilayers occur most often but are almost entirely restricted to the family Lycaenidae; and 3D photonic crystals, including gyroids, have the narrowest wavelength range (from about 450 to 550 nm). We discuss the implications of these patterns in terms of nanostructure evolution, physical constraint and relationships to pigmentary color. Finally, we highlight opportunities for future research, such as analyses of subadult and Hesperid structural colors and the identification of genes that directly build the nanostructures, with relevance for biomimetic engineering.
Collapse
Affiliation(s)
- Rachel C Thayer
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
5
|
Lemcoff T, Alus L, Haataja JS, Wagner A, Zhang G, Pavan MJ, Yallapragada VJ, Vignolini S, Oron D, Schertel L, Palmer BA. Brilliant whiteness in shrimp from ultra-thin layers of birefringent nanospheres. NATURE PHOTONICS 2023; 17:485-493. [PMID: 37287680 PMCID: PMC10241642 DOI: 10.1038/s41566-023-01182-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/24/2023] [Indexed: 06/09/2023]
Abstract
A fundamental question regarding light scattering is how whiteness, generated from multiple scattering, can be obtained from thin layers of materials. This challenge arises from the phenomenon of optical crowding, whereby, for scatterers packed with filling fractions higher than ~30%, reflectance is drastically reduced due to near-field coupling between the scatterers. Here we show that the extreme birefringence of isoxanthopterin nanospheres overcomes optical crowding effects, enabling multiple scattering and brilliant whiteness from ultra-thin chromatophore cells in shrimp. Strikingly, numerical simulations reveal that birefringence, originating from the spherulitic arrangement of isoxanthopterin molecules, enables intense broadband scattering almost up to the maximal packing for random spheres. This reduces the thickness of material required to produce brilliant whiteness, resulting in a photonic system that is more efficient than other biogenic or biomimetic white materials which operate in the lower refractive index medium of air. These results highlight the importance of birefringence as a structural variable to enhance the performance of such materials and could contribute to the design of biologically inspired replacements for artificial scatterers like titanium dioxide.
Collapse
Affiliation(s)
- Tali Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lotem Alus
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Johannes S. Haataja
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Applied Physics, Aalto University School of Science, Espoo, Finland
| | - Avital Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gan Zhang
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Present Address: College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Mariela J. Pavan
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Dan Oron
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Lukas Schertel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Physics, University of Fribourg, Fribourg, Switzerland
| | - Benjamin A. Palmer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
6
|
Davis A, Zipple MN, Diaz D, Peters S, Nowicki S, Johnsen S. Influence of visual background on discrimination of signal-relevant colours in zebra finches ( Taeniopygia guttata). Proc Biol Sci 2022; 289:20220756. [PMID: 35673868 PMCID: PMC9174715 DOI: 10.1098/rspb.2022.0756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Colour signals of many animals are surrounded by a high-contrast achromatic background, but little is known about the possible function of this arrangement. For both humans and non-human animals, the background colour surrounding a colour stimulus affects the perception of that stimulus, an effect that can influence detection and discrimination of colour signals. Specifically, high colour contrast between the background and two given colour stimuli makes discrimination more difficult. However, it remains unclear how achromatic background contrast affects signal discrimination in non-human animals. Here, we test whether achromatic contrast between signal-relevant colours and an achromatic background affects the ability of zebra finches to discriminate between those colours. Using an odd-one-out paradigm and generalized linear mixed models, we found that higher achromatic contrast with the background, whether positive or negative, decreases the ability of zebra finches to discriminate between target and non-target stimuli. This effect is particularly strong when colour distances are small (less than 4 ΔS) and Michelson achromatic contrast with the background is high (greater than 0.5). We suggest that researchers should consider focal colour patches and their backgrounds as collectively comprising a signal, rather than focusing on solely the focal colour patch itself.
Collapse
Affiliation(s)
- Alexander Davis
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Matthew N. Zipple
- Department of Biology, Duke University, Durham, NC 27708, USA,Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Danae Diaz
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Susan Peters
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Stephen Nowicki
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
7
|
Wee JLQ, Das Banerjee T, Prakash A, Seah KS, Monteiro A. Distal-less and spalt are distal organisers of pierid wing patterns. EvoDevo 2022; 13:12. [PMID: 35659745 PMCID: PMC9164424 DOI: 10.1186/s13227-022-00197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
Two genes, Distal-less (Dll) and spalt (sal), are known to be involved in establishing nymphalid butterfly wing patterns. They function in several ways: in the differentiation of the eyespot’s central signalling cells, or foci; in the differentiation of the surrounding black disc; in overall scale melanisation (Dll); and in elaborating marginal patterns, such as parafocal elements. However, little is known about the functions of these genes in the development of wing patterns in other butterfly families. Here, we study the expression and function of Dll and sal in the development of spots and other melanic wing patterns of the Indian cabbage white, Pieris canidia, a pierid butterfly. In P. canidia, both Dll and Sal proteins are expressed in the scale-building cells at the wing tips, in chevron patterns along the pupal wing margins, and in areas of future scale melanisation. Additionally, Sal alone is expressed in the future black spots. CRISPR knockouts of Dll and sal showed that each gene is required for the development of melanic wing pattern elements, and repressing pteridine granule formation, in the areas where they are expressed. We conclude that both genes likely play ancestral roles in organising distal butterfly wing patterns, across pierid and nymphalid butterflies, but are unlikely to be differentiating signalling centres in pierids black spots. The genetic and developmental mechanisms that set up the location of spots and eyespots are likely distinct in each lineage.
Collapse
Affiliation(s)
- Jocelyn Liang Qi Wee
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S2 01-03, Singapore, 117558, Singapore.
| | - Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S2 01-03, Singapore, 117558, Singapore
| | - Anupama Prakash
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S2 01-03, Singapore, 117558, Singapore
| | - Kwi Shan Seah
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S2 01-03, Singapore, 117558, Singapore
| | - Antonia Monteiro
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S2 01-03, Singapore, 117558, Singapore. .,Yale-NUS College, College Ave West, Singapore, 138527, Singapore.
| |
Collapse
|
8
|
Dyba K, Wąsala R, Piekarczyk J, Gabała E, Gawlak M, Jasiewicz J, Ratajkiewicz H. Reflectance spectroscopy and machine learning as a tool for the categorization of twin species based on the example of the Diachrysia genus. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121058. [PMID: 35220048 DOI: 10.1016/j.saa.2022.121058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
In our work we used noninvasive point reflectance spectroscopy in the range from 400 to 2100 nm coupled with machine learning to study scales on the brown and golden iridescent areas on the dorsal side of the forewing of Diachrysia chrysitis and D. stenochrysis. We used our approach to distinguish between these species of moths. The basis for the study was a statistically significant collection of 95 specimens identified based on morphological feature and gathered during 23 years in Poland. The numerical part of an experiment included two independent discriminant analyses: stochastic and deterministic. The more sensitive stochastic approach achieved average compliance with the species identification made by entomologists at the level of 99-100%. It demonstrated high stability against the different configurations of training and validation sets, hence strong predictors of Diachrysia siblings distinctiveness. Both methods resulted in the same small set of relevant features, where minimal fully discriminating subsets of wavelengths were three for glass scales on the golden area and four for the brown. The differences between species in scales primarily concern their major components and ultrastructure. In melanin-absent glass scales, this is mainly chitin configuration, while in melanin-present brown scales, melanin reveals as an additional factor.
