1
|
Yang T, Tan C, Zhao L, Hu Z, Su C, Li F, Ma Y, Zhang W, Hao X, Zou W, Kang J, He Q. The Complete Mitochondrial Genome of the Luciocyprinus langsoni (Cypriniformes: Cyprinidae): Characterization, Phylogeny, and Genetic Diversity Analysis. Genes (Basel) 2024; 15:1621. [PMID: 39766888 PMCID: PMC11675621 DOI: 10.3390/genes15121621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Luciocyprinus langsoni is a species belonging to the Cyprinidae family. The objective of this study is to gain a comprehensive understanding of its evolutionary history and genetic characteristics. Methods: The complete mitochondrial genome of L. langsoni was determined using overlapping PCR. A phylogenetic analysis was conducted based on 13 protein-coding genes from 48 species. A population genetic diversity analysis using the COI gene and a selection analysis of 13 protein-coding genes were also performed. Results: The mitogenome is 16,586 base pairs long and consists of 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNAs, and two control regions. It has a high adenine-thymine (A + T) content. The phylogenetic analysis confirms the placement of L. langsoni within the subfamily Cyprininae. The population genetic diversity analysis reveals low variability in the Hechi Longjiang population. The selection analysis shows that all 13 protein-coding genes have evolved under purifying selection with Ka/Ks ratios below 1. Conclusions: These results enhance our understanding of L. langsoni's evolutionary history and lay a genetic foundation for future studies in population genetics and phylogenetics.
Collapse
Affiliation(s)
- Tiezhu Yang
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China; (T.Y.); (C.T.); (L.Z.); (Z.H.); (W.Z.); (X.H.); (W.Z.); (J.K.); (Q.H.)
- Fishery Biological Engineering Technology Research Center of Henan Province, Xinyang 464000, China
| | - Chenxi Tan
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China; (T.Y.); (C.T.); (L.Z.); (Z.H.); (W.Z.); (X.H.); (W.Z.); (J.K.); (Q.H.)
- Fishery Biological Engineering Technology Research Center of Henan Province, Xinyang 464000, China
| | - Liangjie Zhao
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China; (T.Y.); (C.T.); (L.Z.); (Z.H.); (W.Z.); (X.H.); (W.Z.); (J.K.); (Q.H.)
- Fishery Biological Engineering Technology Research Center of Henan Province, Xinyang 464000, China
| | - Zhiguo Hu
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China; (T.Y.); (C.T.); (L.Z.); (Z.H.); (W.Z.); (X.H.); (W.Z.); (J.K.); (Q.H.)
- Fishery Biological Engineering Technology Research Center of Henan Province, Xinyang 464000, China
| | - Chaoqun Su
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China; (T.Y.); (C.T.); (L.Z.); (Z.H.); (W.Z.); (X.H.); (W.Z.); (J.K.); (Q.H.)
- Fishery Biological Engineering Technology Research Center of Henan Province, Xinyang 464000, China
| | - Fan Li
- Shanghai Natural History Museum, Branch of Shanghai Science and Technology Museum, Shanghai 200041, China
| | - Yuanye Ma
- Xinyang Nanwan Reservoir Fishery Development Co., Ltd., Xinyang 464000, China;
| | - Wenchao Zhang
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China; (T.Y.); (C.T.); (L.Z.); (Z.H.); (W.Z.); (X.H.); (W.Z.); (J.K.); (Q.H.)
- Fishery Biological Engineering Technology Research Center of Henan Province, Xinyang 464000, China
| | - Xiaoyu Hao
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China; (T.Y.); (C.T.); (L.Z.); (Z.H.); (W.Z.); (X.H.); (W.Z.); (J.K.); (Q.H.)
- Fishery Biological Engineering Technology Research Center of Henan Province, Xinyang 464000, China
| | - Wenxu Zou
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China; (T.Y.); (C.T.); (L.Z.); (Z.H.); (W.Z.); (X.H.); (W.Z.); (J.K.); (Q.H.)
- Fishery Biological Engineering Technology Research Center of Henan Province, Xinyang 464000, China
| | - Jiayin Kang
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China; (T.Y.); (C.T.); (L.Z.); (Z.H.); (W.Z.); (X.H.); (W.Z.); (J.K.); (Q.H.)
- Fishery Biological Engineering Technology Research Center of Henan Province, Xinyang 464000, China
| | - Qingqing He
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China; (T.Y.); (C.T.); (L.Z.); (Z.H.); (W.Z.); (X.H.); (W.Z.); (J.K.); (Q.H.)
- Fishery Biological Engineering Technology Research Center of Henan Province, Xinyang 464000, China
| |
Collapse
|
2
|
Chomphuphuang N, Leamyongyai C, Songsangchote C, Piraonapicha K, Pojprasat N, Piyatrakulchai P. Phylogenetics and species delimitation of the recluse spider, Loxosceles rufescens (Araneae: Sicariidae) populations invading Bangkok, Thailand. Acta Trop 2024; 260:107424. [PMID: 39369928 DOI: 10.1016/j.actatropica.2024.107424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The Mediterranean recluse spider, Loxosceles rufescens, has been discovered for the first time inhabiting human dwellings in Bangkok, Thailand. Expeditions across 39 localities revealed five establishments with L. rufescens populations. The highest density was recorded in a storage house on Yaowarat Road, located in the heart of Bangkok's Chinatown, where 315 individuals were found, including adults, juveniles, and spiderlings. This medically significant spider's presence in such a densely populated urban area raises concerns about potential envenomation risks. Thirteen specimens of L. rufescens were extracted for DNA and sequenced for molecular phylogenetic analyses. COI and ITS2 markers were used to investigate relationships within L. rufescens and across available Loxosceles species sequences. Results indicate COI is superior for resolving species-level genetic clusters compared to ITS2. Surprisingly, L. rufescens individuals from the same house were found in significantly distant COI lineages, suggesting mtDNA may not be suitable for studying intra-specific phylogeography in this case. Species delimitation methods ABGD and ASAP demonstrated promising results for both COI and ITS2, while bPTP and GMYC tended to overestimate species numbers. ITS2 exhibited high sequence similarity in L. rufescens, suggesting potential utility as a barcoding marker for identification of this globally distributed species. Genetic distance analyses revealed a potential barcoding gap (K2P) of 8-9 % for COI and <2 % for ITS2 in Loxosceles. This study contributes valuable sequence data for the medically important genus Loxosceles and highlights the need for integrative approaches in understanding its evolution and spread. The findings have important implications for pest management strategies and public health in urban environments.
Collapse
Affiliation(s)
- Narin Chomphuphuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; Spider Excellence Center of Thailand, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Chaowalit Songsangchote
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; Spider Excellence Center of Thailand, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanyakorn Piraonapicha
- Entomology Section, Queen Sirikit Botanic Garden, The Botanical Garden Organization, Chiang Mai 50180, Thailand
| | - Nirun Pojprasat
- Spider Excellence Center of Thailand, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Paveen Piyatrakulchai
- Spider Excellence Center of Thailand, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
3
|
Kaczmarczyk-Ziemba A, Wagner GK, Staniec B, Zagaja M, Pietrykowska-Tudruj E, Iorgu EI, Iorgu IŞ. Intraspecific diversity of Myrmecophilus acervorum (Orthoptera: Myrmecophilidae) indicating an ongoing cryptic speciation. Sci Rep 2024; 14:23984. [PMID: 39402267 PMCID: PMC11473668 DOI: 10.1038/s41598-024-75335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Myrmecophilus acervorum, previously considered a parthenogenetic species widely-distributed in Europe, has been observed to have both sexes in populations inhabiting the central part of the distribution range. Specimens from those heterosexual populations have been found being infected with Wolbachia. New mitochondrial data (COI and 16S markers) revealed the well-supported differentiation of M. acervorum populations inhabiting western Polesie (Poland) and southern Europe. In turn, analyses of EF1α marker support the hypothesis on the unfinished lineage sorting at the nuclear DNA level. Interestingly, we found that parthenogenetic populations inhabiting western Polesie are infected with Wolbachia belonging to supergroup A, while endosymbionts occurring in sexual populations of M. acervorum observed in Romania belong to supergroup B. Furthermore, new and potentially diagnostic characteristics in the external structures of the eyes of M. acervorum were identified. The surface of ommatidia in specimens occurring in southern Europe was smooth. In contrast, the ommatidia surface of individuals collected in Poland was visibly sculptured. To sum up, the significant genetic variability found in the present case, and the differentiating morphological character, are almost certainly effects of cryptic species being present within M. acervorum. This is indicative of ongoing speciation within the populations of this insect, and of simultaneous unfinished lineage sorting at the nuclear DNA level.
Collapse
Affiliation(s)
- Agnieszka Kaczmarczyk-Ziemba
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Grzegorz K Wagner
- Department of Zoology and Nature Conservation, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Bernard Staniec
- Department of Zoology and Nature Conservation, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| | - Ewa Pietrykowska-Tudruj
- Department of Zoology and Nature Conservation, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Elena I Iorgu
- Faculty of Medicine and Biological Sciences, Ştefan cel Mare University of Suceava, Str. Universităţii 13, Suceava, 720229, Romania
| | - Ionuţ Ş Iorgu
- Faculty of Medicine and Biological Sciences, Ştefan cel Mare University of Suceava, Str. Universităţii 13, Suceava, 720229, Romania
| |
Collapse
|
4
|
Lečić S, Wolfe T, Ghosh A, Satar S, Souza Beraldo C, Smith E, Dombroskie J, Jernigan E, Hood G, Schuler H, Stauffer C. Spatially Varying Wolbachia Frequencies Reveal the Invasion Origin of an Agricultural Pest Recently Introduced From Europe to North America. Evol Appl 2024; 17:e70016. [PMID: 39310793 PMCID: PMC11413411 DOI: 10.1111/eva.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/14/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The introduction of non-native species across the world represents a major global challenge. Retracing invasion origin is an important first step in understanding the invasion process, often requiring detailed sampling within the native range. Insect species frequently host Wolbachia, a widespread endosymbiotic bacterium that manipulates host reproduction to increase infected female fitness. Here, we draw on the spatial variation in infection frequencies of an actively spreading Wolbachia strain wCer2 to investigate the invasion origin of the European cherry fruit fly, Rhagoletis cerasi. This pest of cherries was introduced from Europe to North America within the last decade. First, we screen the introduced fly population for the presence of Wolbachia. The introduced populations lack the wCer2 strain and the strongly associated mitochondrial haplotype, suggesting strain absence due to founder effects with invading individuals originating from wCer2-uninfected native population(s). To narrow down geographic regions of invasion origin, we perform spatial interpolation of the wCer2 infection frequency across the native range and predict the infection frequency in unsampled regions. For this, we use an extensive dataset of R. cerasi infection covering 238 populations across Europe over 25 years, complemented with 14 additional populations analyzed for this study. We find that R. cerasi was unlikely introduced from wCer2-infected populations in Central and Western Europe. We propose wCer2-uninfected populations from Eastern Europe and the Mediterranean region as the most likely candidates for the invasion origin. This work utilizes Wolbachia as an indirect instrument to provide insights into the invasion source of R. cerasi in North America, revealing yet another application for this multifaceted heritable endosymbiont. Given the prevalence of biological invasions, rapidly uncovering invasion origins gives fundamental insights into how invasive species adapt to new environments.
Collapse
Affiliation(s)
- Sonja Lečić
- Department of Forest and Soil SciencesBoku UniversityViennaAustria
| | - Thomas M. Wolfe
- Department of Forest and Soil SciencesBoku UniversityViennaAustria
| | - Animesh Ghosh
- Department of Forest and Soil SciencesBoku UniversityViennaAustria
| | - Serdar Satar
- Department of Plant Protection, Faculty of AgricultureÇukurova UniversityAdanaTurkey
| | - Camilla Souza Beraldo
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesThe University of HelsinkiHelsinkiFinland
| | - Emily Smith
- Department of Biological SciencesWayne State UniversityDetroitMichiganUSA
| | | | - Emily Jernigan
- Department of EntomologyCornell UniversityIthacaNew YorkUSA
| | - Glen Ray Hood
- Department of Biological SciencesWayne State UniversityDetroitMichiganUSA
| | - Hannes Schuler
- Competence Centre for Plant HealthFree University of Bozen‐BolzanoBozen‐BolzanoItaly
- Faculty of Agricultural, Environmental and Food SciencesFree University of Bozen‐BolzanoBozen‐BolzanoItaly
| | | |
Collapse
|
5
|
Yarbrough E, Chandler C. Patterns of molecular evolution in a parthenogenic terrestrial isopod ( Trichoniscus pusillus). PeerJ 2024; 12:e17780. [PMID: 39071119 PMCID: PMC11276757 DOI: 10.7717/peerj.17780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024] Open
Abstract
The "paradox of sex" refers to the question of why sexual reproduction is maintained in the wild, despite how costly it is compared to asexual reproduction. Because of these costs, one might expect nature to select for asexual reproduction, yet sex seems to be continually selected for. Multiple hypotheses have been proposed to explain this incongruence, including the niche differentiation hypothesis, the Red Queen hypothesis, and accumulation of harmful mutations in asexual species due to inefficient purifying selection. This study focuses on the accumulation of mutations in two terrestrial isopods, Trichoniscus pusillus, which has sexual diploid and parthenogenic triploid forms, and Hyloniscus riparius, an obligately sexual relative. We surveyed sex ratios of both species in an upstate New York population and obtained RNA-seq data from wild-caught individuals of both species to examine within- and between-species patterns of molecular evolution in protein-coding genes. The sex ratio and RNA-seq data together provide strong evidence that this T. pusillus population is entirely asexual and triploid, while the H. riparius population is sexual and diploid. Although all the wild T. pusillus individuals used for sequencing shared identical genotypes at nearly all SNPs, supporting a clonal origin, heterozygosity and SNP density were much higher in T. pusillus than in the sexually reproducing H. riparius. This observation suggests this parthenogenic lineage may have arisen via mating between two divergent diploid lineages. Between-species sequence comparisons showed no evidence of ineffective purifying selection in the asexual T. pusillus lineage, as measured by the ratio of nonsynonymous to synonymous substitutions (dN/dS ratios). Likewise, there was no difference between T. pusillus and H. riparius in the ratios of nonsynonymous to synonymous SNPs overall (pN/pS). However, pN/pS ratios in T. pusillus were significantly higher when considering only SNPs that may have arisen via recent mutation after the transition to parthenogenesis. Thus, these recent SNPs are consistent with the hypothesis that purifying selection is less effective against new mutations in asexual lineages, but only over long time scales. This system provides a useful model for future studies on the evolutionary tradeoffs between sexual and asexual reproduction in nature.
