1
|
Beer MA, Trumbo DR, Rautsaw RM, Kozakiewicz CP, Epstein B, Hohenlohe PA, Alford RA, Schwarzkopf L, Storfer A. Spatial variation in genomic signatures of local adaptation during the cane toad invasion of Australia. Mol Ecol 2024; 33:e17464. [PMID: 38994885 DOI: 10.1111/mec.17464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Adaptive evolution can facilitate species' range expansions across environmentally heterogeneous landscapes. However, serial founder effects can limit the efficacy of selection, and the evolution of increased dispersal during range expansions may result in gene flow swamping local adaptation. Here, we study how genetic drift, gene flow and selection interact during the cane toad's (Rhinella marina) invasion across the heterogeneous landscape of Australia. Following its introduction in 1935, the cane toad colonised eastern Australia and established several stable range edges. The ongoing, more rapid range expansion in north-central Australia has occurred concomitant with an evolved increase in dispersal capacity. Using reduced representation genomic data of Australian cane toads from the expansion front and from two areas of their established range, we test the hypothesis that high gene flow constrains local adaptation at the expansion front relative to established areas. Genetic analyses indicate the three study areas are genetically distinct but show similar levels of allelic richness, heterozygosity and inbreeding. Markedly higher gene flow or recency of colonisation at the expansion front have likely hindered local adaptation at the time of sampling, as indicated by reduced slopes of genetic-environment associations (GEAs) estimated using a novel application of geographically weighted regression that accounts for allele surfing; GEA slopes are significantly steeper in established parts of the range. Our work bolsters evidence supporting adaptation of invasive species post-introduction and adds novel evidence for differing strengths of evolutionary forces among geographic areas with different invasion histories.
Collapse
Affiliation(s)
- Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Daryl R Trumbo
- Department of Biology, Colorado State University Pueblo, Pueblo, Colorado, USA
| | - Rhett M Rautsaw
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Christopher P Kozakiewicz
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, Michigan, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota, USA
| | - Paul A Hohenlohe
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Ross A Alford
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Shaykevich DA, Pareja-Mejía D, Golde C, Pašukonis A, O’Connell LA. Neural and sensory basis of homing behavior in the invasive cane toad, Rhinella marina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600658. [PMID: 38979178 PMCID: PMC11230440 DOI: 10.1101/2024.06.25.600658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The behavioral, sensory, and neural bases of vertebrate navigation are primarily described in mammals and birds. However, we know much less about navigational abilities and mechanisms of vertebrates that move on smaller scales, such as amphibians. To address this knowledge gap, we conducted an extensive field study on navigation in the cane toad, Rhinella marina. First, we performed a translocation experiment to describe how invasive toads in Hawai'i navigate home following displacements of up to one kilometer. Next, we tested the effect of olfactory and magnetosensory manipulations on homing, as these senses are most commonly associated with amphibian navigation. We found that neither ablation alone prevents homing, suggesting that toad navigation is multimodal. Finally, we tested the hypothesis that the medial pallium, the amphibian homolog to the hippocampus, is involved in homing. By comparing neural activity across homing and non-homing toads, we found evidence supporting the involvement of the medial pallium, lateral pallium, and septum in navigation, suggesting a conservation of neural structures supporting navigation across vertebrates. Our study lays the foundation to understand the behavioral, sensory, and neural bases of navigation in amphibians and to further characterize the evolution of behavior and neural structures in vertebrates.
Collapse
Affiliation(s)
| | - Daniela Pareja-Mejía
- Department of Biology, Stanford University, Stanford, CA, USA
- Graduate Program in Zoology, Universidade Estadual de Santa Cruz, Bahía, Brazil
| | - Chloe Golde
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Lauren A. O’Connell
- Department of Biology, Stanford University, Stanford, CA, USA
- Wu Tsai Institute for Neuroscience, Stanford University, Stanford CA, USA
| |
Collapse
|
3
|
Martignoni MM, Tyson RC, Kolodny O, Garnier J. Mutualism at the leading edge: insights into the eco-evolutionary dynamics of host-symbiont communities during range expansion. J Math Biol 2024; 88:24. [PMID: 38308102 DOI: 10.1007/s00285-023-02037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/04/2023] [Accepted: 12/14/2023] [Indexed: 02/04/2024]
Abstract
The evolution of mutualism between host and symbiont communities plays an essential role in maintaining ecosystem function and should therefore have a profound effect on their range expansion dynamics. In particular, the presence of mutualistic symbionts at the leading edge of a host-symbiont community should enhance its propagation in space. We develop a theoretical framework that captures the eco-evolutionary dynamics of host-symbiont communities, to investigate how the evolution of resource exchange may shape community structure during range expansion. We consider a community with symbionts that are mutualistic or parasitic to various degrees, where parasitic symbionts receive the same amount of resource from the host as mutualistic symbionts, but at a lower cost. The selective advantage of parasitic symbionts over mutualistic ones is increased with resource availability (i.e. with host density), promoting mutualism at the range edges, where host density is low, and parasitism at the population core, where host density is higher. This spatial selection also influences the speed of spread. We find that the host growth rate (which depends on the average benefit provided by the symbionts) is maximal at the range edges, where symbionts are more mutualistic, and that host-symbiont communities with high symbiont density at their core (e.g. resulting from more mutualistic hosts) spread faster into new territories. These results indicate that the expansion of host-symbiont communities is pulled by the hosts but pushed by the symbionts, in a unique push-pull dynamic where both the host and symbionts are active and tightly-linked players.