Collapse
Affiliation(s)
- Krzysztof Dyba
- Institute of Geoecology and Geoinformation, Adam Mickiewicz University in Poznań, Poland
| | - Roman Wąsala
- Department of Entomology and Environment Protection, Poznań University of Life Sciences, Poland
| | - Jan Piekarczyk
- Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University in Poznań, Poland
| | - Elżbieta Gabała
- Research Centre of Quarantine, Invasive and Genetically Modified Organisms, Institute of Plant Protection - National Research Institute, Poland
| | - Magdalena Gawlak
- Research Centre of Quarantine, Invasive and Genetically Modified Organisms, Institute of Plant Protection - National Research Institute, Poland
| | - Jarosław Jasiewicz
- Institute of Geoecology and Geoinformation, Adam Mickiewicz University in Poznań, Poland.
| | - Henryk Ratajkiewicz
- Department of Entomology and Environment Protection, Poznań University of Life Sciences, Poland.
| |
Collapse
|
9
|
Stella D, Kleisner K. Visible beyond Violet: How Butterflies Manage Ultraviolet. INSECTS 2022; 13:insects13030242. [PMID: 35323542 PMCID: PMC8955501 DOI: 10.3390/insects13030242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022]
Abstract
Ultraviolet (UV) means ‘beyond violet’ (from Latin ‘ultra’, meaning ‘beyond’), whereby violet is the colour with the highest frequencies in the ‘visible’ light spectrum. By ‘visible’ we mean human vision, but, in comparison to many other organisms, human visual perception is rather limited in terms of the wavelengths it can perceive. Still, this is why communication in the UV spectrum is often called hidden, although it most likely plays an important role in communicating various kinds of information among a wide variety of organisms. Since Silberglied’s revolutionary Communication in the Ultraviolet, comprehensive studies on UV signals in a wide list of genera are lacking. This review investigates the significance of UV reflectance (and UV absorption)—a feature often neglected in intra- and interspecific communication studies—mainly in Lepidoptera. Although the text focuses on various butterfly families, links and connections to other animal groups, such as birds, are also discussed in the context of ecology and the evolution of species. The basic mechanisms of UV colouration and factors shaping the characteristics of UV patterns are also discussed in a broad context of lepidopteran communication.
Collapse
Affiliation(s)
- David Stella
- Global Change Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Philosophy and History of Science, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Karel Kleisner
- Department of Philosophy and History of Science, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| |
Collapse
|
10
|
Liang Y, Lin H, Lin S, Wu J, Li W, Meng F, Yang Y, Huang X, Jia B, Kivshar Y. Hybrid anisotropic plasmonic metasurfaces with multiple resonances of focused light beams. NANO LETTERS 2021; 21:8917-8923. [PMID: 34459611 DOI: 10.1021/acs.nanolett.1c02751] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasmonic metasurfaces supporting collective lattice resonances have attracted increasing interest due to their exciting properties of strong spatial coherence and enhanced light-matter interaction. Although the focusing of light by high-numerical-aperture (NA) objectives provides an essential way to boost the field intensities, it remains challenging to excite high-quality resonances by using high-NA objectives due to strong angular dispersion. Here, we address this challenge by employing the physics of bound states in the continuum (BICs). We design a novel anisotropic plasmonic metasurface combining a two-dimensional lattice of high-aspect-ratio pillars with a one-dimensional plasmonic grating, fabricated by a two-photon polymerization technique and gold sputtering. We demonstrate experimentally multiple resonances with absorption amplitudes exceeding 80% at mid-IR using an NA = 0.4 reflective objective. This is enabled by the weak angular dispersion of quasi-BIC resonances in such hybrid plasmonic metasurfaces. Our results suggest novel strategies for designing photonic devices that manipulate focused light with a strong field concentration.
Collapse
Affiliation(s)
- Yao Liang
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Central Territoty 2601, Australia
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Han Lin
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Shirong Lin
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jiayang Wu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Weibai Li
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Fei Meng
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Yunyi Yang
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Xiaodong Huang
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Baohua Jia
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Central Territoty 2601, Australia
| |
Collapse
|
11
|
Affiliation(s)
- Avital Wagner
- Department of Chemistry Ben-Gurion University of the Negev P.O.B 653 Beer-Sheva 84105 Israel
| | - Qiang Wen
- Department of Chemistry Ben-Gurion University of the Negev P.O.B 653 Beer-Sheva 84105 Israel
| | - Noam Pinsk
- Department of Chemistry Ben-Gurion University of the Negev P.O.B 653 Beer-Sheva 84105 Israel
| | - Benjamin A. Palmer
- Department of Chemistry Ben-Gurion University of the Negev P.O.B 653 Beer-Sheva 84105 Israel
| |
Collapse
|
12
|
Andrade P, Carneiro M. Pterin-based pigmentation in animals. Biol Lett 2021; 17:20210221. [PMID: 34403644 PMCID: PMC8370806 DOI: 10.1098/rsbl.2021.0221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Pterins are one of the major sources of bright coloration in animals. They are produced endogenously, participate in vital physiological processes and serve a variety of signalling functions. Despite their ubiquity in nature, pterin-based pigmentation has received little attention when compared to other major pigment classes. Here, we summarize major aspects relating to pterin pigmentation in animals, from its long history of research to recent genomic studies on the molecular mechanisms underlying its evolution. We argue that pterins have intermediate characteristics (endogenously produced, typically bright) between two well-studied pigment types, melanins (endogenously produced, typically cryptic) and carotenoids (dietary uptake, typically bright), providing unique opportunities to address general questions about the biology of coloration, from the mechanisms that determine how different types of pigmentation evolve to discussions on honest signalling hypotheses. Crucial gaps persist in our knowledge on the molecular basis underlying the production and deposition of pterins. We thus highlight the need for functional studies on systems amenable for laboratory manipulation, but also on systems that exhibit natural variation in pterin pigmentation. The wealth of potential model species, coupled with recent technological and analytical advances, make this a promising time to advance research on pterin-based pigmentation in animals.
Collapse
Affiliation(s)
- Pedro Andrade
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Miguel Carneiro
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
13
|
Cuticular modified air sacs underlie white coloration in the olive fruit fly, Bactrocera oleae. Commun Biol 2021; 4:881. [PMID: 34272466 PMCID: PMC8285419 DOI: 10.1038/s42003-021-02396-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/08/2021] [Indexed: 11/08/2022] Open
Abstract
Here, the ultrastructure and development of the white patches on thorax and head of Bactrocera oleae are analysed using scanning electron microscopy, transmission electron microscopy, and fluorescence microscopy. Based on these analyses and measurements of patch reflectance spectra, we infer that white patches are due to modified air sacs under transparent cuticle. These air sacs show internal arborisations with beads in an empty space, constituting a three-dimensional photonic solid responsible for light scattering. The white patches also show UV-induced blue autofluorescence due to the air sac resilin content. To the best of our knowledge, this research describes a specialized function for air sacs and the first observation of structural color produced by tracheal structures located under transparent cuticles in insects. Sexual dimorphism in the spectral emission also lays a structural basis for further investigations on the biological role of white patches in B. oleae.
Collapse
|
14
|
Jacucci G, Schertel L, Zhang Y, Yang H, Vignolini S. Light Management with Natural Materials: From Whiteness to Transparency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001215. [PMID: 32700346 PMCID: PMC11468650 DOI: 10.1002/adma.202001215] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 05/21/2023]
Abstract
The possibility of structuring material at the nanoscale is essential to control light-matter interactions and therefore fabricate next-generation paints and coatings. In this context, nature can serve not only as a source of inspiration for the design of such novel optical structures, but also as a primary source of materials. Here, some of the strategies used in nature to optimize light-matter interaction are reviewed and some of the recent progress in the production of optical materials made solely of plant-derived building blocks is highlighted. In nature, nano- to micrometer-sized structured materials made from biopolymers are at the origin of most of the light-transport effects. How natural photonic systems manage light scattering and what can be learned from plants and animals to produce photonic materials from biopolymers are discussed. Tuning the light-scattering properties via structural variations allows a wide range of appearances to be obtained, from whiteness to transparency, using the same renewable and biodegradable building blocks. Here, various transparent and white cellulose-based materials produced so far are highlighted.