Collapse
Affiliation(s)
- Emily Yarbrough
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
- Department of Biological Sciences, State University of New York at Binghamton, Binghamton, NY, United States of America
| | - Christopher Chandler
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
| |
Collapse
|
6
|
Ren J, Ren L, Zhang R. Delimiting species, revealing cryptic diversity, and population divergence in Qinghai-Tibet Plateau weevils through DNA barcoding. Ecol Evol 2024; 14:e11592. [PMID: 38979006 PMCID: PMC11229427 DOI: 10.1002/ece3.11592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The Leptomias group represents one of the most diverse taxonomic group of weevils in the Qinghai-Tibet Plateau and its adjacent areas. Despite the potential of hidden diversity, relatively few comprehensive studies have been conducted on species diversity in this taxonomic group. In this study, we performed DNA barcoding analysis for species of the Leptomias group using a comprehensive DNA barcode dataset that included 476 sequences representing 54 morphospecies. Within the dataset, our laboratory contributed 474 sequences, and 390 sequences were newly generated for this study. The average Kimura 2-parameter distances among morphospecies and genera were 0.76% and 19.15%, respectively. In 94.4% of the species, the minimum interspecific distances exceeded the maximum intraspecific distances, indicating the presence of barcode gaps in most species of Leptomias group. The application of Automatic Barcode Gap Discovery, Assemble Species by Automatic Partitioning, Barcode Index Number, Bayesian Poisson tree processes, jMOTU, and Neighbor-joining tree methods revealed 45, 45, 63, 54, and 55 distinct clusters representing single species, respectively. Additionally, a total of four morphospecies, Leptomias kangmarensis, L. midlineatus, L. siahus, and L. sp.9RL, were found to be assigned to multiple subclade each, indicating the geographical divergences and the presence of cryptic diversity. Our findings of this study demonstrate that Qinghai-Tibet Plateau exhibits a higher species diversity of the Leptomias group, and it is imperative to investigate cryptic species within certain morphospecies using integrative taxonomic approaches in future studies. Moreover, the construction of a DNA barcode reference library presented herein establishes a robust foundational dataset to support forthcoming research on weevil taxonomy, phylogenetics, ecology, and evolution.
Collapse
Affiliation(s)
- Jinliang Ren
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Li Ren
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
7
|
Laifi-Necibi N, Amor N, Merella P, Mohammed OB, Medini L. DNA barcoding reveals cryptic species in the sea slater Ligia italica (Crustacea, Isopoda) from Tunisia. Mitochondrial DNA A DNA Mapp Seq Anal 2024:1-11. [PMID: 38899428 DOI: 10.1080/24701394.2024.2363350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/14/2024] [Indexed: 06/21/2024]
Abstract
Barcoding studies have provided significant insights into phylogenetic relationships among species belonging to the genus Ligia (Crustacea, Isopoda). Herein the diversity of the Italian sea slater Ligia italica from Tunisia is studied for the first time. Samples were collected from 18 localities in Tunisia, and the analysis included previously published sequences from Italy and Greece available in GenBank. Bayesian and Maximum Likelihood phylogenetic analyses were carried out using a fragment of the mitochondrial COI gene. Putative cryptic species were explored using the 'barcode gap' approach in the software ASAP. A genetic landscape shape analysis was carried out using the program Alleles in Space. The analyses revealed highly divergent and well-supported clades of L. italica dispersed across Tunisia (Clades A1 and A2), Greece (Clade B) and Italy (Clades C1 and C2). High genetic dissimilarity among clades suggested that L. italica constitute a cryptic species complex. Divergence among different L. italica lineages (Clades A, B and C) occurred around 7-4.5 Ma. The detected high genetic distances among clades did not result from atypical mitochondrial DNAs or intracellular infection by Wolbachia bacteria. The complex history of the Mediterranean Sea appears to have played a significant role in shaping the phylogeographic pattern of Ligia italica. Additional morphological and molecular studies are needed to confirm the existence of cryptic species in Ligia italica in Mediterranean.
Collapse
Affiliation(s)
- Nermine Laifi-Necibi
- Faculté des Sciences de Tunis, Laboratoire Diversité, Gestion et Conservation des Systèmes Biologiques, Université de Tunis El Manar, Tunis, Tunisia
| | - Nabil Amor
- Higher Institute of Applied Biological Sciences of Tunis, University Tunis EL Manar, Tunis, Tunisia
| | - Paolo Merella
- Parassitologia e Malattie Parassitarie, Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | | | - Lamia Medini
- Faculté des Sciences de Tunis, Laboratoire Diversité, Gestion et Conservation des Systèmes Biologiques, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
8
|
McKee CD, Peel AJ, Hayman DTS, Suu-Ire R, Ntiamoa-Baidu Y, Cunningham AA, Wood JLN, Webb CT, Kosoy MY. Ectoparasite and bacterial population genetics and community structure indicate extent of bat movement across an island chain. Parasitology 2024; 151:708-721. [PMID: 38785194 PMCID: PMC11474020 DOI: 10.1017/s0031182024000660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Few studies have examined the genetic population structure of vector-borne microparasites in wildlife, making it unclear how much these systems can reveal about the movement of their associated hosts. This study examined the complex host–vector–microbe interactions in a system of bats, wingless ectoparasitic bat flies (Nycteribiidae), vector-borne microparasitic bacteria (Bartonella) and bacterial endosymbionts of flies (Enterobacterales) across an island chain in the Gulf of Guinea, West Africa. Limited population structure was found in bat flies and Enterobacterales symbionts compared to that of their hosts. Significant isolation by distance was observed in the dissimilarity of Bartonella communities detected in flies from sampled populations of Eidolon helvum bats. These patterns indicate that, while genetic dispersal of bats between islands is limited, some non-reproductive movements may lead to the dispersal of ectoparasites and associated microbes. This study deepens our knowledge of the phylogeography of African fruit bats, their ectoparasites and associated bacteria. The results presented could inform models of pathogen transmission in these bat populations and increase our theoretical understanding of community ecology in host–microbe systems.
Collapse
Affiliation(s)
- Clifton D. McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alison J. Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - David T. S. Hayman
- Molecular Epidemiology and Public Health Laboratory (mEpiLab), Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Richard Suu-Ire
- School of Veterinary Medicine, University of Ghana, Accra, Ghana
| | - Yaa Ntiamoa-Baidu
- Centre for Biodiversity Conservation Research, University of Ghana, Accra, Ghana
- Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
| | | | - James L. N. Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Colleen T. Webb
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
9
|
Kazilas C, Dufresnes C, France J, Kalaentzis K, Martínez-Solano I, de Visser MC, Arntzen JW, Wielstra B. Spatial genetic structure in European marbled newts revealed with target enrichment by sequence capture. Mol Phylogenet Evol 2024; 194:108043. [PMID: 38382821 DOI: 10.1016/j.ympev.2024.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
European marbled newts come in two species that have abutting ranges. The northern species, Triturus marmoratus, is found in France and the northern part of the Iberian Peninsula, whereas the southern species, T. pygmaeus, is found in the southwestern corner of the Iberian Peninsula. We study the intraspecific genetic differentiation of the group because morphological data show geographical variation and because the Iberian Peninsula is a recognized center of speciation and intraspecific genetic diversity for all kinds of organisms, amphibians included. We use target enrichment by sequence capture to generate c. 7 k nuclear DNA markers. We observe limited genetic exchange between the species, which confirms their distinctiveness. Both species show substantial genetic structuring that is only in part mirrored by morphological variation. Genetically differentiated groups are found in the south (T. marmoratus) and west (T. pygmaeus) of the species ranges. Our observations highlight the position of the Iberian Peninsula as a hotspot for genetic differentiation.
Collapse
Affiliation(s)
- Christos Kazilas
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands.
| | - Christophe Dufresnes
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China; Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - James France
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Konstantinos Kalaentzis
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Iñigo Martínez-Solano
- Museo Nacional de Ciencias Naturales, MNCN-CSIC, c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Manon C de Visser
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Jan W Arntzen
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Ben Wielstra
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
10
|
Alale TY, Sormunen JJ, Vesterinen EJ, Klemola T, Knott KE, Baltazar‐Soares M. Genomic signatures of hybridization between Ixodes ricinus and Ixodes persulcatus in natural populations. Ecol Evol 2024; 14:e11415. [PMID: 38770117 PMCID: PMC11103643 DOI: 10.1002/ece3.11415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Identifying hybridization between common pathogen vectors is essential due to the major public health implications through risks associated with hybrid's enhanced pathogen transmission potential. The hard-ticks Ixodes ricinus and Ixodes persulcatus are the two most common vectors of tick-borne pathogens that affect human and animal health in Europe. Ixodes ricinus is a known native species in Finland with a well-known distribution, whereas I. persulcatus has expanded in range and abundance over the past 60 years, and currently it appears the most common tick species in certain areas in Finland. Here we used double-digest restriction site-associated DNA (ddRAD) sequencing on 186 ticks (morphologically identified as 92 I. ricinus, and 94 I. persulcatus) collected across Finland to investigate whether RAD generated single nucleotide polymorphisms (SNPs) can discriminate tick species and identify potential hybridization events. Two different clustering methods were used to assign specific species based on how they clustered and identified hybrids among them. We were able to discriminate between the two tick species and identified 11 putative hybrids with admixed genomic proportions ranging from approximately 24 to 76 percent. Four of these hybrids were morphologically identified as I. ricinus while the remaining seven were identified as I. persulcatus. Our results thus indicate that RAD SNPs are robust in identifying both species of the ticks as well as putative hybrids. These results further suggest ongoing hybridization between I. ricinus and I. persulcatus in their natural populations in Finland. The unique ability of RAD markers to discriminate between tick species and hybrids adds a useful aspect to tick evolutionary studies. Our findings align with previous studies and suggest a shared evolutionary history between the species, with instances of individuals possessing a considerable proportion of the other species' genome. This study is a significant step in understanding the formation of hybridization zones due to range expansion potentially associated with climate change.
Collapse
Affiliation(s)
- Theophilus Yaw Alale
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | - Jani J. Sormunen
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | | | - Tero Klemola
- Department of BiologyUniversity of TurkuTurkuFinland
| | - K. Emily Knott
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | | |
Collapse
|
11
|
Dähn O, Werner D, Mathieu B, Kampen H. Large-Scale Cytochrome C Oxidase Subunit I Gene Data Analysis for the Development of a Multiplex Polymerase Chain Reaction Test Capable of Identifying Biting Midge Vector Species and Haplotypes (Diptera: Ceratopogonidae) of the Culicoides Subgenus Avaritia Fox, 1955. Genes (Basel) 2024; 15:323. [PMID: 38540382 PMCID: PMC10969821 DOI: 10.3390/genes15030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 06/14/2024] Open
Abstract
The emergence of culicoid-transmitted bluetongue and Schmallenberg viruses in several European countries demonstrated the ability of indigenous biting midge species to transmit pathogens. Entomologic research programs identified members of the Obsoletus Group (Culicoides subgenus Avaritia) as keyplayers in disease epidemiology in Europe. However, morphological identification of potential vectors is challenging due to the recent discovery of new genetic variants (haplotypes) of C. obsoletus sensu stricto (s.s.), forming distinct clades. In this study, 4422 GenBank entries of the mitochondrial cytochrome c oxidase subunit I (COI) gene of subgenus Avaritia members of the genus Culicoides were analyzed to develop a conventional multiplex PCR, capable of detecting all vector species and clades of the Western Palearctic in this subgenus. Numerous GenBank entries incorrectly assigned to a species were identified, analyzed and reassigned. The results suggest that the three C. obsoletus clades represent independent species, whereas C. montanus should rather be regarded as a genetic variant of C. obsoletus s.s. Based on these findings, specific primers were designed and validated with DNA material from field-caught biting midges which achieved very high diagnostic sensitivity (100%) when compared to an established reference PCR (82.6%).
Collapse
Affiliation(s)
- Oliver Dähn
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Bruno Mathieu
- Institutes of Bacteriology and Parasitology, Medical Faculty, University of Strasbourg, UR 3073 PHAVI, 67000 Strasbourg, France
| | - Helge Kampen
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany
| |
Collapse
|
12
|
Iverson ENK. Conservation Mitonuclear Replacement: Facilitated mitochondrial adaptation for a changing world. Evol Appl 2024; 17:e13642. [PMID: 38468713 PMCID: PMC10925831 DOI: 10.1111/eva.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 03/13/2024] Open
Abstract
Most species will not be able to migrate fast enough to cope with climate change, nor evolve quickly enough with current levels of genetic variation. Exacerbating the problem are anthropogenic influences on adaptive potential, including the prevention of gene flow through habitat fragmentation and the erosion of genetic diversity in small, bottlenecked populations. Facilitated adaptation, or assisted evolution, offers a way to augment adaptive genetic variation via artificial selection, induced hybridization, or genetic engineering. One key source of genetic variation, particularly for climatic adaptation, are the core metabolic genes encoded by the mitochondrial genome. These genes influence environmental tolerance to heat, drought, and hypoxia, but must interact intimately and co-evolve with a suite of important nuclear genes. These coadapted mitonuclear genes form some of the important reproductive barriers between species. Mitochondrial genomes can and do introgress between species in an adaptive manner, and they may co-introgress with nuclear genes important for maintaining mitonuclear compatibility. Managers should consider the relevance of mitonuclear genetic variability in conservation decision-making, including as a tool for facilitating adaptation. I propose a novel technique dubbed Conservation Mitonuclear Replacement (CmNR), which entails replacing the core metabolic machinery of a threatened species-the mitochondrial genome and key nuclear loci-with those from a closely related species or a divergent population, which may be better-adapted to climatic changes or carry a lower genetic load. The most feasible route to CmNR is to combine CRISPR-based nuclear genetic editing with mitochondrial replacement and assisted reproductive technologies. This method preserves much of an organism's phenotype and could allow populations to persist in the wild when no other suitable conservation options exist. The technique could be particularly important on mountaintops, where rising temperatures threaten an alarming number of species with almost certain extinction in the next century.