Collapse
Affiliation(s)
- Maria M Martignoni
- Department of Ecology, Evolution and Behavior, A. Silberman Institute of Life Sciences, Faculty of Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Rebecca C Tyson
- CMPS Department (Mathematics), University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Oren Kolodny
- Department of Ecology, Evolution and Behavior, A. Silberman Institute of Life Sciences, Faculty of Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jimmy Garnier
- Laboratory of Mathematics, CNRS, Université Savoie-Mont Blanc, Université Grenoble Alpes, Chambery, France
| |
Collapse
|
4
|
Gu S, Qi T, Rohr JR, Liu X. Meta-analysis reveals less sensitivity of non-native animals than natives to extreme weather worldwide. Nat Ecol Evol 2023; 7:2004-2027. [PMID: 37932385 DOI: 10.1038/s41559-023-02235-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023]
Abstract
Extreme weather events (EWEs; for example, heatwaves, cold spells, storms, floods and droughts) and non-native species invasions are two major threats to global biodiversity and are increasing in both frequency and consequences. Here we synthesize 443 studies and apply multilevel mixed-effects metaregression analyses to compare the responses of 187 non-native and 1,852 native animal species across terrestrial, freshwater and marine ecosystems to different types of EWE. Our results show that marine animals, regardless of whether they are non-native or native, are overall insensitive to EWEs, except for negative effects of heatwaves on native mollusks, corals and anemone. By contrast, terrestrial and freshwater non-native animals are only adversely affected by heatwaves and storms, respectively, whereas native animals negatively respond to heatwaves, cold spells and droughts in terrestrial ecosystems and are vulnerable to most EWEs except cold spells in freshwater ecosystems. On average, non-native animals displayed low abundance in terrestrial ecosystems, and decreased body condition and life history traits in freshwater ecosystems, whereas native animals displayed declines in body condition, life history traits, abundance, distribution and recovery in terrestrial ecosystems, and community structure in freshwater ecosystems. By identifying areas with high overlap between EWEs and EWE-tolerant non-native species, we also provide locations where native biodiversity might be adversely affected by their joint effects and where EWEs might facilitate the establishment and/or spread of non-native species under continuing global change.
Collapse
Affiliation(s)
- Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Kelly CL, Gordon IJ, Schwarzkopf L, Pintor A, Pople A, Hirsch BT. Invasive wild deer exhibit environmental niche shifts in Australia: Where to from here? Ecol Evol 2023; 13:e10251. [PMID: 37404705 PMCID: PMC10316481 DOI: 10.1002/ece3.10251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Invasive species have established populations around the world and, in the process, characteristics of their realized environmental niches have changed. Because of their popularity as a source of game, deer have been introduced to, and become invasive in, many different environments around the world. As such, deer should provide a good model system in which to test environmental niche shifts. Using the current distributions of the six deer species present in Australia, we quantified shifts in their environmental niches that occurred since introduction; we determined the differences in suitable habitat between their international (native and invaded) and their Australian ranges. Given knowledge of their Australian habitat use, we then modeled the present distribution of deer in Australia to assess habitat suitability, in an attempt to predict future deer distributions. We show that the Australian niches of hog (Axis porcinus), fallow (Dama dama), red (Cervus elaphus), rusa (C. timorensis), and sambar deer (C. unicolor), but not chital deer (A. axis), were different to their international ranges. When we quantified the potential range of these six species in Australia, chital, hog, and rusa deer had the largest areas of suitable habitat outside their presently occupied habitat. The other three species had already expanded outside the ranges that we predicted as suitable. Here, we demonstrate that deer have undergone significant environmental niche shifts following introduction into Australia, and these shifts are important for predicting the future spread of these invasive species. It is important to note that current Australian and international environmental niches did not necessarily predict range expansions, thus wildlife managers should treat these analyses as conservative estimates.
Collapse
Affiliation(s)
- Catherine L. Kelly
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Iain J. Gordon
- Fenner School of Environment & SocietyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- James Hutton InstituteAberdeenUK
- CSIROAustralian Tropical Science and Innovation PrecinctTownsvilleQueenslandAustralia
- Central Queensland UniversityTownsvilleQueenslandAustralia
| | - Lin Schwarzkopf
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Anna Pintor
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Anthony Pople
- Department of Agriculture and FisheriesBrisbaneQueenslandAustralia
| | - Ben T. Hirsch
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- Smithsonian Tropical Research InstitutePanamaPanama
| |
Collapse
|
6
|
Yagound B, West AJ, Richardson MF, Gruber J, Reid JG, Whiting MJ, Rollins LA. Captivity induces large and population-dependent brain transcriptomic changes in wild-caught cane toads (Rhinella marina). Mol Ecol 2022; 31:4949-4961. [PMID: 35894800 PMCID: PMC9804778 DOI: 10.1111/mec.16633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 01/09/2023]
Abstract
Gene expression levels are key molecular phenotypes at the interplay between genotype and environment. Mounting evidence suggests that short-term changes in environmental conditions, such as those encountered in captivity, can substantially affect gene expression levels. Yet, the exact magnitude of this effect, how general it is, and whether it results in parallel changes across populations are not well understood. Here, we take advantage of the well-studied cane toad, Rhinella marina, to examine the effect of short-term captivity on brain gene expression levels, and determine whether effects of captivity differ between long-colonized and vanguard populations of the cane toad's Australian invasion range. We compared the transcriptomes of wild-caught toads immediately assayed with those from toads captured from the same populations but maintained in captivity for seven months. We found large differences in gene expression levels between captive and wild-caught toads from the same population, with an over-representation of processes related to behaviour and the response to stress. Captivity had a much larger effect on both gene expression levels and gene expression variability in toads from vanguard populations compared to toads from long-colonized areas, potentially indicating an increased plasticity in toads at the leading edge of the invasion. Overall, our findings indicate that short-term captivity can induce large and population-specific transcriptomic changes, which has significant implications for studies comparing phenotypic traits of wild-caught organisms from different populations that have been held in captivity.