Collapse
Affiliation(s)
- Gianni Jacucci
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Lukas Schertel
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Yating Zhang
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Han Yang
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Silvia Vignolini
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
15
|
Liu J, Chen Z, Xiao Y, Asano T, Li S, Peng L, Chen E, Zhang J, Li W, Zhang Y, Tong X, Kadono-Okuda K, Zhao P, He N, Arunkumar KP, Gopinathan KP, Xia Q, Willis JH, Goldsmith MR, Mita K. Lepidopteran wing scales contain abundant cross-linked film-forming histidine-rich cuticular proteins. Commun Biol 2021; 4:491. [PMID: 33888855 PMCID: PMC8062583 DOI: 10.1038/s42003-021-01996-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
Scales are symbolic characteristic of Lepidoptera; however, nothing is known about the contribution of cuticular proteins (CPs) to the complex patterning of lepidopteran scales. This is because scales are resistant to solubilization, thus hindering molecular studies. Here we succeeded in dissolving developing wing scales from Bombyx mori, allowing analysis of their protein composition. We identified a distinctive class of histidine rich (His-rich) CPs (6%-45%) from developing lepidopteran scales by LC-MS/MS. Functional studies using RNAi revealed CPs with different histidine content play distinct and critical roles in constructing the microstructure of the scale surface. Moreover, we successfully synthesized films in vitro by crosslinking a 45% His-rich CP (BmorCPR152) with laccase2 using N-acetyl- dopamine or N-β-alanyl-dopamine as the substrate. This molecular study of scales provides fundamental information about how such a fine microstructure is constructed and insights into the potential application of CPs as new biomaterials.
Collapse
Affiliation(s)
- Jianqiu Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhiwei Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yingdan Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Tsunaki Asano
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Shenglong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Li Peng
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Enxiang Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Jiwei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Wanshun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Xiaoling Tong
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Keiko Kadono-Okuda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Kallare P Arunkumar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
- Central Muga Eri Research and Training Institute, (CMER&TI), Central Silk Board, Jorhat, India
| | | | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Marian R Goldsmith
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
- Biological Science Research Center, Southwest University, Chongqing, China.
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA.
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
- Biological Science Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
16
|
Osotsi MI, Zhang W, Zada I, Gu J, Liu Q, Zhang D. Butterfly wing architectures inspire sensor and energy applications. Natl Sci Rev 2021; 8:nwaa107. [PMID: 34691587 PMCID: PMC8288439 DOI: 10.1093/nsr/nwaa107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Natural biological systems are constantly developing efficient mechanisms to counter adverse effects of increasing human population and depleting energy resources. Their intelligent mechanisms are characterized by the ability to detect changes in the environment, store and evaluate information, and respond to external stimuli. Bio-inspired replication into man-made functional materials guarantees enhancement of characteristics and performance. Specifically, butterfly architectures have inspired the fabrication of sensor and energy materials by replicating their unique micro/nanostructures, light-trapping mechanisms and selective responses to external stimuli. These bio-inspired sensor and energy materials have shown improved performance in harnessing renewable energy, environmental remediation and health monitoring. Therefore, this review highlights recent progress reported on the classification of butterfly wing scale architectures and explores several bio-inspired sensor and energy applications.
Collapse
|
17
|
Dou S, Xu H, Zhao J, Zhang K, Li N, Lin Y, Pan L, Li Y. Bioinspired Microstructured Materials for Optical and Thermal Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000697. [PMID: 32686250 DOI: 10.1002/adma.202000697] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Precise optical and thermal regulatory systems are found in nature, specifically in the microstructures on organisms' surfaces. In fact, the interaction between light and matter through these microstructures is of great significance to the evolution and survival of organisms. Furthermore, the optical regulation by these biological microstructures is engineered owing to natural selection. Herein, the role that microstructures play in enhancing optical performance or creating new optical properties in nature is summarized, with a focus on the regulation mechanisms of the solar and infrared spectra emanating from the microstructures and their role in the field of thermal radiation. The causes of the unique optical phenomena are discussed, focusing on prevailing characteristics such as high absorption, high transmission, adjustable reflection, adjustable absorption, and dynamic infrared radiative design. On this basis, the comprehensive control performance of light and heat integrated by this bioinspired microstructure is introduced in detail and a solution strategy for the development of low-energy, environmentally friendly, intelligent thermal control instruments is discussed. In order to develop such an instrument, a microstructural design foundation is provided.
Collapse
Affiliation(s)
- Shuliang Dou
- National Key Laboratory of Science and Technology on Advanced Composites, Harbin Institute of Technology, Harbin, 150006, China
| | - Hongbo Xu
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiupeng Zhao
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ke Zhang
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Na Li
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yipeng Lin
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Pan
- National Key Laboratory of Science and Technology on Advanced Composites, Harbin Institute of Technology, Harbin, 150006, China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
18
|
Dong X, Zhao H, Li J, Tian Y, Zeng H, Ramos MA, Hu TS, Xu Q. Progress in Bioinspired Dry and Wet Gradient Materials from Design Principles to Engineering Applications. iScience 2020; 23:101749. [PMID: 33241197 PMCID: PMC7672307 DOI: 10.1016/j.isci.2020.101749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nature does nothing in vain. Through millions of years of revolution, living organisms have evolved hierarchical and anisotropic structures to maximize their survival in complex and dynamic environments. Many of these structures are intrinsically heterogeneous and often with functional gradient distributions. Understanding the convergent and divergent gradient designs in the natural material systems may lead to a new paradigm shift in the development of next-generation high-performance bio-/nano-materials and devices that are critically needed in energy, environmental remediation, and biomedical fields. Herein, we review the basic design principles and highlight some of the prominent examples of gradient biological materials/structures discovered over the past few decades. Interestingly, despite the anisotropic features in one direction (i.e., in terms of gradient compositions and properties), these natural structures retain certain levels of symmetry, including point symmetry, axial symmetry, mirror symmetry, and 3D symmetry. We further demonstrate the state-of-the-art fabrication techniques and procedures in making the biomimetic counterparts. Some prototypes showcase optimized properties surpassing those seen in the biological model systems. Finally, we summarize the latest applications of these synthetic functional gradient materials and structures in robotics, biomedical, energy, and environmental fields, along with their future perspectives. This review may stimulate scientists, engineers, and inventors to explore this emerging and disruptive research methodology and endeavors.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Hong Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiapeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yu Tian
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Melvin A Ramos
- Department of Mechanical Engineering, California State University, Los Angeles, CA 90032, USA
| | - Travis Shihao Hu
- Department of Mechanical Engineering, California State University, Los Angeles, CA 90032, USA
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
19
|
Mouchet SR, Luke S, McDonald LT, Vukusic P. Optical costs and benefits of disorder in biological photonic crystals. Faraday Discuss 2020; 223:9-48. [PMID: 33000817 DOI: 10.1039/d0fd00101e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photonic structures in ordered, quasi-ordered or disordered forms have evolved across many different animal and plant systems. They can produce complex and often functional optical responses through coherent and incoherent scattering processes, often too, in combination with broadband or narrowband absorbing pigmentation. Interestingly, these systems appear highly tolerant of faults in their photonic structures, with imperfections in their structural order appearing not to impact, discernibly, the systems' optical signatures. The extent to which any such biological system deviates from presenting perfect structural order can dictate the optical properties of that system and, thereby, the optical properties that system delivers. However, the nature and extent of the optical costs and benefits of imperfect order in biological systems demands further elucidation. Here, we identify the extent to which biological photonic systems are tolerant of defects and imperfections. Certainly, it is clear that often significant inherent variations in the photonic structures of these systems, for instance a relatively broad distribution of lattice constants, can consistently produce what appear to be effective visual appearances and optical performances. In this article, we review previously investigated biological photonic systems that present ordered, quasi-ordered or disordered structures. We discuss the form and nature of the optical behaviour of these structures, focusing particularly on the associated optical costs and benefits surrounding the extent to which their structures deviate from what might be considered ideal systems. Then, through detailed analyses of some well-known 1D and 2D structurally coloured systems, we analyse one of the common manifestations of imperfect order, namely, the extent and nature of positional disorder in the systems' spatial distribution of layers and scattering centres. We use these findings to inform optical modelling that presents a quantitative and qualitative description of the optical costs and benefits of such positional disorder among ordered and quasi-ordered 1D and 2D photonic systems. As deviation from perfectly ordered structures invariably limits the performance of technology-oriented synthetic photonic processes, we suggest that the use of bio-inspired fault tolerance principles would add value to applied photonic technologies.