Collapse
Affiliation(s)
- Erik N. K. Iverson
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
13
|
Gajski D, Wolff JO, Melcher A, Weber S, Prost S, Krehenwinkel H, Kennedy SR. Facilitating taxonomy and phylogenetics: An informative and cost-effective protocol integrating long amplicon PCRs and third-generation sequencing. Mol Phylogenet Evol 2024; 192:107988. [PMID: 38072140 DOI: 10.1016/j.ympev.2023.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/22/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023]
Abstract
Phylogenetic inference has become a standard technique in integrative taxonomy and systematics, as well as in biogeography and ecology. DNA barcodes are often used for phylogenetic inference, despite being strongly limited due to their low number of informative sites. Also, because current DNA barcodes are based on a fraction of a single, fast-evolving gene, they are highly unsuitable for resolving deeper phylogenetic relationships due to saturation. In recent years, methods that analyse hundreds and thousands of loci at once have improved the resolution of the Tree of Life, but these methods require resources, experience and molecular laboratories that most taxonomists do not have. This paper introduces a PCR-based protocol that produces long amplicons of both slow- and fast-evolving unlinked mitochondrial and nuclear gene regions, which can be sequenced by the affordable and portable ONT MinION platform with low infrastructure or funding requirements. As a proof of concept, we inferred a phylogeny of a sample of 63 spider species from 20 families using our proposed protocol. The results were overall consistent with the results from approaches based on hundreds and thousands of loci, while requiring just a fraction of the cost and labour of such approaches, making our protocol accessible to taxonomists worldwide.
Collapse
Affiliation(s)
- Domagoj Gajski
- Department of Biogeography, Faculty of Spatial and Environmental Sciences, University of Trier, Universitätsring 15, Trier 54296, Germany; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno 611 37, Czech Republic
| | - Jonas O Wolff
- Evolutionary Biomechanics, Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, Greifswald 17489, Germany; School of Natural Sciences, Macquarie University, NSW 2109, Sydney, Australia
| | - Anja Melcher
- Department of Biogeography, Faculty of Spatial and Environmental Sciences, University of Trier, Universitätsring 15, Trier 54296, Germany
| | - Sven Weber
- Department of Biogeography, Faculty of Spatial and Environmental Sciences, University of Trier, Universitätsring 15, Trier 54296, Germany
| | - Stefan Prost
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, Linnanmaa, Finland
| | - Henrik Krehenwinkel
- Department of Biogeography, Faculty of Spatial and Environmental Sciences, University of Trier, Universitätsring 15, Trier 54296, Germany
| | - Susan R Kennedy
- Department of Biogeography, Faculty of Spatial and Environmental Sciences, University of Trier, Universitätsring 15, Trier 54296, Germany.
| |
Collapse
|
14
|
Lavenia C, Priyono DS, Yudha DS, Arisuryanti T. Species Identification of Rehabilitated Critically Endangered Orangutans Through DNA Forensic: Implication for Conservation. Trop Life Sci Res 2024; 35:123-137. [PMID: 39262863 PMCID: PMC11383629 DOI: 10.21315/tlsr2024.35.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2024] Open
Abstract
Rehabilitating and releasing orangutans back into the wild is one of the conservation strategies being pursued to conserve orangutans. However, the species determination between Sumatran, Tapanuli, and Bornean orangutans is essential for reintroduction to avoid outbreeding depression, which could lead to DNA hybridisation and increase the probability of recessive characters. Here, we reported on an investigation of three orangutans in which DNA forensic techniques were used to identify the species before release and reintroduction to their habitat. By applying DNA forensic, the orangutan was successfully confirmed with high probabilities (100%) by identifying two orangutan species, Pongo abelii and Pongo pygmaeus wurmbii. Based on ambiguous morphology, we found the possibility of orangutan species being misidentified in rehabilitation. This case report demonstrates the importance of molecular diagnostics to identify the orangutan species. We also provide workflow recommendations from genetic aspect for rehabilitated orangutans. These recommendations will enable decision-makers to consider genetics when assessing future management decisions, which will help ensure that the orangutan species is effectively conserved.
Collapse
Affiliation(s)
- Christy Lavenia
- Department of Biology, Universitas Indonesia, Depok 16424. West Java, Indonesia
| | - Dwi Sendi Priyono
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sinduadi. Mlati, Sleman, 55281. Special Region of Yogyakarta, Indonesia
- Centre for Indonesia Tropical Biodiversity (CENTROBIO), Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sinduadi. Mlati, Sleman, 55281. Special Region of Yogyakarta, Indonesia
| | - Donan Satria Yudha
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sinduadi. Mlati, Sleman, 55281. Special Region of Yogyakarta, Indonesia
| | - Tuty Arisuryanti
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sinduadi. Mlati, Sleman, 55281. Special Region of Yogyakarta, Indonesia
| |
Collapse
|
15
|
Duplouy A. Validating a Mitochondrial Sweep Accompanying the Rapid Spread of a Maternally Inherited Symbiont. Methods Mol Biol 2024; 2739:239-247. [PMID: 38006556 DOI: 10.1007/978-1-0716-3553-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Maternally inherited symbiotic bacteria that interfere with the reproduction of their hosts can contribute to selective sweeps of mitochondrial haplotypes through hitch-hiking or coordinate inheritance of cytoplasmic bacteria and host mitochondria. The sweep will be manifested by genetic variations of mitochondrial genomic DNA of symbiont-infected hosts relative to their uninfected counterparts. In particular, at the population level, infected specimens will show a reduced mitochondrial DNA polymorphism compared to that in the nuclear DNA. This may challenge the use of mitochondrial DNA sequences as neutral genetic markers, as the mitochondrial patterns will reflect the evolutionary history of parasitism, rather than the sole evolutionary history of the host. Here, I describe a detailed step-by-step procedure to infer the occurrence and timing of symbiont-induced mitochondrial sweeps in host species.
Collapse
Affiliation(s)
- Anne Duplouy
- Insect Symbiosis Ecology and Evolution, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- Research Centre for Ecological Changes, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
16
|
Bickerstaff JRM, Jordal BH, Riegler M. Two sympatric lineages of Australian Cnestus solidus share Ambrosiella symbionts but not Wolbachia. Heredity (Edinb) 2024; 132:43-53. [PMID: 37949964 PMCID: PMC10798974 DOI: 10.1038/s41437-023-00659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Sympatric lineages of inbreeding species provide an excellent opportunity to investigate species divergence patterns and processes. Many ambrosia beetle lineages (Curculionidae: Scolytinae) reproduce by predominant inbreeding through sib mating in nests excavated in woody plant parts wherein they cultivate symbiotic ambrosia fungi as their sole source of nutrition. The Xyleborini ambrosia beetle species Cnestus solidus and Cnestus pseudosolidus are sympatrically distributed across eastern Australia and have overlapping morphological variation. Using multilocus sequencing analysis of individuals collected from 19 sites spanning their sympatric distribution, we assessed their phylogenetic relationships, taxonomic status and microbial symbionts. We found no genetic differentiation between individuals morphologically identified as C. solidus and C. pseudosolidus confirming previous suggestions that C. pseudosolidus is synonymous to C. solidus. However, within C. solidus we unexpectedly discovered the sympatric coexistence of two morphologically indistinguishable but genetically distinct lineages with small nuclear yet large mitochondrial divergence. At all sites except one, individuals of both lineages carried the same primary fungal symbiont, a new Ambrosiella species, indicating that fungal symbiont differentiation may not be involved in lineage divergence. One strain of the maternally inherited bacterial endosymbiont Wolbachia was found at high prevalence in individuals of the more common lineage but not in the other, suggesting that it may influence host fitness. Our data suggest that the two Australian Cnestus lineages diverged allopatrically, and one lineage then acquired Wolbachia. Predominant inbreeding and Wolbachia infection may have reinforced reproductive barriers between these two lineages after their secondary contact contributing to their current sympatric distribution.
Collapse
Affiliation(s)
- James R M Bickerstaff
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia.
| | - Bjarte H Jordal
- Museum of Natural History, University Museum of Bergen, University of Bergen, NO-5020, Bergen, Norway
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
17
|
Shapoval NA, Kir’yanov AV, Krupitsky AV, Yakovlev RV, Romanovich AE, Zhang J, Cong Q, Grishin NV, Kovalenko MG, Shapoval GN. Phylogeography of Two Enigmatic Sulphur Butterflies, Colias mongola Alphéraky, 1897 and Colias tamerlana Staudinger, 1897 (Lepidoptera, Pieridae), with Relations to Wolbachia Infection. INSECTS 2023; 14:943. [PMID: 38132616 PMCID: PMC10743618 DOI: 10.3390/insects14120943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
The genus Colias Fabricius, 1807 includes numerous taxa and forms with uncertain status and taxonomic position. Among such taxa are Colias mongola Alphéraky, 1897 and Colias tamerlana Staudinger, 1897, interpreted in the literature either as conspecific forms, as subspecies of different but morphologically somewhat similar Colias species or as distinct species-level taxa. Based on mitochondrial and nuclear DNA markers, we reconstructed a phylogeographic pattern of the taxa in question. We recover and include in our analysis DNA barcodes of the century-old type specimens, the lectotype of C. tamerlana deposited in the Natural History Museum (Museum für Naturkunde), Berlin, Germany (ZMHU) and the paralectotype of C. tamerlana and the lectotype of C. mongola deposited in the Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia (ZISP). Our analysis grouped all specimens within four (HP_I-HP_IV) deeply divergent but geographically poorly structured clades which did not support nonconspecifity of C. mongola-C. tamerlana. We also show that all studied females of the widely distributed haplogroup HP_II were infected with a single Wolbachia strain belonging to the supergroup B, while the males of this haplogroup, as well as all other investigated specimens of both sexes, were not infected. Our data highlight the relevance of large-scale sampling dataset analysis and the need for testing for Wolbachia infection to avoid erroneous phylogenetic reconstructions and species misidentification.
Collapse
Affiliation(s)
- Nazar A. Shapoval
- Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, Universitetskaya Nab. 1, 199034 St. Petersburg, Russia
| | - Alexander V. Kir’yanov
- Photonics Department, Centro de Investigaciones en Optica, Lomas del Bosque 115, Leon 37150, Mexico;
| | - Anatoly V. Krupitsky
- Department of Entomology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, GSP-1, korp. 12, 119991 Moscow, Russia;
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Pr. 33, 119071 Moscow, Russia
| | - Roman V. Yakovlev
- Department of Ecology, Altai State University, Lenina Pr. 61, 656049 Barnaul, Russia;
- Institute of Biology, Tomsk State University, Lenina Pr. 36, 634050 Tomsk, Russia
| | - Anna E. Romanovich
- Resource Center for Development of Molecular and Cellular Technologies, St. Petersburg State University, Universitetskaya Nab., 7/9, 199034 St. Petersburg, Russia;
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Harry Hines Blvd. 5323, Dallas, TX 75390-9050, USA; (J.Z.); (Q.C.); (N.V.G.)
- Department of Biochemistry, University of Texas Southwestern Medical Center, Harry Hines Blvd. 5323, Dallas, TX 75390-9050, USA
- Eugene McDermott Center For Human Growth & Development, University of Texas Southwestern Medical Center, Harry Hines Blvd. 5323, Dallas, TX 75390-9050, USA
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Harry Hines Blvd. 5323, Dallas, TX 75390-9050, USA; (J.Z.); (Q.C.); (N.V.G.)
- Eugene McDermott Center For Human Growth & Development, University of Texas Southwestern Medical Center, Harry Hines Blvd. 5323, Dallas, TX 75390-9050, USA
| | - Nick V. Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Harry Hines Blvd. 5323, Dallas, TX 75390-9050, USA; (J.Z.); (Q.C.); (N.V.G.)
- Department of Biochemistry, University of Texas Southwestern Medical Center, Harry Hines Blvd. 5323, Dallas, TX 75390-9050, USA
| | - Margarita G. Kovalenko
- Research and Methodological Department of Entomology, All-Russian Plant Quarantine Center, Pogranichnaya 32, 140150 Bykovo, Russia;
| | - Galina N. Shapoval
- Department of Ecology, Altai State University, Lenina Pr. 61, 656049 Barnaul, Russia;
| |
Collapse
|
18
|
Zwonitzer KD, Iverson ENK, Sterling JE, Weaver RJ, Maclaine BA, Havird JC. Disentangling Positive Selection from Relaxed Selection in Animal Mitochondrial Genomes. Am Nat 2023; 202:E121-E129. [PMID: 37792916 PMCID: PMC10955554 DOI: 10.1086/725805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractDisentangling different types of selection is a common goal in molecular evolution. Elevated dN/dS ratios (the ratio of nonsynonymous to synonymous substitution rates) in focal lineages are often interpreted as signs of positive selection. Paradoxically, relaxed purifying selection can also result in elevated dN/dS ratios, but tests to distinguish these two causes are seldomly implemented. Here, we reevaluated seven case studies describing elevated dN/dS ratios in animal mitochondrial DNA (mtDNA) and their accompanying hypotheses regarding selection. They included flightless lineages versus flighted lineages in birds, bats, and insects and physiological adaptations in snakes, two groups of electric fishes, and primates. We found that elevated dN/dS ratios were often not caused by the predicted mechanism, and we sometimes found strong support for the opposite mechanism. We discuss reasons why energetic hypotheses may be confounded by other selective forces acting on mtDNA and caution against overinterpreting singular molecular signals, including elevated dN/dS ratios.