Collapse
Affiliation(s)
- Boris Yagound
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Andrea J. West
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Mark F. Richardson
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia,Deakin Genomics Centre, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Jodie Gruber
- College of Life and Environmental SciencesUniversity of ExeterPenrynUK,School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Jack G. Reid
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Martin J. Whiting
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Lee A. Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia,Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
7
|
Gardner ST, Appel AG, Mendonça MT. Chasing Cane Toads: Assessing Locomotory Differences in Toads from Core and Edge Populations in Florida. HERPETOLOGICA 2022. [DOI: 10.1655/herpetologica-d-21-00005.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Steven T. Gardner
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, 350 South College Street, Auburn, AL 36849, USA
| | - Arthur G. Appel
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, 350 South College Street, Auburn, AL 36849, USA
| | - Mary T. Mendonça
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, 350 South College Street, Auburn, AL 36849, USA
| |
Collapse
|
8
|
Shine R, Alford RA, Blennerhasset R, Brown GP, DeVore JL, Ducatez S, Finnerty P, Greenlees M, Kaiser SW, McCann S, Pettit L, Pizzatto L, Schwarzkopf L, Ward-Fear G, Phillips BL. Increased rates of dispersal of free-ranging cane toads (Rhinella marina) during their global invasion. Sci Rep 2021; 11:23574. [PMID: 34876612 PMCID: PMC8651681 DOI: 10.1038/s41598-021-02828-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Invasions often accelerate through time, as dispersal-enhancing traits accumulate at the expanding range edge. How does the dispersal behaviour of individual organisms shift to increase rates of population spread? We collate data from 44 radio-tracking studies (in total, of 650 animals) of cane toads (Rhinella marina) to quantify distances moved per day, and the frequency of displacement in their native range (French Guiana) and two invaded areas (Hawai’i and Australia). We show that toads in their native-range, Hawai’i and eastern Australia are relatively sedentary, while toads dispersing across tropical Australia increased their daily distances travelled from 20 to 200 m per day. That increase reflects an increasing propensity to change diurnal retreat sites every day, as well as to move further during each nocturnal displacement. Daily changes in retreat site evolved earlier than did changes in distances moved per night, indicating a breakdown in philopatry before other movement behaviours were optimised to maximise dispersal.
Collapse
Affiliation(s)
- Richard Shine
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Ross A Alford
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | | | - Gregory P Brown
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jayna L DeVore
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon Ducatez
- UMR 241 EIO (UPF, IRD, IFREMER, ILM), Institut de Recherche Pour le Développement (IRD), Papeete, Tahiti, French Polynesia
| | - Patrick Finnerty
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Matthew Greenlees
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shannon W Kaiser
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Samantha McCann
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Lachlan Pettit
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ligia Pizzatto
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Georgia Ward-Fear
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Benjamin L Phillips
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
9
|
Scarparo G, Sankovitz M, Loope KJ, Wilson‐Rankin E, Purcell J. Early queen joining and long-term queen associations in polygyne colonies of an invasive wasp revealed by longitudinal genetic analysis. Evol Appl 2021; 14:2901-2914. [PMID: 34950236 PMCID: PMC8674895 DOI: 10.1111/eva.13324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Invasive social insects rank among the most damaging of terrestrial species. They are responsible for extensive damage and severely threaten the biodiversity of environments where they are introduced. Variation in colony social form commonly occurs in introduced populations of yellowjacket wasps (genus Vespula). In particular, invasive colonies may contain multiple queens (i.e., polygyne) and persist several years, while in the native range, the colonies are usually annual and harbor a single queen (i.e., monogyne). In this study, we used genome-wide loci obtained by double digest restriction site-associated DNA sequencing (RADseq) to investigate the genetic structure and queen turnover in colonies of the western yellowjacket, Vespula pensylvanica, in their introduced range in Hawaii. Of the 27 colonies monitored over four months (October-January), 19 were polygyne and already contained multiple queens on the first day of sampling. Contrary to previous speculation, this finding suggests that polygyny often arises early in the annual colony cycle, before the production of new queens in the fall. Furthermore, polygyne colonies exhibited a prolonged average lifespan relative to those headed by a single queen. As a result, there is no clear window during which colony eradication efforts would be more effective than upon first discovery. The relatedness among nestmate queens was slightly above zero, indicating that these colonies are generally composed of nonrelatives. The queen turnover within each colony was low, and we detected some full-sibling workers sampled up to four months apart. Finally, we did not detect any population structure among colonies, suggesting that queens disperse up to several kilometers. Taken together, our results provide the first insights into the requeening dynamics in this invasive and incipiently polygyne population and illuminate the early establishment of multiple long-lasting queens in these damaging colonies.