Collapse
Affiliation(s)
- Sébastien R Mouchet
- School of Physics, University of Exeter, Physics Building, Stocker Road, Exeter EX4 4QL, UK. and Department of Physics, Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Stephen Luke
- School of Physics, University of Exeter, Physics Building, Stocker Road, Exeter EX4 4QL, UK.
| | - Luke T McDonald
- School of Physics, University of Exeter, Physics Building, Stocker Road, Exeter EX4 4QL, UK.
| | - Pete Vukusic
- School of Physics, University of Exeter, Physics Building, Stocker Road, Exeter EX4 4QL, UK.
| |
Collapse
|
20
|
|
21
|
Ren J, Wang Y, Yao Y, Wang Y, Fei X, Qi P, Lin S, Kaplan DL, Buehler MJ, Ling S. Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chem Rev 2019; 119:12279-12336. [DOI: 10.1021/acs.chemrev.9b00416] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yu Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ping Qi
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Shihui Lin
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
22
|
Mishra M, Rathore V, Sahu S, Sahoo H. The contribution of nanostructures towards the wing patterning of yellow Catopsilia pomona. How it differs from the lime? Microscopy (Oxf) 2019; 68:289-300. [PMID: 30839060 DOI: 10.1093/jmicro/dfz012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/06/2019] [Indexed: 11/12/2022] Open
Abstract
Polyphenism, an adaptation to survive throughout the year, is shown by many butterflies including Catopsilia pomona. With the variation of seasons, different morphs were found. Among all the morphs, lime exists throughout the year whereas the yellow one is available only in the winter season. The current study deciphers the colouration mechanism of yellow morph using various microscopic and spectroscopic techniques. The scanning electron microscopy analysis reveals various types of scales on the dorsal as well as the ventral side. The shape of the cover scale varies from region to region. The fine structural arrangement of the scale like window, ridge, microrib, crossrib and pigments vary throughout the wing. The pigment present in the wing is pterin as evidenced from the shape and its isolation technique. Absorption spectroscopy further confirms the presence of various types of pterin within the wing. Scanning electron microscopy discloses the dense amount of pigments within the wing. The fine structural arrangement of the wing of yellow C. pomona is compared with the yellow region of the lime C. pomona. All together, the current study describes the fine structural arrangement of the wing of yellow C. pomona and the various types of pterin which contribute towards the wing colouration. The advantage of yellow morph over lime is also discussed in this paper.
Collapse
Affiliation(s)
- Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Rourkela, Rourkela, Odisha, India
| | - Varsha Rathore
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Rourkela, Rourkela, Odisha, India
| | - Swetapadma Sahu
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Rourkela, Rourkela, Odisha, India
| | - Harekrushna Sahoo
- Biophysical Chemistry Lab, Department of Chemistry, National Institute of Rourkela, Rourkela, Odisha, India
| |
Collapse
|
23
|
Fenner J, Rodriguez-Caro L, Counterman B. Plasticity and divergence in ultraviolet reflecting structures on Dogface butterfly wings. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 51:14-22. [PMID: 31176003 DOI: 10.1016/j.asd.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The vast diversity of animal coloration is generated through a combination of pigment and structural colors. These colors can greatly influence the fitness and life history of an organism. Butterflies and their wing colors are an excellent model to study how these colors can impact the development and success of an organism. In this study, we explore species differences in structurally-based ultraviolet coloration in the Zerene butterfly. We show clear species differences in ultraviolet (UV) pattern and reflectance spectra. By varying larval diet, we show evidence for developmental plasticity in the structure and organization of UV reflecting scales in Zerene cesonia. We further show that feeding the larval host plant of Zerene eurydice to Z. cesonia does not result in greater similarity in scale structure or UV coloration to the sister species. These results not only demonstrate a connection between plasticity in a male ornamentation, UV wing pattern, and larval resource acquisition, but also identify candidate structural and organizational changes in wing scales responsible for the trait variation.
Collapse
Affiliation(s)
- Jennifer Fenner
- Department of Biological Sciences, Mississippi State University, MS, 39762, United States.
| | - Luis Rodriguez-Caro
- Department of Biological Sciences, Mississippi State University, MS, 39762, United States
| | - Brian Counterman
- Department of Biological Sciences, Mississippi State University, MS, 39762, United States
| |
Collapse
|
24
|
Sharma S, Saini SK, Nair RV. A versatile micro-reflectivity setup for probing the optical properties of photonic nanostructures. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:023103. [PMID: 30831714 DOI: 10.1063/1.5065575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
The spatial- and spectral-dependent optical reflectivity measurements are essential to characterize various natural as well as artificial micron-scale photonic nanostructures. However, it is onerous to measure spatially and spectrally resolved reflectivity values from such photonic nanostructures due to their size limitations. Here, we discuss the development of a versatile micro-reflectivity setup with an in situ optical microscope combined with high-resolution actuators to measure the reflectivity from areas as small as 25 × 25 µm2. We illustrate the reflectivity measurements from natural as well as artificially prepared ordered and disordered photonic nanostructures. The optical features that are hidden in the conventional reflectivity measurements are clearly resolved using the micro-reflectivity measurements. The proposed setup is also capable of measuring the polarization-dependent reflectivity and transmission of light.
Collapse
Affiliation(s)
- Sachin Sharma
- Laboratory for Nano-Scale Optics and Meta-Materials (LaNOM), Department of Physics, Indian Institute of Technology Ropar,Rupnagar, Punjab 140 001, India
| | - Sudhir Kumar Saini
- Laboratory for Nano-Scale Optics and Meta-Materials (LaNOM), Department of Physics, Indian Institute of Technology Ropar,Rupnagar, Punjab 140 001, India
| | - Rajesh V Nair
- Laboratory for Nano-Scale Optics and Meta-Materials (LaNOM), Department of Physics, Indian Institute of Technology Ropar,Rupnagar, Punjab 140 001, India
| |
Collapse
|
25
|
Mishra M, Chakraborty I, Basu S. A study of the role of vision in the foraging behaviour of the pyrrhocorid bug Antilochus conquebertii (Insecta; Hemiptera; Pyrrhocoridae). INVERTEBRATE NEUROSCIENCE 2019; 19:2. [PMID: 30603776 DOI: 10.1007/s10158-018-0222-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
Our study aims to describe (1) external morphology of the compound eye of Antilochus conquebertii, (2) postembryonic changes involving the eye's shape and size and (3) behaviour of the animal with respect to the organization of the compound eye. With each moult of the insect, the structural units of the compound eye increase in size as well as the number, resulting in an overall increase in eye size. The resolution of the adult eye is better than the young one. The adult possesses UV and polarization sensitivity in its eye. Parallel to the changes of the eye the behaviour of the adult animal changes, rendering it increasingly nocturnal and less active in under illuminated conditions. The current study describes the eye and its functional relationship with the behaviour of the animal at the nymphal and adult developmental stage.