Collapse
Affiliation(s)
- Kendra D. Zwonitzer
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Erik N. K. Iverson
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Jess E. Sterling
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Ryan J. Weaver
- Department of Ecology, Evolution, and Organismal Biology and Department of Natural Resource Ecology and Management, Iowa State University, Ames, Iowa 50011
| | - Bradley A. Maclaine
- Department of Human Development and Family Sciences, University of Texas at Austin, Austin, Texas 78712
| | - Justin C. Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
19
|
Pollmann M, Kuhn D, König C, Homolka I, Paschke S, Reinisch R, Schmidt A, Schwabe N, Weber J, Gottlieb Y, Steidle JLM. New species based on the biological species concept within the complex of Lariophagus distinguendus (Hymenoptera, Chalcidoidea, Pteromalidae), a parasitoid of household pests. Ecol Evol 2023; 13:e10524. [PMID: 37720058 PMCID: PMC10500055 DOI: 10.1002/ece3.10524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/07/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
The pteromalid parasitoid Lariophagus distinguendus (Foerster) belongs to the Hymenoptera, a megadiverse insect order with high cryptic diversity. It attacks stored product pest beetles in human storage facilities. Recently, it has been shown to consist of two separate species. To further study its cryptic diversity, strains were collected to compare their relatedness using barcoding and nuclear genes. Nuclear genes identified two clusters which agree with the known two species, whereas the barcode fragment determined an additional third Clade. Total reproductive isolation (RI) according to the biological species concept (BSC) was investigated in crossing experiments within and between clusters using representative strains. Sexual isolation exists between all studied pairs, increasing from slight to strong with genetic distance. Postzygotic barriers mostly affected hybrid males, pointing to Haldane's rule. Hybrid females were only affected by unidirectional Spiroplasma-induced cytoplasmic incompatibility and behavioural sterility, each in one specific strain combination. RI was virtually absent between strains separated by up to 2.8% COI difference, but strong or complete in three pairs from one Clade each, separated by at least 7.2%. Apparently, each of these clusters represents one separate species according to the BSC, highlighting cryptic diversity in direct vicinity to humans. In addition, these results challenge the recent 'turbo-taxonomy' practice of using 2% COI differences to delimitate species, especially within parasitic Hymenoptera. The gradual increase in number and strength of reproductive barriers between strains with increasing genetic distance also sheds light on the emergence of barriers during the speciation process in L. distinguendus.
Collapse
Affiliation(s)
- Marie Pollmann
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Denise Kuhn
- Department of Entomology 360c, Institute of PhytomedicineUniversity of HohenheimStuttgartGermany
| | - Christian König
- Akademie für Natur‐ und Umweltschutz Baden‐WürttembergStuttgartGermany
| | - Irmela Homolka
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Sina Paschke
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Ronja Reinisch
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Anna Schmidt
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Noa Schwabe
- Plant Evolutionary Biology 190b, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Justus Weber
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Yuval Gottlieb
- Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary MedicineHebrew University of JerusalemRehovotIsrael
| | - Johannes Luitpold Maria Steidle
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
- KomBioTa – Center of Biodiversity and Integrative TaxonomyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
20
|
Dean LL, Magalhaes IS, D’Agostino D, Hohenlohe P, MacColl ADC. On the Origins of Phenotypic Parallelism in Benthic and Limnetic Stickleback. Mol Biol Evol 2023; 40:msad191. [PMID: 37652053 PMCID: PMC10490448 DOI: 10.1093/molbev/msad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Rapid evolution of similar phenotypes in similar environments, giving rise to in situ parallel adaptation, is an important hallmark of ecological speciation. However, what appears to be in situ adaptation can also arise by dispersal of divergent lineages from elsewhere. We test whether two contrasting phenotypes repeatedly evolved in parallel, or have a single origin, in an archetypal example of ecological adaptive radiation: benthic-limnetic three-spined stickleback (Gasterosteus aculeatus) across species pair and solitary lakes in British Columbia. We identify two genomic clusters across freshwater populations, which differ in benthic-limnetic divergent phenotypic traits and separate benthic from limnetic individuals in species pair lakes. Phylogenetic reconstruction and niche evolution modeling both suggest a single evolutionary origin for each of these clusters. We detected strong phylogenetic signal in benthic-limnetic divergent traits, suggesting that they are ancestrally retained. Accounting for ancestral state retention, we identify local adaptation of body armor due to the presence of an intraguild predator, the sculpin (Cottus asper), and environmental effects of lake depth and pH on body size. Taken together, our results imply a predominant role for retention of ancestral characteristics in driving trait distribution, with further selection imposed on some traits by environmental factors.
Collapse
Affiliation(s)
- Laura L Dean
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, UK
| | - Isabel Santos Magalhaes
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, UK
- Department of Life Sciences, School of Health and Life Sciences, Whitelands College, University of Roehampton, London, UK
| | - Daniele D’Agostino
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, UK
- Water Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Paul Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Andrew D C MacColl
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
21
|
Lawrence ER, Pedersen EJ, Fraser DJ. Macrogenetics reveals multifaceted influences of environmental variation on vertebrate population genetic diversity across the Americas. Mol Ecol 2023; 32:4557-4569. [PMID: 37365672 DOI: 10.1111/mec.17059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
The broad scale distribution of population-specific genetic diversity (GDP ) across taxa remains understudied relative to species diversity gradients, despite its relevance for systematic conservation planning. We used nuclear DNA data collected from 3678 vertebrate populations across the Americas to assess the role of environmental and spatial variables in structuring the distribution of GDP , a key component of adaptive potential in the face of environmental change. We specifically assessed non-linear trends for a metric of GDP, expected heterozygosity (HE ), and found more evidence for spatial hotspots and cold spots in HE rather than a strict pattern with latitude. We also detected inconsistent relationships between HE and environmental variables, where only 11 of 30 environmental comparisons among taxa groups were statistically significant at the .05 level, and the shape of significant trends differed substantially across vertebrate groups. Only one of six taxonomic groups, freshwater fishes, consistently showed significant relationships between HE and most (four of five) environmental variables. The remaining groups had statistically significant relationships for either two (amphibians, reptiles), one (birds, mammals), or no variables (anadromous fishes). Our study highlights gaps in the theoretical foundation upon which macrogenetic predictions have been made thus far in the literature, as well as the nuances for assessing broad patterns in GDP among vertebrate groups. Overall, our results suggest a disconnect between patterns of species and genetic diversity, and underscores that large-scale factors affecting genetic diversity may not be the same factors as those shaping taxonomic diversity. Thus, careful spatial and taxonomic-specific considerations are needed for applying macrogenetics to conservation planning.
Collapse
Affiliation(s)
| | - Eric J Pedersen
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Dylan J Fraser
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Baião GC, Schneider DI, Miller WJ, Klasson L. Multiple introgressions shape mitochondrial evolutionary history in Drosophila paulistorum and the Drosophila willistoni group. Mol Phylogenet Evol 2023; 180:107683. [PMID: 36574824 DOI: 10.1016/j.ympev.2022.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Hybridization and the consequent introgression of genomic elements is an important source of genetic diversity for biological lineages. This is particularly evident in young clades in which hybrid incompatibilities are still incomplete and mixing between species is more likely to occur. Drosophila paulistorum, a representative of the Neotropical Drosophila willistoni subgroup, is a classic model of incipient speciation. The species is divided into six semispecies that show varying degrees of pre- and post-mating incompatibility with each other. In the present study, we investigate the mitochondrial evolutionary history of D. paulistorum and the willistoni subgroup. For that, we perform phylogenetic and comparative analyses of the complete mitochondrial genomes and draft nuclear assemblies of 25 Drosophila lines of the willistoni and saltans species groups. Our results show that the mitochondria of D. paulistorum are polyphyletic and form two non-sister clades that we name α and β. Identification and analyses of nuclear mitochondrial insertions further reveal that the willistoni subgroup has an α-like mitochondrial ancestor and strongly suggest that both the α and β mitochondria of D. paulistorum were acquired through introgression from unknown fly lineages of the willistoni subgroup. We also uncover multiple mitochondrial introgressions across D. paulistorum semispecies and generate novel insight into the evolution of the species.
Collapse
Affiliation(s)
- Guilherme C Baião
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden.
| | - Daniela I Schneider
- Lab Genome Dynamics, Department Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria.
| | - Wolfgang J Miller
- Lab Genome Dynamics, Department Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria.
| | - Lisa Klasson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden.
| |
Collapse
|
23
|
Rodrigues BL, Galati EAB. Molecular taxonomy of phlebotomine sand flies (Diptera, Psychodidae) with emphasis on DNA barcoding: A review. Acta Trop 2023; 238:106778. [PMID: 36435214 DOI: 10.1016/j.actatropica.2022.106778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
The taxonomy and systematics of sand flies (Diptera, Psychodidae, Phlebotominae) are one of the pillars of research aimed to identifying vector populations and the agents transmitted by these insects. Traditionally, the use of morphological traits has been the main line of evidence for the definition of species, but the use of DNA sequences is useful as an integrative approach for their delimitation. Here, we discuss the current status of the molecular taxonomy of sand flies, including their most sequenced molecular markers and the main results. Only about 37% of all sand fly species have been processed for any molecular marker and are publicly available in the NCBI GenBank or BOLD Systems databases. The genera Phlebotomus, Nyssomyia, Psathyromyia and Psychodopygus are well-sampled, accounting for more than 56% of their sequenced species. However, less than 34% of the species of Sergentomyia, Lutzomyia, Trichopygomyia and Trichophoromyia have been sampled, representing a major gap in the knowledge of these groups. The most sequenced molecular markers are those within mtDNA, especially the DNA barcoding fragment of the cytochrome c oxidase subunit I (coi) gene, which has shown promising results in detecting cryptic diversity within species. Few sequences of conserved genes have been generated, which hampers higher-level phylogenetic inferences. We argue that sand fly species should be sequenced for at least the coi DNA barcoding marker, but multiple markers with different mutation rates should be assessed, whenever possible, to generate multilocus analysis.
Collapse
Affiliation(s)
- Bruno Leite Rodrigues
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública da Universidade de São Paulo (FSP/USP). Av. Dr. Arnaldo, 715 - Cerqueira César, São Paulo SP, Brazil, 01246-904.
| | - Eunice Aparecida Bianchi Galati
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública da Universidade de São Paulo (FSP/USP). Av. Dr. Arnaldo, 715 - Cerqueira César, São Paulo SP, Brazil, 01246-904
| |
Collapse
|
24
|
Koh C, Frangeul L, Blanc H, Ngoagouni C, Boyer S, Dussart P, Grau N, Girod R, Duchemin JB, Saleh MC. Ribosomal RNA (rRNA) sequences from 33 globally distributed mosquito species for improved metagenomics and species identification. eLife 2023; 12:82762. [PMID: 36688360 PMCID: PMC10014081 DOI: 10.7554/elife.82762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Total RNA sequencing (RNA-seq) is an important tool in the study of mosquitoes and the RNA viruses they vector as it allows assessment of both host and viral RNA in specimens. However, there are two main constraints. First, as with many other species, abundant mosquito ribosomal RNA (rRNA) serves as the predominant template from which sequences are generated, meaning that the desired host and viral templates are sequenced far less. Second, mosquito specimens captured in the field must be correctly identified, in some cases to the sub-species level. Here, we generate mosquito rRNA datasets which will substantially mitigate both of these problems. We describe a strategy to assemble novel rRNA sequences from mosquito specimens and produce an unprecedented dataset of 234 full-length 28S and 18S rRNA sequences of 33 medically important species from countries with known histories of mosquito-borne virus circulation (Cambodia, the Central African Republic, Madagascar, and French Guiana). These sequences will allow both physical and computational removal of rRNA from specimens during RNA-seq protocols. We also assess the utility of rRNA sequences for molecular taxonomy and compare phylogenies constructed using rRNA sequences versus those created using the gold standard for molecular species identification of specimens-the mitochondrial cytochrome c oxidase I (COI) gene. We find that rRNA- and COI-derived phylogenetic trees are incongruent and that 28S and concatenated 28S+18S rRNA phylogenies reflect evolutionary relationships that are more aligned with contemporary mosquito systematics. This significant expansion to the current rRNA reference library for mosquitoes will improve mosquito RNA-seq metagenomics by permitting the optimization of species-specific rRNA depletion protocols for a broader range of species and streamlining species identification by rRNA sequence and phylogenetics.