Collapse
Affiliation(s)
- Giulia Scarparo
- Department of EntomologyUniversity of California RiversideRiversideCaliforniaUSA
| | - Madison Sankovitz
- Department of EntomologyUniversity of California RiversideRiversideCaliforniaUSA
| | - Kevin J. Loope
- Department of EntomologyUniversity of California RiversideRiversideCaliforniaUSA
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVirginiaUSA
| | - Erin Wilson‐Rankin
- Department of EntomologyUniversity of California RiversideRiversideCaliforniaUSA
| | - Jessica Purcell
- Department of EntomologyUniversity of California RiversideRiversideCaliforniaUSA
| |
Collapse
|
10
|
Macgregor LF, Greenlees M, de Bruyn M, Shine R. An invasion in slow motion: the spread of invasive cane toads (Rhinella marina) into cooler climates in southern Australia. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Topical Probiotics Do Not Satisfy New Criteria for Effective Use Due to Insufficient Skin Microbiome Knowledge. COSMETICS 2021. [DOI: 10.3390/cosmetics8030090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We propose a set of criteria for topical probiotics to adhere to for safe and effective use for the skin microbiome. To form the basis of the criteria, we redefine the term “probiotics” and discuss successful and unsuccessful high-profile examples of the artificial addition of organisms to ecosystems in nature to understand what worked and what did not. Probiotics are often immediately assumed to have health benefits. However, as ecologists are aware, interfering with ecosystems is potentially catastrophic. The addition or removal of just one organism can significantly upset the delicate ecosystem balance. If our criteria are not met, we argue that topical probiotics could also cause damage and will not be beneficial. Due to the large intra- and inter-personal variation of the skin microbiome, our current knowledge of a healthy skin microbiome composition is not complete enough to fully satisfy the criteria. In follow-up work, we will investigate whether current topical probiotics research and commercial products meet our new criteria. We will also discuss problems with how to measure their effectiveness and suggest alternative solutions to replacing the lost biodiversity of the skin microbiome that was stripped away by environmental factors in the Western world.
Collapse
|
12
|
Pettit L, Crowther MS, Ward-Fear G, Shine R. Divergent long-term impacts of lethally toxic cane toads (Rhinella marina) on two species of apex predators (monitor lizards, Varanus spp.). PLoS One 2021; 16:e0254032. [PMID: 34292946 PMCID: PMC8297793 DOI: 10.1371/journal.pone.0254032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
Biological invasions can massively disrupt ecosystems, but evolutionary and ecological adjustments may modify the magnitude of that impact through time. Such post-colonisation shifts can change priorities for management. We quantified the abundance of two species of giant monitor lizards, and of the availability of their mammalian prey, across 45 sites distributed across the entire invasion trajectory of the cane toad (Rhinella marina) in Australia. One varanid species (Varanus panoptes from tropical Australia) showed dramatic population collapse with toad invasion, with no sign of recovery at most (but not all) sites that toads had occupied for up to 80 years. In contrast, abundance of the other species (Varanus varius from eastern-coastal Australia) was largely unaffected by toad invasion. That difference might reflect availability of alternative food sources in eastern-coastal areas, perhaps exacerbated by the widespread prior collapse of populations of small mammals across tropical (but not eastern) Australia. According to this hypothesis, the impact of cane toads on apex predators has been exacerbated and prolonged by a scarcity of alternative prey. More generally, multiple anthropogenically-induced changes to natural ecosystems may have synergistic effects, intensifying the impacts beyond that expected from either threat in isolation.
Collapse
Affiliation(s)
- Lachlan Pettit
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Mathew S. Crowther
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Georgia Ward-Fear
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Richard Shine
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
13
|
Liu G, Rowley JJL, Kingsford RT, Callaghan CT. Species' traits drive amphibian tolerance to anthropogenic habitat modification. GLOBAL CHANGE BIOLOGY 2021; 27:3120-3132. [PMID: 33939215 DOI: 10.1111/gcb.15623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenic habitat modification is accelerating, threatening the world's biodiversity. Understanding species' responses to anthropogenic modification is vital for halting species' declines. However, this information is lacking for globally threatened amphibians, informed primarily by small community-level studies. We integrated >126,000 verified citizen science observations of frogs, with a global continuous measure of anthropogenic habitat modification for a continental scale analysis of the effects of habitat modification on frogs. We derived a modification tolerance index-accounting for anthropogenic stressors such as human habitation, agriculture, transport and energy production-for 87 species (36% of all Australian frog species). We used this index to quantify and rank each species' tolerance of anthropogenic habitat modification, then compiled traits of all the frog species and assessed how well these equipped species to tolerate modified habitats. Most of Australia's frog species examined were adversely affected by habitat modification. Habitat specialists and species with large geographic range sizes were the least tolerant of habitat modification. Call dominant frequency, body size, clutch type and calling position (i.e. from vegetation) were also related to tolerance of habitat modification. There is an urgent need for improved consideration of anthropogenic impacts and improved conservation measures to ensure the long-term persistence of frog populations, particularly focused on specialists and species identified as intolerant of modified habitats.
Collapse
Affiliation(s)
- Gracie Liu
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
| | - Jodi J L Rowley
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
| | - Richard T Kingsford
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Corey T Callaghan
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
14
|
DeVore JL, Shine R, Ducatez S. Spatial ecology of cane toads (Rhinella marina) in their native range: a radiotelemetric study from French Guiana. Sci Rep 2021; 11:11817. [PMID: 34083703 PMCID: PMC8175754 DOI: 10.1038/s41598-021-91262-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/18/2021] [Indexed: 11/09/2022] Open
Abstract
Like most invasive species, cane toads have attracted less research in their native range than in invaded areas. We radio-tracked 34 free-ranging toads in French Guiana, a source region for most invasive populations, across two coastal and two rainforest sites. Coastal toads generally sheltered in pools of fresh or brackish water but nocturnally foraged on beaches, whereas rainforest toads sheltered in forested habitats, moving into open areas at night. Over five days of monitoring, native toads frequently re-used shelters and moved little between days (means = 10-63 m/site) compared to invasion-front toads from Australia (~ 250 m). Larger toads moved less between days, but displaced in more consistent directions. At night, foraging toads travelled up to 200 m before returning to shelters. Foraging distance was related to body condition at coastal sites, with toads in poorer body condition travelling farther. Rain increased the probability of coastal toads sheltering in the dry habitats where they foraged. Dispersal and rainfall were lower at coastal sites, and the strategies utilized by coastal toads to minimize water loss resembled those of invasive toads in semi-desert habitats. This global invader already exhibits a broad environmental niche and substantial behavioural flexibility within its native range.