Collapse
Affiliation(s)
- Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | | | - Srirupa Basu
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India
| |
Collapse
|
26
|
Ghosh S, Mishra M. Fine nanostructural variation in the wing pattern of a moth Chiasmia eleonora Cramer (1780). J Biosci 2018; 43:673-684. [PMID: 30207313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Butterflies and moths possess diverse patterns on their wings. Butterflies employ miscellaneous colour in the wings whereas moths use a combination of dull colours like white, grey, brown and black for the patterning of their wings. The exception is some of the toxic diurnal moths which possess bright wing colouration. Moths possess an obscure pattern in the dorsal part of the wings which may be a line, zigzag or swirl. Such patterns help in camouflage during resting period. Thus, the dorsal wing pattern of the moth is used for both intra- as well as inter-specific signal communication. Chiasmia eleonora is a nocturnal moth of greyish black colouration. The dorsal hindwing possesses yellow and black colour patches. A whitecoloured oblique line crosses both left and right fore- and hindwings to form a V-shaped pattern across the dorsal wing. This V-shaped pattern possesses a UV signal. Closer to the body, the colour appears darker, which fades towards the margin. The fine nanostructural variation is observed throughout the wings. This study elucidates the wing pattern of the geometrid moth C. eleonora using high-resolution microscopy techniques that has not been described in previous studies.
Collapse
Affiliation(s)
- Shaunak Ghosh
- Department of Biotechnology, Heritage Institute of Technology, Chowbaga Road, Anandapur, P.O. East Kolkata Township, Kolkata, West Bengal 700107, India
| | | |
Collapse
|
27
|
Ghosh S, Mishra M. Fine nanostructural variation in the wing pattern of a moth Chiasmia eleonora Cramer (1780). J Biosci 2018. [DOI: 10.1007/s12038-018-9793-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Shi NN, Tsai CC, Carter MJ, Mandal J, Overvig AC, Sfeir MY, Lu M, Craig CL, Bernard GD, Yang Y, Yu N. Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization. LIGHT, SCIENCE & APPLICATIONS 2018; 7:37. [PMID: 30839604 PMCID: PMC6107007 DOI: 10.1038/s41377-018-0033-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 05/20/2023]
Abstract
Broadband high reflectance in nature is often the result of randomly, three-dimensionally structured materials. This study explores unique optical properties associated with one-dimensional nanostructures discovered in silk cocoon fibers of the comet moth, Argema mittrei. The fibers are populated with a high density of air voids randomly distributed across the fiber cross-section but are invariant along the fiber. These filamentary air voids strongly scatter light in the solar spectrum. A single silk fiber measuring ~50 μm thick can reflect 66% of incoming solar radiation, and this, together with the fibers' high emissivity of 0.88 in the mid-infrared range, allows the cocoon to act as an efficient radiative-cooling device. Drawing inspiration from these natural radiative-cooling fibers, biomimetic nanostructured fibers based on both regenerated silk fibroin and polyvinylidene difluoride are fabricated through wet spinning. Optical characterization shows that these fibers exhibit exceptional optical properties for radiative-cooling applications: nanostructured regenerated silk fibers provide a solar reflectivity of 0.73 and a thermal emissivity of 0.90, and nanostructured polyvinylidene difluoride fibers provide a solar reflectivity of 0.93 and a thermal emissivity of 0.91. The filamentary air voids lead to highly directional scattering, giving the fibers a highly reflective sheen, but more interestingly, they enable guided optical modes to propagate along the fibers through transverse Anderson localization. This discovery opens up the possibility of using wild silkmoth fibers as a biocompatible and bioresorbable material for optical signal and image transport.
Collapse
Affiliation(s)
- Norman Nan Shi
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 USA
| | - Cheng-Chia Tsai
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 USA
| | - Michael J. Carter
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 USA
| | - Jyotirmoy Mandal
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 USA
| | - Adam C. Overvig
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 USA
| | - Matthew Y. Sfeir
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 USA
| | - Ming Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 USA
| | - Catherine L. Craig
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138 USA
| | - Gary D. Bernard
- Department of Electrical Engineering, University of Washington, Seattle, WA 98195 USA
| | - Yuan Yang
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 USA
| | - Nanfang Yu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 USA
| |
Collapse
|
29
|
Melanin Pathway Genes Regulate Color and Morphology of Butterfly Wing Scales. Cell Rep 2018; 24:56-65. [DOI: 10.1016/j.celrep.2018.05.092] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/26/2018] [Accepted: 05/29/2018] [Indexed: 02/03/2023] Open
|
30
|
Schroeder TBH, Houghtaling J, Wilts BD, Mayer M. It's Not a Bug, It's a Feature: Functional Materials in Insects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705322. [PMID: 29517829 DOI: 10.1002/adma.201705322] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/15/2017] [Indexed: 05/25/2023]
Abstract
Over the course of their wildly successful proliferation across the earth, the insects as a taxon have evolved enviable adaptations to their diverse habitats, which include adhesives, locomotor systems, hydrophobic surfaces, and sensors and actuators that transduce mechanical, acoustic, optical, thermal, and chemical signals. Insect-inspired designs currently appear in a range of contexts, including antireflective coatings, optical displays, and computing algorithms. However, as over one million distinct and highly specialized species of insects have colonized nearly all habitable regions on the planet, they still provide a largely untapped pool of unique problem-solving strategies. With the intent of providing materials scientists and engineers with a muse for the next generation of bioinspired materials, here, a selection of some of the most spectacular adaptations that insects have evolved is assembled and organized by function. The insects presented display dazzling optical properties as a result of natural photonic crystals, precise hierarchical patterns that span length scales from nanometers to millimeters, and formidable defense mechanisms that deploy an arsenal of chemical weaponry. Successful mimicry of these adaptations may facilitate technological solutions to as wide a range of problems as they solve in the insects that originated them.
Collapse
Affiliation(s)
- Thomas B H Schroeder
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Jared Houghtaling
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| |
Collapse
|
31
|
Nixon MR, Orr AG, Vukusic P. Covert linear polarization signatures from brilliant white two-dimensional disordered wing structures of the phoenix damselfly. J R Soc Interface 2018; 14:rsif.2017.0036. [PMID: 28566511 DOI: 10.1098/rsif.2017.0036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/08/2017] [Indexed: 11/12/2022] Open
Abstract
The damselfly Pseudolestes mirabilis reflects brilliant white on the ventral side of its hindwings and a copper-gold colour on the dorsal side. Unlike many previous investigations of odonate wings, in which colour appearances arise either from multilayer interference or from wing-membrane pigmentation, the whiteness on the wings of P. mirabilis results from light scattered by a specialized arrangement of flattened waxy fibres and the copper-gold colour is produced by pigment-based filtering of this light scatter. The waxy fibres responsible for this optical signature effectively form a structure that is disordered in two dimensions and this also gives rise to distinct optical linear polarization. It is a structure that provides a mechanism enabling P. mirabilis to display its bright wing colours efficiently for territorial signalling, both passively while perched, in which the sunlit copper-gold upperside is presented against a highly contrasting background of foliage, and actively in territorial contests in which the white underside is also presented. It also offers a template for biomimetic high-intensity broadband reflectors that have a pronounced polarization signature.
Collapse
Affiliation(s)
- M R Nixon
- School of Physics, University of Exeter, Exeter EX4 4QL, UK
| | - A G Orr
- Environmental Futures Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - P Vukusic
- School of Physics, University of Exeter, Exeter EX4 4QL, UK
| |
Collapse
|
32
|
Fifty shades of white: how white feather brightness differs among species. Naturwissenschaften 2018; 105:18. [DOI: 10.1007/s00114-018-1543-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/30/2022]
|
33
|
Das S, Shanmugam N, Kumar A, Jose S. Review: Potential of biomimicry in the field of textile technology. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2017. [DOI: 10.1680/jbibn.16.00048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nature is the chief mentor to humans for creative and technological development. It sets many excellent examples of technologies around them which can be applied in the field of fashion and textiles. The nest of the baya weaver bird, the net of the orb-weaving spider and the structure of the coconut leaf sheath are examples of natural woven structures. The silk cocoon and nest of chaetopterid marine worm are some of the best examples of natural protective non-woven composites. Natural structural colours, the self-cleaning properties of the lotus leaf, the sharkskin effect and so on have attracted great interest in developing functional textiles. Nature also provides numerous examples of beautiful symmetrical objects, patterns and eye-pleasing colour combinations which are a source of inspiration for designers in creating new designs. Application of biomimicry in the field of textiles is a rapidly growing interdisciplinary research scope that has great potential for future research.