Collapse
Affiliation(s)
- Cassandra Koh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, F-75015ParisFrance
| | - Lionel Frangeul
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, F-75015ParisFrance
| | - Hervé Blanc
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, F-75015ParisFrance
| | - Carine Ngoagouni
- Institut Pasteur de Bangui, Medical Entomology LaboratoryBanguiCentral African Republic
| | - Sébastien Boyer
- Institut Pasteur du Cambodge, Medical and Veterinary Entomology UnitPhnom PenhCambodia
| | | | - Nina Grau
- Institut Pasteur de Madagascar, Medical Entomology UnitAntananarivoMadagascar
| | - Romain Girod
- Institut Pasteur de Madagascar, Medical Entomology UnitAntananarivoMadagascar
| | - Jean-Bernard Duchemin
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile AbonnencCayenneFrench Guiana
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, F-75015ParisFrance
| |
Collapse
|
25
|
Miranda CL, Farias IP, Da Silva MNF, Antonelli A, Machado AF, Leite RN, Nunes MDS, De Oliveira TG, Pieczarka JC. Diversification of Amazonian spiny tree rats in genus Makalata (Rodentia, Echimyidae): Cryptic diversity, geographic structure and drivers of speciation. PLoS One 2022; 17:e0276475. [PMID: 36520936 PMCID: PMC9754209 DOI: 10.1371/journal.pone.0276475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/10/2022] [Indexed: 12/23/2022] Open
Abstract
Amazonian mammal diversity is exceptionally high, yet new taxonomic discoveries continue to be made and many questions remain for understanding its diversification through time and space. Here we investigate the diversification of spiny rats in the genus Makalata, whose species are strongly associated with seasonally flooded forests, watercourses and flooded islands. We use a biogeographical approach based on a mitochondrial cytochrome b gene through divergence time estimation and reconstruction of ancestral areas and events. Our findings indicate an ancient origin of Makalata for the Guiana Shield and Eastern Amazonia as ancestral area. A first cladogenetic event led to a phylogeographic break into two broader clades of Makalata through dispersal, implying a pattern of western/Eastern Amazonian clades coinciding with the Purus Arch (middle Miocene). Most of subclades we infer originated between the late Pliocene to the early Pleistocene, with few recent exceptions in the early Pliocene through dispersal and vicariant events. The hypothesis of rivers as dispersal barriers is not corroborated for Makalata, as expected for mammalian species associated with seasonally flooded environments. We identify two key events for the expansion and diversification of Makalata species: the presence of geologically stable areas in the Guiana and Brazilian shields and the transition from lacustrine conditions in western Amazonia (Acre system) to a river system, with the establishment of the Amazon River transcontinental system and its tributaries. Our results are congruent with older geological scenarios for the Amazon basin formation (Miocene), but we do not discard the influence of recent dynamics on some speciation events and, mainly, on phylogeographic structuring processes.
Collapse
Affiliation(s)
- Cleuton Lima Miranda
- Postgraduate Program in Zoology of the Museu Paraense Emílio Goeldi, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Animal Evolution and Genetics, Institute of Biological Sciences, Department of Genetics, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | - Izeni Pires Farias
- Laboratory of Animal Evolution and Genetics, Institute of Biological Sciences, Department of Genetics, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | - Alexandre Antonelli
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Arielli Fabrício Machado
- Laboratory of Animal Evolution and Genetics, Institute of Biological Sciences, Department of Genetics, Federal University of Amazonas, Manaus, Amazonas, Brazil
- Postgraduate Program in Ecology, National Amazon Research Institute, Manaus, Amazonas, Brazil
| | - Rafael N. Leite
- Postgraduate Program in Ecology, National Amazon Research Institute, Manaus, Amazonas, Brazil
| | - Mario Da Silva Nunes
- Laboratory of Animal Evolution and Genetics, Institute of Biological Sciences, Department of Genetics, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | - Julio Cesar Pieczarka
- Cytogenetics Laboratory, Center for Advanced Biodiversity Studies, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
26
|
Ottati S, Eberle J, Rulik B, Köhler F, Ahrens D. From DNA barcodes to ecology: Meta-analysis of central European beetles reveal link with species ecology but also to data pattern and gaps. Ecol Evol 2022; 12:e9650. [PMID: 36568864 PMCID: PMC9771709 DOI: 10.1002/ece3.9650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
DNA barcoding has been used worldwide to identify biological specimens and to delimit species. It represents a cost-effective, fast, and efficient way to assess biodiversity with help of the public Barcode of Life Database (BOLD) accounting for more than 236,000 animal species and more than 10 million barcode sequences. Here, we performed a meta-analysis of available barcode data of central European Coleoptera to detect intraspecific genetic patterns among ecological groups in relation to geographic distance with the aim to investigate a possible link between infraspecific variation and species ecology. We collected information regarding feeding style, body size, as well as habitat and biotope preferences. Mantel tests and two variants of Procrustes analysis, both involving the Principal Coordinates Neighborhood Matrices (PCNM) approach, were applied on genetic and geographic distance matrices. However, significance levels were too low to further use the outcome for further trait investigation: these were in mean for all ecological guilds only 7.5, 9.4, or 15.6% for PCNM + PCA, NMDS + PCA, and Mantel test, respectively, or at best 28% for a single guild. Our study confirmed that certain ecological traits were associated with higher species diversity and foster stronger genetic differentiation. Results suggest that increased numbers of species, sampling localities, and specimens for a chosen area of interest may give new insights to explore barcode data and species ecology for the scope of conservation on a larger scale. We performed a meta-analysis of available barcode data of central European beetles to detect intraspecific genetic patterns among ecological groups in relation to geographic distance, regarding feeding style, body size, as well as habitat and biotope preferences. Our study confirmed that certain ecological traits were associated with higher species diversity and foster stronger genetic differentiation. However, significance levels were too low to further use the outcome for further trait investigation.
Collapse
Affiliation(s)
- Sara Ottati
- Zoologisches Forschungsmuseum A. Koenig (LIB)BonnGermany
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoTurinItaly
| | - Jonas Eberle
- Zoologisches Forschungsmuseum A. Koenig (LIB)BonnGermany
- Department of Environment & BiodiversityUniversity of SalzburgSalzburgAustria
| | - Björn Rulik
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoTurinItaly
| | - Frank Köhler
- Coleopterological Research OfficeBornheimGermany
| | - Dirk Ahrens
- Zoologisches Forschungsmuseum A. Koenig (LIB)BonnGermany
| |
Collapse
|
27
|
Multiple invasions, Wolbachia and human-aided transport drive the genetic variability of Aedes albopictus in the Iberian Peninsula. Sci Rep 2022; 12:20682. [PMID: 36450768 PMCID: PMC9712423 DOI: 10.1038/s41598-022-24963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
The Asian tiger mosquito, Aedes albopictus, is one of the most invasive species in the world. Native to the tropical forests of Southeast Asia, over the past 30 years it has rapidly spread throughout tropical and temperate regions of the world. Its dramatic expansion has resulted in public health concerns as a consequence of its vector competence for at least 16 viruses. Previous studies showed that Ae. albopictus spread has been facilitated by human-mediated transportation, but much remains unknown about how this has affected its genetic attributes. Here we examined the factors that contributed to shaping the current genetic constitution of Ae. albopictus in the Iberian Peninsula, where the species was first found in 2004, by combining population genetics and Bayesian modelling. We found that both mitochondrial and nuclear DNA markers showed a lack of genetic structure and the presence of worldwide dominant haplotypes, suggesting regular introductions from abroad. Mitochondrial DNA showed little genetic diversity compared to nuclear DNA, likely explained by infection with maternally transmitted bacteria of the genus Wolbachia. Multilevel models revealed that greater mosquito fluxes (estimated from commuting patterns and tiger mosquito population distribution) and spatial proximity between sampling sites were associated with lower nuclear genetic distance, suggesting that rapid short- and medium-distance dispersal is facilitated by humans through vehicular traffic. This study highlights the significant role of human transportation in shaping the genetic attributes of Ae. albopictus and promoting regional gene flow, and underscores the need for a territorially integrated surveillance across scales of this disease-carrying mosquito.
Collapse
|
28
|
Identification of cetaceans from bones using molecular techniques provides insights into cetacean species diversity and composition in coastal western Taiwan Strait waters, China. CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-022-01296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Wei Y, He S, Wang J, Fan P, He Y, Hu K, Chen Y, Zhou G, Zhong D, Zheng X. Genome-wide SNPs reveal novel patterns of spatial genetic structure in Aedes albopictus (Diptera Culicidae) population in China. Front Public Health 2022; 10:1028026. [PMID: 36438226 PMCID: PMC9685676 DOI: 10.3389/fpubh.2022.1028026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction Since the second half of the 20th century, Aedes albopictus, a vector for more than 20 arboviruses, has spread worldwide. Aedes albopictus is the main vector of infectious diseases transmitted by Aedes mosquitoes in China, and it has caused concerns regarding public health. A comprehensive understanding of the spatial genetic structure of this vector species at a genomic level is essential for effective vector control and the prevention of vector-borne diseases. Methods During 2016-2018, adult female Ae. albopictus mosquitoes were collected from eight different geographical locations across China. Restriction site-associated DNA sequencing (RAD-seq) was used for high-throughput identification of single nucleotide polymorphisms (SNPs) and genotyping of the Ae. albopictus population. The spatial genetic structure was analyzed and compared to those exhibited by mitochondrial cytochrome c oxidase subunit 1 (cox1) and microsatellites in the Ae. albopictus population. Results A total of 9,103 genome-wide SNP loci in 101 specimens and 32 haplotypes of cox1 in 231 specimens were identified in the samples from eight locations in China. Principal component analysis revealed that samples from Lingshui and Zhanjiang were more genetically different than those from the other locations. The SNPs provided a better resolution and stronger signals for novel spatial population genetic structures than those from the cox1 data and a set of previously genotyped microsatellites. The fixation indexes from the SNP dataset showed shallow but significant genetic differentiation in the population. The Mantel test indicated a positive correlation between genetic distance and geographical distance. However, the asymmetric gene flow was detected among the populations, and it was higher from south to north and west to east than in the opposite directions. Conclusions The genome-wide SNPs revealed seven gene pools and fine spatial genetic structure of the Ae. albopictus population in China. The RAD-seq approach has great potential to increase our understanding of the spatial dynamics of population spread and establishment, which will help us to design new strategies for controlling vectors and mosquito-borne diseases.
Collapse
Affiliation(s)
- Yong Wei
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China,Clinical Laboratory, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Song He
- Clinical Laboratory, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Jiatian Wang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peiyang Fan
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yulan He
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ke Hu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yulan Chen
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Xueli Zheng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China,*Correspondence: Xueli Zheng
| |
Collapse
|
30
|
Nishide Y, Sugimoto TN, Watanabe K, Egami H, Kageyama D. Genetic variations and microbiome of the poultry red mite Dermanyssus gallinae. Front Microbiol 2022; 13:1031535. [PMID: 36425043 PMCID: PMC9680903 DOI: 10.3389/fmicb.2022.1031535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
The poultry red mite Dermanyssus gallinae poses a significant threat to the health of hens and poultry production. A comprehensive understanding of D. gallinae is necessary to develop sustainable and efficacious control methods. Here we examined 144 D. gallinae collected from 18 poultry farms throughout the Japanese Archipelago for their genetic variations based on mitochondrial cytochrome c oxidase subunit I (COI) sequences, and microbiome variations based on amplicon sequencing of the 16S ribosomal RNA gene. According to COI sequencing, the Japanese samples were categorized into three haplogroups, which did not reflect the geographical distribution. Microbiome analyses found that the major bacteria associated with D. gallinae were Bartonella, Cardinium, Wolbachia, and Tsukamurella, with Bartonella being most predominant. Among 144 individual mites, all possessed one of the two major types of Bartonella (Bartonella sp. A), while 140 mites possessed the other type (Bartonella sp. B). The presence of the two strains of Bartonella was also confirmed by a single copy gene, rpoB. The presence of Bartonella in laid eggs suggested transovarial vertical transmission. Given that obligate blood-feeding arthropods generally require a supply of B vitamins from symbiotic bacteria, Bartonella may play an important role in mite survival. Rickettsiella, a major symbiont in European D. gallinae populations, and suggested to be an important symbiont by genomic data, was rarely found in Japanese populations. Cardinium detected from D. gallinae fell into a major clade found widely in arthropods, whereas Wolbachia detected in Japanese D. gallinae appear to be a new lineage, located at the base of Wolbachia phylogeny. Of the mitochondrial phylogeny, infection patterns of Cardinium and Wolbachia were strongly correlated, possibly suggesting one or both of the symbionts induce reproductive manipulations and increase spread in the host populations.
Collapse
Affiliation(s)
- Yudai Nishide
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- *Correspondence: Yudai Nishide,
| | - Takafumi N. Sugimoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kenji Watanabe
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hiroshi Egami
- Research and Development Sector, SC Environmental Science Co., Ltd., Chuo-ku,Tokyo, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- *Correspondence: Yudai Nishide,
| |
Collapse
|
31
|
Anand R, Singh SP, Sahu N, Singh YT, Mazumdar-Leighton S, Bentur JS, Nair S. Polymorphisms in the hypervariable control region of the mitochondrial DNA differentiate BPH populations. FRONTIERS IN INSECT SCIENCE 2022; 2:987718. [PMID: 38468808 PMCID: PMC10926497 DOI: 10.3389/finsc.2022.987718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/17/2022] [Indexed: 03/13/2024]
Abstract
The brown planthopper (BPH; Nilaparvata lugens) is one of India's most destructive pests of rice. BPH, a monophagous migratory insect, reported from all major rice-growing ecosystems of the country, is capable of traversing large distances and causing massive crop loss. A crucial step for developing viable management strategies is understanding its population dynamics. Very few reliable markers are currently available to screen BPH populations for their diversity. In the current investigation, we developed a combinatorial approach using the polymorphism present within the mitochondrial Control Region of BPH and in the nuclear genome (genomic simple sequence repeats; gSSRs) to unravel the diversity present in BPH populations collected from various rice-growing regions of India. Using two specific primer pairs, the complete Control Region (1112 to 2612 bp) was PCR amplified as two overlapping fragments, cloned and sequenced from BPH individuals representing nine different populations. Results revealed extensive polymorphism within this region due to a variable number of tandem repeats. The three selected gSSR markers also exhibited population-specific amplification patterns. Overall genetic diversity between the nine populations was high (>5%). Further, in silico double-digestion of the consensus sequences of the Control Region, with HpyCH4IV and Tsp45I restriction enzymes, revealed unique restriction fragment length polymorphisms (digital-RFLPs; dRFLPs) that differentiated all the nine BPH populations. To the best of our knowledge, this is the first report of markers developed from the Control Region of the BPH mitogenome that can differentiate populations. Eventually, such reliable and rapid marker-based identification of BPH populations will pave the way for an efficient pest management strategy.