Collapse
Affiliation(s)
- Jayna L DeVore
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Richard Shine
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia. .,Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Simon Ducatez
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.,Institut de Recherche Pour Le Développement (IRD), UMR 241 EIO (UPF, IRD, IFREMER, ILM), Papeete, Tahiti, French Polynesia
| |
Collapse
|
15
|
Pettit L, Ward‐Fear G, Shine R. A biological invasion impacts ecosystem services: cane toads change the rate of scavenging and the suite of scavengers. Ecosphere 2021. [DOI: 10.1002/ecs2.3488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Lachlan Pettit
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales2006Australia
| | - Georgia Ward‐Fear
- Department of Biological Sciences Macquarie University Sydney New South Wales2019Australia
| | - Richard Shine
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales2006Australia
- Department of Biological Sciences Macquarie University Sydney New South Wales2019Australia
| |
Collapse
|
16
|
Wilson JK, Casajus N, Hutchinson RA, McFarland KP, Kerr JT, Berteaux D, Larrivée M, Prudic KL. Climate Change and Local Host Availability Drive the Northern Range Boundary in the Rapid Expansion of a Specialist Insect Herbivore, Papilio cresphontes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.579230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Species distributions, abundance, and interactions have always been influenced by human activity and are currently experiencing rapid change. Biodiversity benchmark surveys traditionally require intense human labor inputs to find, identify, and record organisms limiting the rate and impact of scientific enquiry and discovery. Recent emergence and advancement of monitoring technologies have improved biodiversity data collection to a scale and scope previously unimaginable. Community science web platforms, smartphone applications, and technology assisted identification have expedited the speed and enhanced the volume of observational data all while providing open access to these data worldwide. How to integrate and leverage the data into valuable information on how species are changing in space and time requires new best practices in computational and analytical approaches. Here we integrate data from three community science repositories to explore how a specialist herbivore distribution changes in relation to host plant distributions and other environmental factors. We generate a series of temporally explicit species distribution models to generate range predictions for a specialist insect herbivore (Papilio cresphontes) and three predominant host-plant species. We find that this insect species has experienced rapid northern range expansion, likely due to a combination of the range of its larval host plants and climate changes in winter. This case study shows rapid data collection through large scale community science endeavors can be leveraged through thoughtful data integration and transparent analytic pipelines to inform how environmental change impacts where species are and their interactions for a more cost effective method of biodiversity benchmarking.
Collapse
|
17
|
Pettit L, Brown GP, Ward‐Fear G, Shine R. Anthropogenically modified habitats favor bigger and bolder lizards. Ecol Evol 2021; 11:1586-1597. [PMID: 33613991 PMCID: PMC7882987 DOI: 10.1002/ece3.7124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 11/10/2022] Open
Abstract
Anthropogenic activities often create distinctive but discontinuously distributed habitat patches with abundant food but high risk of predation. Such sites can be most effectively utilized by individuals with specific behaviors and morphologies. Thus, a widespread species that contains a diversity of sizes and behavioral types may be pre-adapted to exploiting such hotspots. In eastern Australia, the giant (to >2 m) lizard Varanus varius (lace monitor) utilizes both disturbed (campground) and undisturbed (bushland) habitats. Our surveys of 27 sites show that lizards found in campgrounds tended to be larger and bolder than those in adjacent bushland. This divergence became even more marked after the arrival of a toxic invasive species (the cane toad, Rhinella marina) caused high mortality in larger and bolder lizards. Some of the behavioral divergences between campground and bushland lizards may be secondary consequences of differences in body size, but other habitat-associated divergences in behavior are due to habituation and/or nonrandom mortality.
Collapse
Affiliation(s)
- Lachlan Pettit
- School of Life and Environmental SciencesUniversity of SydneySydneyNSWAustralia
| | - Gregory P. Brown
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
| | - Georgia Ward‐Fear
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
| | - Richard Shine
- School of Life and Environmental SciencesUniversity of SydneySydneyNSWAustralia
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
| |
Collapse
|
18
|
Variation in size and shape of toxin glands among cane toads from native-range and invasive populations. Sci Rep 2021; 11:936. [PMID: 33441802 PMCID: PMC7806831 DOI: 10.1038/s41598-020-80191-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
If optimal investment in anti-predator defences depends on predation risk, invading new regions (and thus, encountering different predators) may favour shifts in that investment. Cane toads offer an ideal system to test this prediction: expensive anti-predator toxins are stored mainly in parotoid glands whose dimensions are easy to measure, and toad invasions have changed the suites of predators they encounter. Although plasticity may influence parotoid morphology, comparisons between parents and progeny revealed that gland dimensions were highly heritable. That heritability supports the plausibility of an evolved basis to variation in gland dimensions. Measurements of 3779 adult toads show that females have larger glands than males, invasive populations have larger glands than in the native-range, and that parotoid sexual size dimorphism varies strongly among invaded areas. Geographic variation in parotoid morphology may be driven by predation risk to both adult toads and offspring (provisioned with toxins by their mother), with toxins allocated to eggs exacerbating the risk of cannibalism but reducing the risk of interspecific predation. Investment into chemical defences has evolved rapidly during the cane toad’s international diaspora, consistent with the hypothesis that organisms flexibly adjust resource allocation to anti-predator tactics in response to novel challenges.