Collapse
Affiliation(s)
- Sekhar Das
- Indian Council of Agricultural Research–Central Sheep and Wool Research Institute, Malpura, India
| | - Nachimutu Shanmugam
- Indian Council of Agricultural Research–Central Sheep and Wool Research Institute, Avikanagar, India
| | - Ajay Kumar
- Indian Council of Agricultural Research–Central Sheep and Wool Research Institute, Malpura, India
| | - Seiko Jose
- Indian Council of Agricultural Research–Central Sheep and Wool Research Institute, Malpura, India
| |
Collapse
|
34
|
Mishra M, Choudhury A, Achary PS, Sahoo H. Unraveling the fine-tuned lemon coloration of a pierid butterfly Catopsilia pomona. Microscopy (Oxf) 2017; 66:414-423. [PMID: 29036478 DOI: 10.1093/jmicro/dfx037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/08/2017] [Indexed: 11/14/2022] Open
Abstract
Butterflies wings possess different types of scales to perform diverse functions. Each scale has many nano and microstructures, which interferes with light, resulting in unique coloration for each butterfly. Besides coloration, the arrangement of scales further helps in giving better survivability. Thus, analysis of wing pattern provides an overall idea about adaptation and activity of the animal. The current study deciphers the structure and composition of a wing of a pierid butterfly Catopsilia pomona, which remains active at 42°C at which temperature all other butterflies face a tougher task for existence. In order to know the relation between survivability and adaptation in the wing, we have investigated the structural and physical composition of the wing of C. pomona under optical spectroscopy (absorption, reflectance and transmittance) along with microscopy techniques (optical and scanning electron microscopy), which are not described in earlier studies. The current findings reveal unique structural arrangement within scales to provide the best fit to the animal in variable temperature.
Collapse
Affiliation(s)
| | | | | | - Harekrushna Sahoo
- Department of Chemistry, NIT Rourkela, Rourkela, Odisha 769008, India
| |
Collapse
|
35
|
Wilts BD, Vey AJM, Briscoe AD, Stavenga DG. Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms. BMC Evol Biol 2017; 17:226. [PMID: 29162029 PMCID: PMC5699198 DOI: 10.1186/s12862-017-1073-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/15/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Longwing butterflies, Heliconius sp., also called heliconians, are striking examples of diversity and mimicry in butterflies. Heliconians feature strongly colored patterns on their wings, arising from wing scales colored by pigments and/or nanostructures, which serve as an aposematic signal. RESULTS Here, we investigate the coloration mechanisms among several species of Heliconius by applying scanning electron microscopy, (micro)spectrophotometry, and imaging scatterometry. We identify seven kinds of colored scales within Heliconius whose coloration is derived from pigments, nanostructures or both. In yellow-, orange- and red-colored wing patches, both cover and ground scales contain wavelength-selective absorbing pigments, 3-OH-kynurenine, xanthommatin and/or dihydroxanthommatin. In blue wing patches, the cover scales are blue either due to interference of light in the thin-film lower lamina (e.g., H. doris) or in the multilayered lamellae in the scale ridges (so-called ridge reflectors, e.g., H. sara and H. erato); the underlying ground scales are black. In the white wing patches, both cover and ground scales are blue due to their thin-film lower lamina, but because they are stacked upon each other and at the wing substrate, a faint bluish to white color results. Lastly, green wing patches (H. doris) have cover scales with blue-reflecting thin films and short-wavelength absorbing 3-OH-kynurenine, together causing a green color. CONCLUSIONS The pigmentary and structural traits are discussed in relation to their phylogenetic distribution and the evolution of vision in this highly interesting clade of butterflies.
Collapse
Affiliation(s)
- Bodo D Wilts
- Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG, Groningen, The Netherlands.
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.
| | - Aidan J M Vey
- Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG, Groningen, The Netherlands
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Doekele G Stavenga
- Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG, Groningen, The Netherlands
| |
Collapse
|
36
|
Tadepalli S, Slocik JM, Gupta MK, Naik RR, Singamaneni S. Bio-Optics and Bio-Inspired Optical Materials. Chem Rev 2017; 117:12705-12763. [PMID: 28937748 DOI: 10.1021/acs.chemrev.7b00153] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| |
Collapse
|
37
|
Sackey J, Nuru ZY, Sone BT, Maaza M. Structural and optical investigation on the wings of Idea malabarica (Moore, 1877). IET Nanobiotechnol 2017; 11:71-76. [PMID: 28476965 DOI: 10.1049/iet-nbt.2016.0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nanostructures on the wings of Idea malabarica (Moore, 1877) were analysed using scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy, Fourier transform-infrared spectroscopy, and reflectance measurements. The chemical and morphological analyses revealed the chitin-based intricate nanostructures. The influence of the nanostructures on the wetting characteristics of the wing was investigated using optical imaging. Applying the Maxwell-Garnet approximation to the porosities within the nanostructures, the refractive indices, which relate the reflectance response, were estimated. It was concluded that the colour seen on the wings of the Idea malabarica originate from the nanostructural configurations of the chitin-based structures and the embedded pigment.
Collapse
Affiliation(s)
- Juliet Sackey
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk ridge, P.O. Box 392, Pretoria, South Africa.
| | - Zebib Y Nuru
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk ridge, P.O. Box 392, Pretoria, South Africa
| | - Bertrand Tumbain Sone
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk ridge, P.O. Box 392, Pretoria, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk ridge, P.O. Box 392, Pretoria, South Africa
| |
Collapse
|
38
|
Varying and unchanging whiteness on the wings of dusk-active and shade-inhabiting Carystoides escalantei butterflies. Proc Natl Acad Sci U S A 2017; 114:7379-7384. [PMID: 28652351 DOI: 10.1073/pnas.1701017114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Whiteness, although frequently apparent on the wings, legs, antennae, or bodies of many species of moths and butterflies, along with other colors and shades, has often escaped our attention. Here, we investigate the nanostructure and microstructure of white spots on the wings of Carystoides escalantei, a dusk-active and shade-inhabiting Costa Rican rain forest butterfly (Hesperiidae). On both males and females, two types of whiteness occur: angle dependent (dull or bright) and angle independent, which differ in the microstructure, orientation, and associated properties of their scales. Some spots on the male wings are absent from the female wings. Whether the angle-dependent whiteness is bright or dull depends on the observation directions. The angle-dependent scales also show enhanced retro-reflection. We speculate that the biological functions and evolution of Carystoides spot patterns, scale structures, and their varying whiteness are adaptations to butterfly's low light habitat and to airflow experienced on the wing base vs. wing tip.
Collapse
|
39
|
Syurik J, Siddique RH, Dollmann A, Gomard G, Schneider M, Worgull M, Wiegand G, Hölscher H. Bio-inspired, large scale, highly-scattering films for nanoparticle-alternative white surfaces. Sci Rep 2017; 7:46637. [PMID: 28429805 PMCID: PMC5399467 DOI: 10.1038/srep46637] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/21/2017] [Indexed: 11/27/2022] Open
Abstract
Inspired by the white beetle of the genus Cyphochilus, we fabricate ultra-thin, porous PMMA films by foaming with CO2 saturation. Optimising pore diameter and fraction in terms of broad-band reflectance results in very thin films with exceptional whiteness. Already films with 60 µm-thick scattering layer feature a whiteness with a reflectance of 90%. Even 9 µm thin scattering layers appear white with a reflectance above 57%. The transport mean free path in the artificial films is between 3.5 µm and 4 µm being close to the evolutionary optimised natural prototype. The bio-inspired white films do not lose their whiteness during further shaping, allowing for various applications.