Collapse
Affiliation(s)
- Rashi Anand
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- Plant Biotic Interaction Lab, Department of Botany, University of Delhi, Delhi, India
| | | | - Nihar Sahu
- Agri Biotech Foundation, Hyderabad, India
| | | | | | | | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
32
|
Park E, Poulin R. Extremely divergent COI sequences within an amphipod species complex: A possible role for endosymbionts? Ecol Evol 2022; 12:e9448. [PMID: 36311398 PMCID: PMC9609454 DOI: 10.1002/ece3.9448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Some heritable endosymbionts can affect host mtDNA evolution in various ways. Amphipods host diverse endosymbionts, but whether their mtDNA has been influenced by these endosymbionts has yet to be considered. Here, we investigated the role of endosymbionts (microsporidians and Rickettsia) in explaining highly divergent COI sequences in Paracalliope fluviatilis species complex, the most common freshwater amphipods in New Zealand. We first contrasted phylogeographic patterns using COI, ITS, and 28S sequences. While molecular species delimitation methods based on 28S sequences supported 3-4 potential species (N, C, SA, and SB) among freshwater lineages, COI sequences supported 17-27 putative species reflecting high inter-population divergence. The deep divergence between NC and S lineages (~20%; 28S) and the substitution saturation on the 3rd codon position of COI detected even within one lineage (SA) indicate a very high level of morphological stasis. Interestingly, individuals infected and uninfected by Rickettsia comprised divergent COI lineages in one of four populations tested, suggesting a potential influence of endosymbionts in mtDNA patterns. We propose several plausible explanations for divergent COI lineages, although they would need further testing with multiple lines of evidence. Lastly, due to common morphological stasis and the presence of endosymbionts, phylogeographic patterns of amphipods based on mtDNA should be interpreted with caution.
Collapse
Affiliation(s)
- Eunji Park
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Robert Poulin
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
33
|
Wu MY, Lau CJ, Ng EYX, Baveja P, Gwee CY, Sadanandan K, Ferasyi TR, Haminuddin, Ramadhan R, Menner JK, Rheindt FE. Genomes From Historic DNA Unveil Massive Hidden Extinction and Terminal Endangerment in a Tropical Asian Songbird Radiation. Mol Biol Evol 2022; 39:6692815. [PMID: 36124912 PMCID: PMC9486911 DOI: 10.1093/molbev/msac189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quantifying the magnitude of the global extinction crisis is important but remains challenging, as many extinction events pass unnoticed owing to our limited taxonomic knowledge of the world's organisms. The increasing rarity of many taxa renders comprehensive sampling difficult, further compounding the problem. Vertebrate lineages such as birds, which are thought to be taxonomically well understood, are therefore used as indicator groups for mapping and quantifying global extinction. To test whether extinction patterns are adequately gauged in well-studied groups, we implemented ancient-DNA protocols and retrieved whole genomes from the historic DNA of museum specimens in a widely known songbird radiation of shamas (genus Copsychus) that is assumed to be of least conservation concern. We uncovered cryptic diversity and an unexpected degree of hidden extinction and terminal endangerment. Our analyses reveal that >40% of the phylogenetic diversity of this radiation is already either extinct in the wild or nearly so, including the two genomically most distinct members of this group (omissus and nigricauda), which have so far flown under the conservation radar as they have previously been considered subspecies. Comparing the genomes of modern samples with those from roughly a century ago, we also found a significant decrease in genetic diversity and a concomitant increase in homozygosity affecting various taxa, including small-island endemics that are extinct in the wild as well as subspecies that remain widespread across the continental scale. Our application of modern genomic approaches demonstrates elevated levels of allelic and taxonomic diversity loss in a songbird clade that has not been listed as globally threatened, highlighting the importance of ongoing reassessments of extinction incidence even across well-studied animal groups. Key words: extinction, introgression, white-rumped shama, conservation.
Collapse
Affiliation(s)
- Meng Yue Wu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Clara Jesse Lau
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Elize Ying Xin Ng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Pratibha Baveja
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Chyi Yin Gwee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Keren Sadanandan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Teuku Reza Ferasyi
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Darussalam-Banda Aceh, Indonesia
| | - Haminuddin
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Darussalam-Banda Aceh, Indonesia
| | - Rezky Ramadhan
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Darussalam-Banda Aceh, Indonesia
| | | | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Zelada‐Mázmela E, Reyes‐Flores LE, Sánchez‐Velásquez JJ, Ingar C, Santos‐Rojas LE. Population structure and demographic history of the gastropod Thaisella chocolata (Duclos, 1832) from the Southeast Pacific inferred from mitochondrial DNA analyses. Ecol Evol 2022; 12:e9276. [PMID: 36177117 PMCID: PMC9463045 DOI: 10.1002/ece3.9276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
The present-day population structure of a species reflects the combination of oceanographic currents, life-history traits, and historical events. However, little is known about the mechanisms that have shaped the gene lineage distribution of marine species inhabiting the Southeast Pacific. Here, we provide a comprehensive phylogeographical study of a species distributed along the Southeast Pacific coastal region by analyzing the endemic gastropod Thaisella chocolata (Duclos, 1832). Sequencing of mitochondrial cytochrome c oxidase subunit 1 (CO1) and 16S rRNA revealed strikingly high haplotypic nucleotide and genetic diversity but a lack of significant population differentiation within the survey area. In addition, a star-shaped phylogeny and significantly negative Tajima's D and Fu's Fs tests of neutrality suggested historical occurrence of rapid demographic expansion. Mismatch distributions and Bayesian inference analyses also confirmed T. chocolata to have undergone two ancestral demographic expansions. Calculations suggested that these expansions began in the lower and middle Pleistocene epoch, likely due to continental shelf development and climatic conditions. These findings could help establish a genetic baseline for T. chocolata as the first step toward sustainable spatial management of this species, as well as understand this species' response to future climate change.
Collapse
Affiliation(s)
- Eliana Zelada‐Mázmela
- Laboratory of Genetics, Physiology, and Reproduction, Faculty of SciencesUniversidad Nacional del SantaNuevo ChimbotePeru
| | - Lorenzo E. Reyes‐Flores
- Laboratory of Genetics, Physiology, and Reproduction, Faculty of SciencesUniversidad Nacional del SantaNuevo ChimbotePeru
| | - Julissa J. Sánchez‐Velásquez
- Laboratory of Genetics, Physiology, and Reproduction, Faculty of SciencesUniversidad Nacional del SantaNuevo ChimbotePeru
| | - Claudia Ingar
- Laboratory of Genetics, Physiology, and Reproduction, Faculty of SciencesUniversidad Nacional del SantaNuevo ChimbotePeru
| | - Luis E. Santos‐Rojas
- Laboratory of Genetics, Physiology, and Reproduction, Faculty of SciencesUniversidad Nacional del SantaNuevo ChimbotePeru
| |
Collapse
|
35
|
Polic D, Yıldırım Y, Lee KM, Franzén M, Mutanen M, Vila R, Forsman A. Linking large-scale genetic structure of three Argynnini butterfly species to geography and environment. Mol Ecol 2022; 31:4381-4401. [PMID: 35841126 PMCID: PMC9544544 DOI: 10.1111/mec.16594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022]
Abstract
Understanding which factors and processes are associated with genetic differentiation within and among species remains a major goal in evolutionary biology. To explore differences and similarities in genetic structure and its association with geographical and climatic factors in sympatric sister species, we conducted a large‐scale (>32° latitude and >36° longitude) comparative phylogeographical study on three Argynnini butterfly species (Speyeria aglaja, Fabriciana adippe and F. niobe) that have similar life histories, but differ in ecological generalism and dispersal abilities. Analyses of nuclear (ddRAD‐sequencing derived SNP markers) and mitochondrial (COI sequences) data revealed differences between species in genetic structure and how genetic differentiation was associated with climatic factors (temperature, solar radiation, precipitation, wind speed). Geographical proximity accounted for much of the variation in nuclear and mitochondrial structure and evolutionary relationships in F. adippe and F. niobe, but only explained the pattern observed in the nuclear data in S. aglaja, for which mitonuclear discordance was documented. In all species, Iberian and Balkan individuals formed genetic clusters, suggesting isolation in glacial refugia and limited postglacial expansion. Solar radiation and precipitation were associated with the genetic structure on a regional scale in all species, but the specific combinations of environmental and geographical factors linked to variation within species were unique, pointing to species‐specific responses to common environments. Our findings show that the species share similar colonization histories, and that the same ecological factors, such as niche breadth and dispersal capacity, covary with genetic differentiation within these species to some extent, thereby highlighting the importance of comparative phylogeographical studies in sympatric sister species.
Collapse
Affiliation(s)
- Daniela Polic
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yeşerin Yıldırım
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.,Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Kyung Min Lee
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland.,Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Markus Franzén
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Marko Mutanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Anders Forsman
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
36
|
Phylogeography and Wolbachia Infections Reveal Postglacial Recolonization Routes of the Parthenogenetic Plant Louse Cacopsylla myrtilli (W. Wagner 1947), (Hemiptera, Psylloidea). J ZOOL SYST EVOL RES 2022. [DOI: 10.1155/2022/5458633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To reveal the phylogeographic pattern of the parthenogenetic psyllid Cacopsylla myrtilli (W. Wagner 1947) (Hemiptera, Psylloidea), we sequenced a 638 bp fragment of the mitochondrial COI gene from 962 individuals. These insects originated from 46 sampling sites, which cover a significant part of the northern Palearctic distribution range of the species. The sequence data revealed 40 haplotypes, with three main (H1, H2, and H3) and 37 derived ones. The main haplotypes H1 or H2 or both were present at all sampling sites. The star-like shape of the haplotype networks indicated recent population expansion. In most cases, the derived haplotypes were specific for each country, suggesting that the main haplotypes H1 and H2 are of refugial origin, and the derived haplotypes have emerged after the postglacial recolonization process. Based on the haplotype sequences, we suggest H3 to represent the ancestral haplotype from which H1 and H2 have evolved. We suggest that the main haplotype H3 together with its derived haplotypes represents bisexual C. myrtilli, which shows a limited distribution on both sides of the border between Finland and Russia in northern Fennoscandia. The genetic diversity was the highest in Sjoa in southern Norway and also high in the White Sea region in northwest Russia. Higher diversity in Sjoa was attributed to both earlier recolonizations compared to that of the White Sea region and the absence of Wolbachia infection. We suggest that these sites were colonized from different Pleistocene refugia, i.e., from western and eastern refugia, respectively. From the White Sea region, recolonization continued eastwards to Ural Mountains and westwards to Finland and further north to Kola Peninsula. From northern Finland, recolonization continued to Finnmark, Norway, and further to Sweden and finally reached a secondary contact zone with colonizers from Norway in Central Sweden. The Caucasus and Siberian/Manchurian refugial regions have played an important role in the origin of C. myrtilli populations in Siberia and the Russian Far East.
Collapse
|
37
|
Camus MF, Alexander-Lawrie B, Sharbrough J, Hurst GDD. Inheritance through the cytoplasm. Heredity (Edinb) 2022; 129:31-43. [PMID: 35525886 PMCID: PMC9273588 DOI: 10.1038/s41437-022-00540-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Most heritable information in eukaryotic cells is encoded in the nuclear genome, with inheritance patterns following classic Mendelian segregation. Genomes residing in the cytoplasm, however, prove to be a peculiar exception to this rule. Cytoplasmic genetic elements are generally maternally inherited, although there are several exceptions where these are paternally, biparentally or doubly-uniparentally inherited. In this review, we examine the diversity and peculiarities of cytoplasmically inherited genomes, and the broad evolutionary consequences that non-Mendelian inheritance brings. We first explore the origins of vertical transmission and uniparental inheritance, before detailing the vast diversity of cytoplasmic inheritance systems across Eukaryota. We then describe the evolution of genomic organisation across lineages, how this process has been shaped by interactions with the nuclear genome and population genetics dynamics. Finally, we discuss how both nuclear and cytoplasmic genomes have evolved to co-inhabit the same host cell via one of the longest symbiotic processes, and all the opportunities for intergenomic conflict that arise due to divergence in inheritance patterns. In sum, we cannot understand the evolution of eukaryotes without understanding hereditary symbiosis.
Collapse
Affiliation(s)
- M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England
| |
Collapse
|
38
|
Ellerstrand SJ, Choudhury S, Svensson K, Andersson MN, Kirkeby C, Powell D, Schlyter F, Jönsson AM, Brydegaard M, Hansson B, Runemark A. Weak population genetic structure in Eurasian spruce bark beetle over large regional scales in Sweden. Ecol Evol 2022; 12:e9078. [PMID: 35822111 PMCID: PMC9260063 DOI: 10.1002/ece3.9078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 01/05/2023] Open
Abstract
The Eurasian spruce bark beetle, Ips typographus, is a major pest, capable of killing spruce forests during large population outbreaks. Recorded dispersal distances of individual beetles are typically within hundreds of meters or a few kilometers. However, the connectivity between populations at larger distances and longer time spans and how this is affected by the habitat is less studied, despite its importance for understanding at which distances local outbreaks may spread. Previous population genetic studies in I. typographus typically used low resolution markers. Here, we use genome-wide data to assess population structure and connectivity of I. typographus in Sweden. We used 152 individuals from 19 population samples, distributed over 830 km from Strömsund (63° 46' 8″ N) in the north to Nyteboda (56° 8' 50″ N) in the south, to capture processes at a large regional scale, and a transect sampling design adjacent to a recent outbreak to capture processes at a smaller scale (76 km). Using restriction site-associated DNA sequencing (RADseq) markers capturing 1409-1997 SNPs throughout the genome, we document a weak genetic structure over the large scale, potentially indicative of high connectivity with extensive gene flow. No differentiation was detected at the smaller scale. We find indications of isolation-by-distance both for relative (F ST) and absolute divergence (Dxy). The two northernmost populations are most differentiated from the remaining populations, and diverge in parallel to the southern populations for a set of outlier loci. In conclusion, the population structure of I. typographus in Sweden is weak, suggesting a high capacity to disperse and establish outbreak populations in new territories.