Collapse
|
19
|
Pettit L, Ward-Fear G, Shine R. Choose your meals carefully if you need to coexist with a toxic invader. Sci Rep 2020; 10:21866. [PMID: 33318615 PMCID: PMC7736869 DOI: 10.1038/s41598-020-78979-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/26/2020] [Indexed: 02/01/2023] Open
Abstract
Vulnerable native species may survive the impact of a lethally toxic invader by changes in behaviour, physiology and/or morphology. The roles of such mechanisms can be clarified by standardised testing. We recorded behavioural responses of monitor lizards (Varanus panoptes and V. varius) to legs of poisonous cane toads (Rhinella marina) and non-toxic control meals (chicken necks or chicken eggs and sardines) along 1300 and 2500 km transects, encompassing the toad's 85-year invasion trajectory across Australia as well as yet-to-be-invaded sites to the west and south of the currently colonised area. Patterns were identical in the two varanid species. Of monitors that consumed at least one prey type, 96% took control baits whereas toad legs were eaten by 60% of lizards in toad-free sites but 0% from toad-invaded sites. Our survey confirms that the ability to recognise and reject toads as prey enables monitor lizards to coexist with cane toads. As toxic invaders continue to impact ecosystems globally, it is vital to understand the mechanisms that allow some taxa to persist over long time-scales.
Collapse
Affiliation(s)
- Lachlan Pettit
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Georgia Ward-Fear
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2019, Australia
| | - Richard Shine
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2019, Australia
| |
Collapse
|
20
|
Kosmala GK, Brown GP, Shine R, Christian K. Skin resistance to water gain and loss has changed in cane toads ( Rhinella marina) during their Australian invasion. Ecol Evol 2020; 10:13071-13079. [PMID: 33304517 PMCID: PMC7713918 DOI: 10.1002/ece3.6895] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 11/19/2022] Open
Abstract
The water-permeable skin of amphibians renders them highly sensitive to climatic conditions, and interspecific correlations between environmental moisture levels and rates of water exchange across the skin suggest that natural selection adapts hydroregulatory mechanisms to local challenges. How quickly can such mechanisms shift when a species encounters novel moisture regimes? Cutaneous resistance to water loss and gain in wild-caught cane toads (Rhinella marina) from Brazil, USA (Hawai'i) and Australia exhibited strong geographic variation. Cutaneous resistance was low in native-range (Brazilian) toads and in Hawai'ian populations (where toads were introduced in 1932) but significantly higher in toads from eastern Australia (where toads were introduced in 1935). Toads from recently invaded areas in western Australia exhibited cutaneous resistance to water loss similar to the native-range populations, possibly because toads are restricted to moist sites within this highly arid landscape. Rates of rehydration exhibited significant but less extreme geographic variation, being higher in the native range than in invaded regions. Thus, in less than a century, cane toads invading areas that impose different climatic challenges have diverged in the capacity for hydroregulation.
Collapse
Affiliation(s)
- Georgia K. Kosmala
- School of Life and Environmental SciencesUniversity of SydneySydneyNSWAustralia
| | - Gregory P. Brown
- School of Life and Environmental SciencesUniversity of SydneySydneyNSWAustralia
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
| | - Richard Shine
- School of Life and Environmental SciencesUniversity of SydneySydneyNSWAustralia
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
| | - Keith Christian
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNTAustralia
| |
Collapse
|
21
|
Carscadden KA, Emery NC, Arnillas CA, Cadotte MW, Afkhami ME, Gravel D, Livingstone SW, Wiens JJ. Niche Breadth: Causes and Consequences for Ecology, Evolution, and Conservation. QUARTERLY REVIEW OF BIOLOGY 2020. [DOI: 10.1086/710388] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Pili AN, Tingley R, Sy EY, Diesmos MLL, Diesmos AC. Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments. Sci Rep 2020; 10:7972. [PMID: 32409706 PMCID: PMC7224218 DOI: 10.1038/s41598-020-64568-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/15/2020] [Indexed: 12/27/2022] Open
Abstract
Niche shifts and environmental non-equilibrium in invading alien species undermine niche-based predictions of alien species’ potential distributions and, consequently, their usefulness for invasion risk assessments. Here, we compared the realized climatic niches of four alien amphibian species (Hylarana erythraea, Rhinella marina, Hoplobatrachus rugulosus, and Kaloula pulchra) in their native and Philippine-invaded ranges to investigate niche changes that have unfolded during their invasion and, with this, assessed the extent of niche conservatism and environmental equilibrium. We investigated how niche changes affected reciprocal transferability of ecological niche models (ENMs) calibrated using data from the species’ native and Philippine-invaded ranges, and both ranges combined. We found varying levels of niche change across the species’ realized climatic niches in the Philippines: climatic niche shift for H. rugulosus; niche conservatism for R. marina and K. pulchra; environmental non-equilibrium in the Philippine-invaded range for all species; and environmental non-equilibrium in the native range or adaptive changes post-introduction for all species except H. erythraea. Niche changes undermined the reciprocal transferability of ENMs calibrated using native and Philippine-invaded range data. Our paper highlights the difficulty of predicting potential distributions given niche shifts and environmental non-equilibrium; we suggest calibrating ENMs with data from species’ combined native and invaded ranges, and to regularly reassess niche changes and recalibrate ENMs as species’ invasions progress.