Collapse
Affiliation(s)
- Julia Syurik
- Institute for Microstructure Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | | | - Antje Dollmann
- Institute for Microstructure Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - Guillaume Gomard
- Institute for Microstructure Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany.,Light Technology Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Marc Schneider
- Institute for Microstructure Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - Matthias Worgull
- Institute for Microstructure Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - Gabriele Wiegand
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - Hendrik Hölscher
- Institute for Microstructure Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
40
|
Pantelić D, Savić-Šević S, Stojanović DV, Ćurčić S, Krmpot AJ, Rabasović M, Pavlović D, Lazović V, Milošević V. Scattering-enhanced absorption and interference produce a golden wing color of the burnished brass moth, Diachrysia chrysitis. Phys Rev E 2017; 95:032405. [PMID: 28415223 DOI: 10.1103/physreve.95.032405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Indexed: 06/07/2023]
Abstract
Here we report how interference and scattering-enhanced absorption act together to produce the golden wing patches of the burnished brass moth. The key mechanism is scattering on rough internal surfaces of the wing scales, accompanied by a large increase of absorption in the UV-blue spectral range. Unscattered light interferes and efficiently reflects from the multilayer composed of the scales and the wing membranes. The resulting spectrum is remarkably similar to the spectrum of metallic gold. Subwavelength morphology and spectral and absorptive properties of the wings are described. Theories of subwavelength surface scattering and local intensity enhancement are used to quantitatively explain the observed reflectance spectrum.
Collapse
Affiliation(s)
- Dejan Pantelić
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Belgrade, Serbia
| | - Svetlana Savić-Šević
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Belgrade, Serbia
| | - Dejan V Stojanović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Srećko Ćurčić
- Institute of Zoology, University of Belgrade-Faculty of Biology, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Aleksandar J Krmpot
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Belgrade, Serbia
| | - Mihailo Rabasović
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Belgrade, Serbia
| | - Danica Pavlović
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Belgrade, Serbia
| | - Vladimir Lazović
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Belgrade, Serbia
| | - Vojislav Milošević
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Belgrade, Serbia
| |
Collapse
|
41
|
Watson GS, Watson JA, Cribb BW. Diversity of Cuticular Micro- and Nanostructures on Insects: Properties, Functions, and Potential Applications. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:185-205. [PMID: 28141960 DOI: 10.1146/annurev-ento-031616-035020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Insects exhibit a fascinating and diverse range of micro- and nanoarchitectures on their cuticle. Beyond the spectacular beauty of such minute structures lie surfaces evolutionarily modified to act as multifunctional interfaces that must contend with a hostile, challenging environment, driving adaption so that these can then become favorable. Numerous cuticular structures have been discovered this century; and of equal importance are the properties, functions, and potential applications that have been a key focus in many recent studies. The vast range of insect structuring, from the most simplistic topographies to the most elegant and geometrically complex forms, affords us with an exhaustive library of natural templates and free technologies to borrow, replicate, and employ for a range of applications. Of particular importance are structures that imbue cuticle with antiwetting properties, self-cleaning abilities, antireflection, enhanced color, adhesion, and antimicrobial and specific cell-attachment properties.
Collapse
Affiliation(s)
- Gregory S Watson
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; ,
| | - Jolanta A Watson
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; ,
| | - Bronwen W Cribb
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia;
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
42
|
Finkbeiner SD, Fishman DA, Osorio D, Briscoe AD. Ultraviolet and yellow reflectance but not fluorescence is important for visual discrimination of conspecifics by Heliconius erato. ACTA ACUST UNITED AC 2017; 220:1267-1276. [PMID: 28108668 DOI: 10.1242/jeb.153593] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/11/2017] [Indexed: 11/20/2022]
Abstract
Toxic Heliconius butterflies have yellow hindwing bars that - unlike those of their closest relatives - reflect ultraviolet (UV) and long wavelength light, and also fluoresce. The pigment in the yellow scales is 3-hydroxy-dl-kynurenine (3-OHK), which is found in the hair and scales of a variety of animals. In other butterflies like pierids with color schemes characterized by independent sources of variation in UV and human-visible yellow/orange, behavioral experiments have generally implicated the UV component as most relevant to mate choice. This has not been addressed in Heliconius butterflies, where variation exists in analogous color components, but moreover where fluorescence due to 3-OHK could also contribute to yellow wing coloration. In addition, the potential cost due to predator visibility is largely unknown for the analogous well-studied pierid butterfly species. In field studies with butterfly paper models, we show that both UV and 3-OHK yellow act as signals for H. erato when compared with models lacking UV or resembling ancestral Eueides yellow, respectively, but attack rates by birds do not differ significantly between the models. Furthermore, measurement of the quantum yield and reflectance spectra of 3-OHK indicates that fluorescence does not contribute to the visual signal under broad-spectrum illumination. Our results suggest that the use of 3-OHK pigmentation instead of ancestral yellow was driven by sexual selection rather than predation.
Collapse
Affiliation(s)
- Susan D Finkbeiner
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA .,Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama.,Department of Biological Sciences, Boston University, Boston, MA 02215, USA
| | - Dmitry A Fishman
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Daniel Osorio
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
43
|
Appel E, Heepe L, Lin CP, Gorb SN. Ultrastructure of dragonfly wing veins: composite structure of fibrous material supplemented by resilin. J Anat 2016; 227:561-82. [PMID: 26352411 DOI: 10.1111/joa.12362] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2015] [Indexed: 11/28/2022] Open
Abstract
Dragonflies count among the most skilful of the flying insects. Their exceptional aerodynamic performance has been the subject of various studies. Morphological and kinematic investigations have showed that dragonfly wings, though being rather stiff, are able to undergo passive deformation during flight, thereby improving the aerodynamic performance. Resilin, a rubber-like protein, has been suggested to be a key component in insect wing flexibility and deformation in response to aerodynamic loads, and has been reported in various arthropod locomotor systems. It has already been found in wing vein joints, connecting longitudinal veins to cross veins, and was shown to endow the dragonfly wing with chordwise flexibility, thereby most likely influencing the dragonfly's flight performance. The present study revealed that resilin is not only present in wing vein joints, but also in the internal cuticle layers of veins in wings of Sympetrum vulgatum (SV) and Matrona basilaris basilaris (MBB). Combined with other structural features of wing veins, such as number and thickness of cuticle layers, material composition, and cross-sectional shape, resilin most probably has an effect on the vein's material properties and the degree of elastic deformations. In order to elucidate the wing vein ultrastructure and the exact localisation of resilin in the internal layers of the vein cuticle, the approaches of bright-field light microscopy, wide-field fluorescence microscopy, confocal laser-scanning microscopy, scanning electron microscopy and transmission electron microscopy were combined. Wing veins were shown to consist of up to six different cuticle layers and a single row of underlying epidermal cells. In wing veins of MBB, the latter are densely packed with light-scattering spheres, previously shown to produce structural colours in the form of quasiordered arrays. Longitudinal and cross veins differ significantly in relative thickness of exo- and endocuticle, with cross veins showing a much thicker exocuticle. The presence of resilin in the unsclerotised endocuticle suggests its contribution to an increased energy storage and material flexibility, thus to the prevention of vein damage. This is especially important in the highly stressed longitudinal veins, which have much lower possibility to yield to applied loads with the aid of vein joints, as the cross veins do. These results may be relevant not only for biologists, but may also contribute to optimise the design of micro-air vehicles.