Collapse
Affiliation(s)
| | - Shruti Choudhury
- Department of BiologyLund UniversityLundSweden
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| | | | | | - Carsten Kirkeby
- Excellent Team for Mitigation, Faculty of Forestry & Wood SciencesCzech University of Life Sciences PragueSuchdolCzech Republic
| | - Daniel Powell
- Animal Welfare and Disease ControlCopenhagen UniversityFrederiksberg CDenmark
| | - Fredrik Schlyter
- Global Change Ecology Research GroupUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
- Department of Plant Protection BiologySwedish University of Agricultural SciencesLommaSweden
| | - Anna Maria Jönsson
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
| | | | | | | |
Collapse
|
39
|
Crossley MS, Latimer CE, Kennedy CM, Snyder WE. Past and recent farming degrades aquatic insect genetic diversity. Mol Ecol 2022. [PMID: 35771845 DOI: 10.1111/mec.16590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 04/07/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Recent declines in once-common species are triggering concern that an environmental crisis point has been reached. Yet, the lack of long abundance time series data for most species can make it difficult to attribute these changes to anthropogenic causes, and to separate them from normal cycles. Genetic diversity, on the other hand, is sensitive to past and recent environmental changes, and reflects a measure of a populations' potential to adapt to future stressors. Here, we consider whether patterns of genetic diversity among aquatic insects can be linked to historical and recent patterns of land use change. We collated mitochondrial cytochrome c oxidase subunit I (COI) variation for >700 aquatic insect species across the United States, where patterns of agricultural expansion and intensification have been documented since the 1800s. We found that genetic diversity was lowest in regions where cropland was historically (pre-1950) most extensive, suggesting a legacy of past environmental harm. Genetic diversity further declined where cropland has since expanded, even after accounting for climate and sampling effects. Notably though, genetic diversity also appeared to rebound where cropland has diminished. Our study suggests that genetic diversity at the community level can be a powerful tool to infer potential population declines and rebounds over longer time spans than is typically possible with ecological data. For the aquatic insects that we considered, patterns of land use many decades ago appear to have left long-lasting damage to genetic diversity that could threaten evolutionary responses to rapid global change.
Collapse
Affiliation(s)
- Michael S Crossley
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA
| | | | - Christina M Kennedy
- Global Protect Oceans, Lands and Waters Program, The Nature Conservancy, Fort Collins, CO, USA
| | - William E Snyder
- Department of Entomology, University of Georgia, Athens, GA, USA
| |
Collapse
|
40
|
Fernández MB, Bleidorn C, Calcaterra LA. Wolbachia Infection in Native Populations of the Invasive Tawny Crazy Ant Nylanderia fulva. FRONTIERS IN INSECT SCIENCE 2022; 2:905803. [PMID: 38468766 PMCID: PMC10926365 DOI: 10.3389/finsc.2022.905803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/06/2022] [Indexed: 03/13/2024]
Abstract
Antagonistic interactions can affect population growth and dispersal of an invasive species. Wolbachia are intracellular endosymbiont bacteria that infect arthropod and nematode hosts and are able to manipulate reproduction, which in some cases leads to cocladogenesis. Moreover, the presence of the strictly maternally transferred Wolbachia in a population can indirectly induce selective sweeps on the hosts' mitochondria. Ants have a Wolbachia infection rate of about 34%, which makes phylogenetic studies using mitochondrial markers vulnerable of being confounded by the effect of the endosymbiont. Nylanderia fulva is an invasive ant native to South America, considered a pest in the United States. Its distribution and biology are poorly known in its native range, and the taxonomic identity of this and its closely related species, Nylanderia pubens, has only recently been understood with the aid of molecular phylogenies. Aiming at estimating robust phylogenetic relationships of N. fulva in its native range, we investigated the presence and pattern of Wolbachia infection in populations of N. fulva from Argentina, part of its native range, to account for its possible effect on the host population structure. Using the ftsZ gene, 30 nests of N. fulva and four from sympatric Nylanderia species were screened for the presence of Wolbachia. We sequenced the MLST genes, the highly variable gene wsp, as well as glyQ, a novel target gene for which new primers were designed. Phylogeny of the ants was estimated using mtDNA (COI). We found supergroup A Wolbachia strains infecting 73% of N. fulva nests and two nests of Nylanderia sp. 1. Wolbachia phylogenetic tree inferred with MLST genes is partially congruent with the host phylogeny topology, with the exception of a lineage of strains shared by ants from different N. fulva clades. Furthermore, by comparing with Wolbachia sequences infecting other ants, we found that the strains infecting different N. fulva clades are not monophyletic. Our findings suggest there are three recent independent horizontally transmitted Wolbachia infections in N. fulva, and we found no evidence of influence of Wolbachia in the host mtDNA based phylogeny.
Collapse
Affiliation(s)
- María Belén Fernández
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Christoph Bleidorn
- Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Luis Alberto Calcaterra
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
41
|
Machado S, Hartwig Bessa M, Nornberg B, Silva Gottschalk M, Robe LJ. Unveiling the Mycodrosophila projectans (Diptera, Drosophilidae) species complex: Insights into the evolution of three Neotropical cryptic and syntopic species. PLoS One 2022; 17:e0268657. [PMID: 35613123 PMCID: PMC9132268 DOI: 10.1371/journal.pone.0268657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
The Zygothrica genus group has been shown to be speciose, with a high number of cryptic species. DNA barcoding approaches have been a valuable tool to uncover cryptic diversity in this lineage, as recently suggested for the Neotropical Mycodrosophila projectans complex, which seems to comprise at least three different species. The aim of this study was to confirm the subdivision of the M. projectans complex while shedding some light on the patterns and processes related to its diversification. In this sense, the use of single and multi-locus datasets under phylogenetic, distance, coalescence, and diagnostic nucleotide approaches confirmed the presence of at least three species under the general morphotype previously described as M. projectans. Only a few subtle morphological differences were found for the three species in terms of aedeagus morphology and abdominal color patterns. Ecologically, sympatry and syntopy seem to be recurrent for these three cryptic species, which present widely overlapping niches, implying niche conservatism. This morphological and ecological similarity has persisted though cladogenesis within the complex, which dates back to the Miocene, providing an interesting example of morphological conservation despite ancient divergence. These results, in addition to contrasting patterns of past demographic fluctuations, allowed us to hypothesize patterns of allopatric or parapatric diversification with secondary contact in Southern Brazil. Nevertheless, genetic diversity was generally high within species, suggesting that migration may encompass an adaptive response to the restrictions imposed by the ephemerality of resources.
Collapse
Affiliation(s)
- Stela Machado
- Universidade Federal de Santa Maria (UFSM), Programa de Pós-Graduação em Biodiversidade Animal (PPGBA), Santa Maria, RS, Brazil
| | - Maiara Hartwig Bessa
- Universidade Federal de Santa Maria (UFSM), Programa de Pós-Graduação em Biodiversidade Animal (PPGBA), Santa Maria, RS, Brazil
| | - Bruna Nornberg
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas (ICB), Rio Grande, RS, Brasil
| | - Marco Silva Gottschalk
- Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas (UFPel), Instituto de Biologia, Campus Capão do Leão, Capão do Leão, RS, Brazil
| | - Lizandra Jaqueline Robe
- Universidade Federal de Santa Maria (UFSM), Programa de Pós-Graduação em Biodiversidade Animal (PPGBA), Santa Maria, RS, Brazil
- * E-mail:
| |
Collapse
|
42
|
White NFD, Mennell H, Power G, Edwards D, Chrimes L, Woolaver L, Velosoa J, Randriamahita, Mozavelo R, Rafeliarisoa TH, Kuchling G, Lopez J, Bekarany E, Charles N, Young R, Lewis R, Bruford MW, Orozco-terWengel P. A population genetic analysis of the Critically Endangered Madagascar big-headed turtle, Erymnochelys madagascariensis across captive and wild populations. Sci Rep 2022; 12:8740. [PMID: 35610259 PMCID: PMC9130144 DOI: 10.1038/s41598-022-12422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/14/2022] [Indexed: 12/31/2022] Open
Abstract
Erymnochelys madagascariensis is a Critically Endangered turtle endemic to Madagascar. Anthropogenic activity has depleted the wild population by 70% in the last century, and effective conservation management is essential to ensuring its persistence. Captive breeding was implemented to augment depleted populations in the southern part of Ankarafantsika National Park (ANP), when no genetic data were available for E. madagascariensis. It is unknown how much of the natural population's diversity is encapsulated in captivity. We used eight microsatellite loci and fragments of two mitochondrial genes to identify the genetic structure of E. madagascariensis in the wild. Captive bred turtles were compared with wild populations in order to assess the representativeness of this ex situ conservation strategy for ANP. Six microsatellite clusters, ten cytochrome b, and nine COI haplotypes were identified across wild populations, with high genetic divergence found between populations in two groups of watersheds. Captive bred individuals represent three out of six sampled microsatellite clusters found in the wild and just one mitochondrial haplotype, possibly due to genetic drift. To improve genetic representation, the strategy of frequent interchange between captive and wild breeders within ANP should be revitalised and, as originally planned, hatchlings or juveniles should not be released beyond ANP.
Collapse
Affiliation(s)
- Nina F D White
- School of Biosciences, Cardiff University, Cardiff, UK
- Institute of Zoology, Zoological Society of London, London, UK
| | - Holly Mennell
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Georgia Power
- School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Luke Chrimes
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Lance Woolaver
- Durrell Wildlife Conservation Trust, Les Augrès Manor, UK
- Wildlife Preservation Canada, Guelph, Canada
| | | | - Randriamahita
- Durrell Wildlife Conservation Trust, Les Augrès Manor, UK
| | | | - Tsilavo Hasina Rafeliarisoa
- Durrell Wildlife Conservation Trust, Les Augrès Manor, UK
- Biodiversity Conservation Madagascar, Antananarivo, Madagascar
| | - Gerald Kuchling
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Javier Lopez
- Animal Health Department, Chester Zoo, Cheshire, UK
| | | | | | - Richard Young
- Durrell Wildlife Conservation Trust, Les Augrès Manor, UK
| | - Richard Lewis
- Durrell Wildlife Conservation Trust, Les Augrès Manor, UK
| | | | | |
Collapse
|
43
|
Universal Mitochondrial Multi-Locus Sequence Analysis (mtMLSA) to Characterise Populations of Unanticipated Plant Pest Biosecurity Detections. BIOLOGY 2022; 11:biology11050654. [PMID: 35625382 PMCID: PMC9138331 DOI: 10.3390/biology11050654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Agricultural and environmental sustainability requires effective biosecurity responses that prevent the establishment or spread of exotic insect pests. Understanding where new detections may have come from or if recurrent detections are connected contributes to this. Suitable population genetic markers use relatively rapidly evolving gene regions which render the PCR method species-specific at best. Because resource limitations mean these are pre-emptively developed for the highest risk species, populations of other exotic pests are unable to be characterised at the time. Here we have developed a generic method that is useful across species within the same taxonomic Order, including where there is little or no prior knowledge of their gene sequences. Markers are formed by concomitant sequencing of four gene regions. Sequence concatenation was shown to retrieve higher resolution signatures than standard DNA barcoding. The method is encouragingly universal, as illustrated across species in ten fly and 11 moth superfamilies. Although as-yet untested in a biosecurity situation, this relatively low-tech, off-the-shelf method makes a proactive contribution to the toolbox of quarantine agencies at the time of detection without the need for impromptu species-specific research and development. Abstract Biosecurity responses to post-border exotic pest detections are more effective with knowledge of where the species may have originated from or if recurrent detections are connected. Population genetic markers for this are typically species-specific and not available in advance for any but the highest risk species, leaving other less anticipated species difficult to assess at the time. Here, new degenerate PCR primer sets are designed for within the Lepidoptera and Diptera for the 3′ COI, ND3, ND6, and 3′ plus 5′ 16S gene regions. These are shown to be universal at the ordinal level amongst species of 14 and 15 families across 10 and 11 dipteran and lepidopteran superfamilies, respectively. Sequencing the ND3 amplicons as an example of all the loci confirmed detection of population-level variation. This supported finding multiple population haplotypes from the publicly available sequences. Concatenation of the sequences also confirmed that higher population resolution is achieved than for the individual genes. Although as-yet untested in a biosecurity situation, this method is a relatively simple, off-the-shelf means to characterise populations. This makes a proactive contribution to the toolbox of quarantine agencies at the time of detection without the need for unprepared species-specific research and development.
Collapse
|
44
|
Schär S, Talavera G, Rana JD, Espadaler X, Cover SP, Shattuck SO, Vila R. Integrative taxonomy reveals cryptic diversity in North American Lasius ants, and an overlooked introduced species. Sci Rep 2022; 12:5970. [PMID: 35396496 PMCID: PMC8993915 DOI: 10.1038/s41598-022-10047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
Biological invasions are a grave threat to ecosystems. The black garden ant (Lasius niger) is a pest species in Europe. Current literature states that L. niger occupies a disjunct native distribution in the Holarctic, however, based on recent work, we re-evaluate this distribution. The native range of L. niger is reconsidered based on phylogenetic relationships (nine mitochondrial and nuclear markers, 5670 bp), DNA-barcoding (98 Holarctic specimens), morphometry (88 Holarctic specimens, 19 different measurements) and subjective assessment of phenotype. The potential spread of this species is estimated using ecological niche modeling. Lasius niger is more closely related to other Palearctic species than to the Nearctic ants known under this name. The latter are described as a distinct species, L. ponderosae sp. nov. However, DNA-barcoding discovered established populations of L. niger in metropolitan areas in Canada (Vancouver and Halifax). We describe a morphometrical method to delineate L. ponderosae sp. nov. and L. niger. MtDNA diversity and divergence is high within L. ponderosae sp. nov., but low within L. niger. More than 1,000,000 km2 are suitable as a habitat for L. niger in North America. This case emphasizes the critical role of integrative taxonomy to detect cryptic species and identify potential biological invasions in their nascent stages.