Collapse
Affiliation(s)
- Arman N Pili
- The Graduate School, University of Santo Tomas, España, 1015, Manila, The Philippines. .,HerpWatch Pilipinas, Inc., Tondo, Manila, The Philippines. .,School of Biological Sciences, Monash University, Clayton, 3800, Victoria, Australia.
| | - Reid Tingley
- School of Biological Sciences, Monash University, Clayton, 3800, Victoria, Australia
| | - Emerson Y Sy
- HerpWatch Pilipinas, Inc., Tondo, Manila, The Philippines.,Philippine Center for Terrestrial and Aquatic Research, Tondo, Manila, The Philippines
| | - Mae Lowe L Diesmos
- HerpWatch Pilipinas, Inc., Tondo, Manila, The Philippines.,Department of Biological Sciences, College of Science, University of Santo Tomas, España, 1015, Manila, The Philippines.,Research Center for the Natural and Applied Sciences, University of Santo Tomas, España, 1015, Manila, The Philippines
| | - Arvin C Diesmos
- The Graduate School, University of Santo Tomas, España, 1015, Manila, The Philippines.,HerpWatch Pilipinas, Inc., Tondo, Manila, The Philippines.,Philippine National Museum of Natural History, T.F. Valencia Circle, T.M. Kalaw Street, Rizal Park, 1000, Manila, Philippines
| |
Collapse
|
23
|
Araspin L, Martinez AS, Wagener C, Courant J, Louppe V, Padilla P, Measey J, Herrel A. Rapid Shifts in the Temperature Dependence of Locomotor Performance in an Invasive Frog, Xenopus laevis, Implications for Conservation. Integr Comp Biol 2020; 60:456-466. [DOI: 10.1093/icb/icaa010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Temperature is a critical abiotic factor impacting all aspects of the biology of organisms, especially in ectotherms. As such, it is an important determinant of the potential invasive ability of organisms and may limit population expansion unless organisms can physiologically respond to changes in temperature either through plasticity or by adapting to their novel environment. Here, we studied the African clawed frog, Xenopus laevis, which has become invasive on a global scale. We compared adults from an invasive population of western France with individuals from two populations in the native range in South Africa. We measured the thermal dependence of locomotor performance in adults given its relevance to dispersal, predator escape, and prey capture. Our results show significant differences in the limits of the 80% performance breadth interval for endurance with the French population showing a left shift in its limits congruent with the colder climate experienced in France. The French invasive population was introduced only about 40 years ago suggesting a rapid shift in the thermal physiology. Given that all individuals were acclimated under laboratory conditions at 23°C for 2 months this suggests that the invasive frogs have adapted to their new environment. These data may allow the refinement of physiologically informed species distribution models permitting better estimates of future ranges at risk of invasion.
Collapse
Affiliation(s)
- Laurie Araspin
- Bâtiment d’Anatomie Comparée, UMR 7179-CNRS, Département Adaptations du Vivant, Muséum National d’Histoire Naturelle-Sorbonne Universités (MNHN), 55 rue Buffon, 75005 Paris, France
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Anna Serra Martinez
- Bâtiment d’Anatomie Comparée, UMR 7179-CNRS, Département Adaptations du Vivant, Muséum National d’Histoire Naturelle-Sorbonne Universités (MNHN), 55 rue Buffon, 75005 Paris, France
| | - Carla Wagener
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Julien Courant
- Bâtiment d’Anatomie Comparée, UMR 7179-CNRS, Département Adaptations du Vivant, Muséum National d’Histoire Naturelle-Sorbonne Universités (MNHN), 55 rue Buffon, 75005 Paris, France
| | - Vivien Louppe
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National, d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 51, 75231 Paris, France
| | - Pablo Padilla
- Bâtiment d’Anatomie Comparée, UMR 7179-CNRS, Département Adaptations du Vivant, Muséum National d’Histoire Naturelle-Sorbonne Universités (MNHN), 55 rue Buffon, 75005 Paris, France
- Behavioural Biology Group, Laboratory of Fish and Amphibian Ethology, Freshwater and OCeanic Science Unit of reSearch (FOCUS), University of Liège, 4020 Liège, Belgium
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Anthony Herrel
- Bâtiment d’Anatomie Comparée, UMR 7179-CNRS, Département Adaptations du Vivant, Muséum National d’Histoire Naturelle-Sorbonne Universités (MNHN), 55 rue Buffon, 75005 Paris, France
| |
Collapse
|
24
|
Parrott ML, Doody JS, McHenry C, Clulow S. Eat your heart out: choice and handling of novel toxic prey by predatory water rats. AUSTRALIAN MAMMALOGY 2020. [DOI: 10.1071/am19016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated predator–prey interactions between cane toads (Rhinella marina) and native water rats (Hydromys chrysogaster), where toads are novel prey. We show that wild water rats preferentially targeted larger toads, and consumed specific non-toxic organs only. Rats either rapidly learned these behaviours, or adapted them from hunting native frogs.
Collapse
|
25
|
Doody JS, Rhind D, Clulow S. Paradoxical population resilience of a keystone predator to a toxic invasive species. WILDLIFE RESEARCH 2020. [DOI: 10.1071/wr19150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
ContextThe invasive cane toad (Rhinella marina) has decimated populations of a keystone predator, the yellow-spotted monitor (Varanus panoptes), causing trophic cascades in Australian animal communities. Paradoxically, some V. panoptes populations coexist with toads. Demonstrating patterns in heterogeneous population-level impacts could reveal mechanisms that mediate individual effects, and provide managers with the ability to predict future impacts and assist in population recovery.