Collapse
Affiliation(s)
- Esther Appel
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Lars Heepe
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Chung-Ping Lin
- Department of Life Science, Tunghai University, Taichung, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
44
|
Connahs H, Rhen T, Simmons RB. Transcriptome analysis of the painted lady butterfly, Vanessa cardui during wing color pattern development. BMC Genomics 2016; 17:270. [PMID: 27030049 PMCID: PMC4815134 DOI: 10.1186/s12864-016-2586-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Butterfly wing color patterns are an important model system for understanding the evolution and development of morphological diversity and animal pigmentation. Wing color patterns develop from a complex network composed of highly conserved patterning genes and pigmentation pathways. Patterning genes are involved in regulating pigment synthesis however the temporal expression dynamics of these interacting networks is poorly understood. Here, we employ next generation sequencing to examine expression patterns of the gene network underlying wing development in the nymphalid butterfly, Vanessa cardui. RESULTS We identified 9, 376 differentially expressed transcripts during wing color pattern development, including genes involved in patterning, pigmentation and gene regulation. Differential expression of these genes was highest at the pre-ommochrome stage compared to early pupal and late melanin stages. Overall, an increasing number of genes were down-regulated during the progression of wing development. We observed dynamic expression patterns of a large number of pigment genes from the ommochrome, melanin and also pteridine pathways, including contrasting patterns of expression for paralogs of the yellow gene family. Surprisingly, many patterning genes previously associated with butterfly pattern elements were not significantly up-regulated at any time during pupation, although many other transcription factors were differentially expressed. Several genes involved in Notch signaling were significantly up-regulated during the pre-ommochrome stage including slow border cells, bunched and pebbles; the function of these genes in the development of butterfly wings is currently unknown. Many genes involved in ecdysone signaling were also significantly up-regulated during early pupal and late melanin stages and exhibited opposing patterns of expression relative to the ecdysone receptor. Finally, a comparison across four butterfly transcriptomes revealed 28 transcripts common to all four species that have no known homologs in other metazoans. CONCLUSIONS This study provides a comprehensive list of differentially expressed transcripts during wing development, revealing potential candidate genes that may be involved in regulating butterfly wing patterns. Some differentially expressed genes have no known homologs possibly representing genes unique to butterflies. Results from this study also indicate that development of nymphalid wing patterns may arise not only from melanin and ommochrome pigments but also the pteridine pigment pathway.
Collapse
Affiliation(s)
- Heidi Connahs
- Biology Department, University of North Dakota, Grand Forks, ND, USA. .,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Turk Rhen
- Biology Department, University of North Dakota, Grand Forks, ND, USA
| | - Rebecca B Simmons
- Biology Department, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
45
|
McCulloch KJ, Osorio D, Briscoe AD. Sexual dimorphism in the compound eye of Heliconius erato: a nymphalid butterfly with at least five spectral classes of photoreceptor. J Exp Biol 2016; 219:2377-87. [DOI: 10.1242/jeb.136523] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/23/2016] [Indexed: 11/20/2022]
Abstract
Most butterfly families expand the number of spectrally-distinct photoreceptors in their compound eye by opsin gene duplications together with lateral filter pigments, however most nymphalid genera have limited diversity, with only three or four spectral types of photoreceptor. Here we examine the spatial pattern of opsin expression and photoreceptor spectral sensitivities in Heliconius erato, a nymphalid with duplicate ultraviolet opsin genes, UVRh1 and UVRh2. We find that the H. erato compound eye is sexually dimorphic. Females express the two UV opsin proteins in separate photoreceptors, but males do not express UVRh1. Intracellular recordings confirmed that females have three short wavelength-sensitive photoreceptors (λmax=356 nm, ∼390 nm and 470 nm), while males have two (λmax=390 nm and ∼470 nm). We also found two long wavelength-sensitive photoreceptors (green, λmax ∼555 nm, and red, λmax ∼600 nm), which express the same LW opsin. The red cell's shifted sensitivity is probably due to perirhabdomal filtering pigments. Sexual dimorphism of the UV-absorbing rhodopsins may reflect the females' need to discriminate conspecifics from co-mimics. Red-green color vision may be used to detect differences in red coloration on Heliconius wings, or for host-plant identification. Among nymphalids so far investigated, only H. erato is known to possess five spectral classes of photoreceptor; sexual dimorphism of the eye via suppression of one class of opsin (here UVRh1 in males) has not—to our knowledge—been reported in any animal.
Collapse
Affiliation(s)
- Kyle J. McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Daniel Osorio
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Adriana D. Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
46
|
Shanks K, Senthilarasu S, Ffrench-Constant RH, Mallick TK. White butterflies as solar photovoltaic concentrators. Sci Rep 2015; 5:12267. [PMID: 26227341 PMCID: PMC4521190 DOI: 10.1038/srep12267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/12/2015] [Indexed: 11/29/2022] Open
Abstract
Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.
Collapse
Affiliation(s)
- Katie Shanks
- Environment and Sustainability Institute, Biosciences, University of Exeter, Falmouth, TR10 9FE, UK
| | - S Senthilarasu
- Environment and Sustainability Institute, Biosciences, University of Exeter, Falmouth, TR10 9FE, UK
| | | | - Tapas K Mallick
- Environment and Sustainability Institute, Biosciences, University of Exeter, Falmouth, TR10 9FE, UK
| |
Collapse
|
47
|
Hydrothermal Synthesis Au-Bi2Te3 Nanocomposite Thermoelectric Film with a Hierarchical Sub-Micron Antireflection Quasi-Periodic Structure. Int J Mol Sci 2015; 16:12547-59. [PMID: 26047340 PMCID: PMC4490460 DOI: 10.3390/ijms160612547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/16/2022] Open
Abstract
In this work, Au-Bi2Te3 nanocomposite thermoelectric film with a hierarchical sub-micron antireflection quasi-periodic structure was synthesized via a low-temperature chemical route using Troides helena (Linnaeus) forewing (T_FW) as the biomimetic template. This method combines chemosynthesis with biomimetic techniques, without the requirement of expensive equipment and energy intensive processes. The microstructure and the morphology of the Au-Bi2Te3 nanocomposite thermoelectric film was analyzed by X-ray diffraction (XRD), field-emission scanning-electron microscopy (FESEM), and transmission electron microscopy (TEM). Coupled the plasmon resonances of the Au nanoparticles with the hierarchical sub-micron antireflection quasi-periodic structure, the Au-Bi2Te3 nanocomposite thermoelectric film possesses an effective infrared absorption and infrared photothermal conversion performance. Based on the finite difference time domain method and the Joule effect, the heat generation and the heat source density distribution of the Au-Bi2Te3 nanocomposite thermoelectric film were studied. The heterogeneity of heat source density distribution of the Au-Bi2Te3 nanocomposite thermoelectric film opens up a novel promising technique for generating thermoelectric power under illumination.
Collapse
|
48
|
Dougherty LF, Johnsen S, Caldwell RL, Marshall NJ. A dynamic broadband reflector built from microscopic silica spheres in the 'disco' clam Ctenoides ales. J R Soc Interface 2015; 11:20140407. [PMID: 24966236 DOI: 10.1098/rsif.2014.0407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The 'disco' or 'electric' clam Ctenoides ales (Limidae) is the only species of bivalve known to have a behaviourally mediated photic display. This display is so vivid that it has been repeatedly confused for bioluminescence, but it is actually the result of scattered light. The flashing occurs on the mantle lip, where electron microscopy revealed two distinct tissue sides: one highly scattering side that contains dense aggregations of spheres composed of silica, and one highly absorbing side that does not. High-speed video confirmed that the two sides act in concert to alternate between vivid broadband reflectance and strong absorption in the blue region of the spectrum. Optical modelling suggests that the diameter of the spheres is nearly optimal for scattering visible light, especially at shorter wavelengths which predominate in their environment. This simple mechanism produces a striking optical effect that may function as a signal.
Collapse
Affiliation(s)
- Lindsey F Dougherty
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Roy L Caldwell
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
49
|
Sackey J, Nuru Z, Berthier S, Maaza M. Investigation of Nanostructures on the Crepuscular ‘Eyespot’ of the Caligo Memnon Nymphalidae Felder (1866) Butterfly. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.matpr.2015.08.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Bright-white beetle scales optimise multiple scattering of light. Sci Rep 2014; 4:6075. [PMID: 25123449 PMCID: PMC4133710 DOI: 10.1038/srep06075] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/04/2014] [Indexed: 12/02/2022] Open
Abstract
Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure.
Collapse
|