Collapse
Affiliation(s)
- Sämi Schär
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta, 37, 08003, Barcelona, Catalonia, Spain.
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Jignasha D Rana
- Department of Biological Sciences, The George Washington University, 800 22nd Street, NW, Suite 6000, Washington, DC, 20052, USA
| | - Xavier Espadaler
- CREAF and Unitat d'Ecologia, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Stefan P Cover
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Steven O Shattuck
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta, 37, 08003, Barcelona, Catalonia, Spain
| |
Collapse
|
45
|
Piboon P, Kriengsakpichit N, Poommouang A, Buddhachat K, Brown JL, Kampuansai J, Chomdej S, Kaewmong P, Kittiwattanawong K, Nganvongpanit K. Relationship of stranded cetaceans in Thai territorial waters to global populations: Mitochondrial DNA diversity of Cuvier's beaked whale, Indo Pacific finless porpoise, pygmy sperm whale, and dwarf sperm whale. Sci Prog 2022; 105:368504221103776. [PMID: 35635263 PMCID: PMC10450302 DOI: 10.1177/00368504221103776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Cetaceans inhabit oceans throughout the world. Four specific odontocetes, namely Cuvier's beaked whale (Ziphius cavirostris), Indo Pacific finless porpoise (Neophocaena phocaenoides), pygmy sperm whale (Kogia breviceps), and dwarf sperm whale (Kogia sima), have occasionally been found stranded along Thailand's coastal waters (the Andaman Sea and the Gulf of Thailand). Although shared haplotypes of each species for many locations have been found, and some species have revealed genetic structure through haplotype networks, cetaceans in Thai waters have never been investigated in terms of comparing haplotypes to those that have existed before. Herein, we have illustrated the matrilineally phylogeographic relationships among worldwide populations through Bayesian Phylogenetic tree computations using Markov Chain Monte Carlo (MCMC) and Median-Joining Networks (MJNs). Unique haplotypes of the control region mitochondrial DNA of Thai odontocetes were found for all species. Moreover, a high degree of worldwide haplotype diversity (hd) above 0.8 among the four species was detected, while the lowest degree of nucleotide diversity (π) was observed in the Indo Pacific finless porpoise (1.12% ± 0.184%). An expansion of the effective female population size worldwide of three odontocete species was detected using Bayesian Skyline Reconstruction, but this did not include the Indo Pacific finless porpoise. Because Thai seas are located within the Indo Polynesian province, where this biodiversity hotspot exists, we speculate that these odontocetes may also inhabit specific habitats within the Malay Peninsula and Thailand's territorial waters. Therefore, closer attention and monitoring of these cetacean populations will be necessary for future conservation efforts.
Collapse
Affiliation(s)
- Promporn Piboon
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Napat Kriengsakpichit
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anocha Poommouang
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Buddhachat
- Excellence Center in Veterinary Bioscience, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Janine L. Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Siriwadee Chomdej
- Excellence Center in Veterinary Bioscience, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Korakot Nganvongpanit
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence Center in Veterinary Bioscience, Chiang Mai, Thailand
| |
Collapse
|
46
|
Hinojosa JC, Dapporto L, Pitteloud C, Koubínová D, Hernández-Roldán J, Vicente JC, Alvarez N, Vila R. Hybridization fuelled diversification in Spialia butterflies. Mol Ecol 2022; 31:2951-2967. [PMID: 35263484 PMCID: PMC9310813 DOI: 10.1111/mec.16426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022]
Abstract
The importance of hybridization and introgression is well documented in the evolution of plants but, in insects, their role is not fully understood. Given the fact that insects are the most diverse group of organisms, assessing the impact of reticulation events on their evolution may be key to comprehend the emergence of such remarkable diversity. Here, we used an insect model, the Spialia butterflies, to gather genomic evidence of hybridization as a promoter of novel diversity. By using double‐digest RADseq (ddRADseq), we explored the phylogenetic relationships between Spialia orbifer, S. rosae and S. sertorius, and documented two independent events of interspecific gene flow. Our data support that the Iberian endemism S. rosae probably received genetic material from S. orbifer in both mitochondrial and nuclear DNA, which could have contributed to a shift in the ecological preferences of S. rosae. We also show that admixture between S. sertorius and S. orbifer probably occurred in Italy. As a result, the admixed Sicilian populations of S. orbifer are differentiated from the rest of populations both genetically and morphologically, and display signatures of reproductive character displacement in the male genitalia. Additionally, our analyses indicated that genetic material from S. orbifer is present in S. sertorius along the Italian Peninsula. Our findings add to the view that hybridization is a pervasive phenomenon in nature and in butterflies in particular, with important consequences for evolution due to the emergence of novel phenotypes.
Collapse
Affiliation(s)
- Joan C Hinojosa
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Leonardo Dapporto
- ZEN lab, Biology Department, Università degli Studi di Firenze, 50019, Sesto Fiorentino, Italy
| | - Camille Pitteloud
- Geneva Natural History Museum, Route de Malagnou 1, 1208, Geneva, Switzerland
| | - Darina Koubínová
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Juan Hernández-Roldán
- Departamento de Biología, Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Calle Darwin 2, 28049, Madrid, Spain
| | - Juan Carlos Vicente
- Asociación Española para la Protección de las Mariposas y su Medio (ZERYNTHIA), Madrid, Spain
| | - Nadir Alvarez
- Geneva Natural History Museum, Route de Malagnou 1, 1208, Geneva, Switzerland.,Department of Genetics and Evolution, University of Geneva, Boulevard d'Ivoy 4, 1205, Geneva, Switzerland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| |
Collapse
|
47
|
Doremus MR, Stouthamer CM, Kelly SE, Schmitz-Esser S, Hunter MS. Quality over quantity: unraveling the contributions to cytoplasmic incompatibility caused by two coinfecting Cardinium symbionts. Heredity (Edinb) 2022; 128:187-195. [PMID: 35124699 PMCID: PMC8897438 DOI: 10.1038/s41437-022-00507-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/25/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is a common form of reproductive sabotage caused by maternally inherited bacterial symbionts of arthropods. CI is a two-step manipulation: first, the symbiont modifies sperm in male hosts which results in the death of fertilized, uninfected embryos. Second, when females are infected with a compatible strain, the symbiont reverses sperm modification in the fertilized egg, allowing offspring of infected females to survive and spread the symbiont to high frequencies in a population. Although CI plays a role in arthropod evolution, the mechanism of CI is unknown for many symbionts. Cardinium hertigii is a common CI-inducing symbiont of arthropods, including parasitoid wasps like Encarsia partenopea. This wasp harbors two Cardinium strains, cEina2 and cEina3, and exhibits strong CI. The strains infect wasps at different densities, with the cEina3 present at a lower density than cEina2, and it was previously not known which strain caused CI. By differentially curing wasps of cEina3, we found that this low-density symbiont is responsible for CI and modifies males during their pupal stage. cEina2 does not modify host reproduction and may spread by 'hitchhiking' with cEina3 CI or by conferring an unknown benefit. The cEina3 strain also shows a unique localization pattern in male reproductive tissues. Instead of infecting sperm like other CI-inducing symbionts, cEina3 cells are found in somatic cells at the testis base and around the seminal vesicle. This may allow the low-density cEina3 to efficiently modify host males and suggests that cEina3 uses a different modification strategy than sperm-infecting CI symbionts.
Collapse
Affiliation(s)
- Matthew R. Doremus
- grid.134563.60000 0001 2168 186XGraduate Interdisciplinary Program in Entomology & Insect Science, The University of Arizona, Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XDepartment of Entomology, The University of Arizona, Tucson, AZ 85721 USA
| | - Corinne M. Stouthamer
- grid.213876.90000 0004 1936 738XDepartment of Entomology, The University of Georgia, Athens, GA 30602 USA
| | - Suzanne E. Kelly
- grid.134563.60000 0001 2168 186XDepartment of Entomology, The University of Arizona, Tucson, AZ 85721 USA
| | - Stephan Schmitz-Esser
- grid.34421.300000 0004 1936 7312Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - Martha S. Hunter
- grid.134563.60000 0001 2168 186XDepartment of Entomology, The University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
48
|
Campbell EO, MacDonald ZG, Gage EV, Gage RV, Sperling FAH. Genomics and ecological modelling clarify species integrity in a confusing group of butterflies. Mol Ecol 2022; 31:2400-2417. [PMID: 35212068 DOI: 10.1111/mec.16407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
Recent advances in both genomics and ecological modelling present new, multidisciplinary opportunities for resolving species boundaries and understanding the mechanisms that maintain their integrity in regions of contact. Here, we use a combination of high-throughput DNA sequencing and ecological niche modelling to resolve species boundaries and niche divergence within the Speyeria atlantis-hesperis (Lepidoptera: Nymphalidae) complex, a confusing group of North American butterflies. This complex is notorious for its muddled species delimitations, morphological ambiguity, and extensive mito-nuclear discordance. Our admixture and multispecies coalescent-based analyses of single nucleotide polymorphisms identified substantial divergences between S. atlantis and S. hesperis in areas of contact, as well as between distinct northern and southern lineages within S. hesperis. Our results also provide evidence of past introgression relating to another species, S. zerene, which previous work has shown to be more distantly related to the S. atlantis-hesperis complex. We then used ecological models to predict habitat suitability for each of the three recovered genomic lineages in the S. atlantis-hesperis complex and assess their pairwise niche divergence. These analyses resolved that these three lineages are significantly diverged in their respective niches and are not separated by discontinuities in suitable habitat that might present barriers to gene flow. We therefore infer that ecologically-mediated selection resulting in disparate habitat associations is a principal mechanism reinforcing their genomic integrity. Overall, our results unambiguously support significant evolutionary and ecological divergence between the northern and southern lineages of S. hesperis, sufficient to recognize the southern evolutionary lineage as a distinct species, called S. nausicaa based on taxonomic priority.
Collapse
Affiliation(s)
- E O Campbell
- Department of Biological Sciences, Biosciences Centre, University of Alberta, Edmonton, AB, Canada
| | - Z G MacDonald
- Department of Biological Sciences, Biosciences Centre, University of Alberta, Edmonton, AB, Canada.,Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - E V Gage
- Texas Museum of Entomology, Pipe Creek, TX, U.S.A
| | | | - F A H Sperling
- Department of Biological Sciences, Biosciences Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
49
|
Raupach MJ, Rulik B, Spelda J. Surprisingly high genetic divergence of the mitochondrial DNA barcode fragment (COI) within Central European woodlice species (Crustacea, Isopoda, Oniscidea). Zookeys 2022; 1082:103-125. [PMID: 35115867 PMCID: PMC8794987 DOI: 10.3897/zookeys.1082.69851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/20/2021] [Indexed: 11/12/2022] Open
Abstract
DNA barcoding has become the most popular approach for species identification in recent years. As part of the German Barcode of Life project, the first DNA barcode library for terrestrial and freshwater isopods from Germany is presented. The analyzed barcode library included 38 terrestrial (78% of the documented species of Germany) and five freshwater (63%) species. A total of 513 new barcodes was generated and 518 DNA barcodes were analyzed. This analysis revealed surprisingly high intraspecific genetic distances for numerous species, with a maximum of 29.4% for Platyarthrus hoffmannseggii Brandt, 1833. The number of BINs per species ranged from one (32 species, 68%) to a maximum of six for Trachelipus rathkii (Brandt, 1833). In spite of such high intraspecific variability, interspecific distances with values between 12.6% and 29.8% allowed a valid species assignment of all analyzed isopods. The observed high intraspecific distances presumably result from phylogeographic events, Wolbachia infections, atypical mitochondrial DNAs, heteroplasmy, or various combinations of these factors. Our study represents the first step in generating an extensive reference library of DNA barcodes for terrestrial and freshwater isopods for future molecular biodiversity assessment studies.
Collapse
|
50
|
Towett-Kirui S, Morrow JL, Riegler M. Substantial rearrangements, single nucleotide frameshift deletion and low diversity in mitogenome of Wolbachia-infected strepsipteran endoparasitoid in comparison to its tephritid hosts. Sci Rep 2022; 12:477. [PMID: 35013476 PMCID: PMC8748643 DOI: 10.1038/s41598-021-04398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022] Open
Abstract
Insect mitogenome organisation is highly conserved, yet, some insects, especially with parasitic life cycles, have rearranged mitogenomes. Furthermore, intraspecific mitochondrial diversity can be reduced by fitness-affecting bacterial endosymbionts like Wolbachia due to their maternal coinheritance with mitochondria. We have sequenced mitogenomes of the Wolbachia-infected endoparasitoid Dipterophagus daci (Strepsiptera: Halictophagidae) and four of its 22 known tephritid fruit fly host species using total genomic extracts of parasitised flies collected across > 700 km in Australia. This halictophagid mitogenome revealed extensive rearrangements relative to the four fly mitogenomes which exhibited the ancestral insect mitogenome pattern. Compared to the only four available other strepsipteran mitogenomes, the D. daci mitogenome had additional transpositions of one rRNA and two tRNA genes, and a single nucleotide frameshift deletion in nad5 requiring translational frameshifting or, alternatively, resulting in a large protein truncation. Dipterophagus daci displays an almost completely endoparasitic life cycle when compared to Strepsiptera that have maintained the ancestral state of free-living adults. Our results support the hypothesis that the transition to extreme endoparasitism evolved together with increased levels of mitogenome changes. Furthermore, intraspecific mitogenome diversity was substantially smaller in D. daci than the parasitised flies suggesting Wolbachia reduced mitochondrial diversity because of a role in D. daci fitness.
Collapse
Affiliation(s)
- Sharon Towett-Kirui
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|