AimsThe aim of the present study was to search for spatial patterns of population resilience of V. panoptes to invasive cane toads.
MethodsPublished literature, unpublished data, reports and anecdotal information from trained herpetologists were used to test the emerging hypothesis that resilient predator populations are mainly coastal, whereas non-resilient populations are mostly inland.
Key resultsPost-toad invasion data from 23 V. panoptes populations supported the idea that toad impacts on V. panoptes were heterogeneous; roughly half the populations could be designated as resilient (n=13) and half as non-resilient (n=10). Resilient populations had longer times since toad invasion than did non-resilient populations (39 versus 9 years respectively), supporting the idea that some recovery can occur. Non-resilient populations were exclusively inland (n=10), whereas resilient populations were split between inland (n=5) and coastal (n=8) populations. Resilient inland populations, however, were mainly confined to areas in which decades had passed since toad invasion.
ConclusionsThe findings suggest that coastal V. panoptes populations fare much better than inland populations when it comes to surviving invading cane toads.
ImplicationsUnambiguous recovery of monitor populations remains undemonstrated and will require long-term population monitoring before and after toad invasion.
Collapse
|
26
|
Barros T, Carvalho J, Fonseca C, Cushman SA. Assessing the complex relationship between landscape, gene flow, and range expansion of a Mediterranean carnivore. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1274-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Singer A, Bradter U, Fabritius H, Snäll T. Dating past colonization events to project future species distributions. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander Singer
- Swedish Species Information CentreSwedish University of Agricultural Sciences Uppsala Sweden
| | - Ute Bradter
- Swedish Species Information CentreSwedish University of Agricultural Sciences Uppsala Sweden
| | - Henna Fabritius
- Swedish Species Information CentreSwedish University of Agricultural Sciences Uppsala Sweden
| | - Tord Snäll
- Swedish Species Information CentreSwedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
28
|
Cane toads (Rhinella marina) rely on water access, not drought tolerance, to invade xeric Australian environments. Oecologia 2018; 189:307-316. [DOI: 10.1007/s00442-018-4321-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/04/2018] [Indexed: 01/12/2023]
|
29
|
Stuart KC, Shine R, Brown GP. Proximate mechanisms underlying the rapid modification of phenotypic traits in cane toads (Rhinella marina) across their invasive range within Australia. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Katarina C Stuart
- The University of Sydney, School of Life and Environmental Sciences, Sydney, Australia
| | - Richard Shine
- The University of Sydney, School of Life and Environmental Sciences, Sydney, Australia
| | - Gregory P Brown
- The University of Sydney, School of Life and Environmental Sciences, Sydney, Australia
| |
Collapse
|
30
|
Silvester R, Greenlees M, Shine R, Oldroyd B. Behavioural tactics used by invasive cane toads (
Rhinella marina
) to exploit apiaries in Australia. AUSTRAL ECOL 2018. [DOI: 10.1111/aec.12668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Renee Silvester
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales 2006 Australia
| | - Matthew Greenlees
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales 2006 Australia
| | - Richard Shine
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales 2006 Australia
| | - Benjamin Oldroyd
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
31
|
Edwards RJ, Tuipulotu DE, Amos TG, O'Meally D, Richardson MF, Russell TL, Vallinoto M, Carneiro M, Ferrand N, Wilkins MR, Sequeira F, Rollins LA, Holmes EC, Shine R, White PA. Draft genome assembly of the invasive cane toad, Rhinella marina. Gigascience 2018; 7:5096832. [PMID: 30101298 PMCID: PMC6145236 DOI: 10.1093/gigascience/giy095] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/22/2018] [Indexed: 12/28/2022] Open
Abstract
Background The cane toad (Rhinella marina formerly Bufo marinus) is a species native to Central and South America that has spread across many regions of the globe. Cane toads are known for their rapid adaptation and deleterious impacts on native fauna in invaded regions. However, despite an iconic status, there are major gaps in our understanding of cane toad genetics. The availability of a genome would help to close these gaps and accelerate cane toad research. Findings We report a draft genome assembly for R. marina, the first of its kind for the Bufonidae family. We used a combination of long-read Pacific Biosciences RS II and short-read Illumina HiSeq X sequencing to generate 359.5 Gb of raw sequence data. The final hybrid assembly of 31,392 scaffolds was 2.55 Gb in length with a scaffold N50 of 168 kb. BUSCO analysis revealed that the assembly included full length or partial fragments of 90.6% of tetrapod universal single-copy orthologs (n = 3950), illustrating that the gene-containing regions have been well assembled. Annotation predicted 25,846 protein coding genes with similarity to known proteins in Swiss-Prot. Repeat sequences were estimated to account for 63.9% of the assembly. Conclusions The R. marina draft genome assembly will be an invaluable resource that can be used to further probe the biology of this invasive species. Future analysis of the genome will provide insights into cane toad evolution and enrich our understanding of their interplay with the ecosystem at large.
Collapse
Affiliation(s)
- Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Timothy G Amos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Denis O'Meally
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown, NSW, 2052, Australia
| | - Mark F Richardson
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, VIC, 3216, Australia.,Bioinformatics Core Research Group, Deakin University, Geelong, VIC, 3216, Australia
| | - Tonia L Russell
- Ramaciotti Centre for Genomics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Marcelo Vallinoto
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Laboratório de Evolução, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Pará, Brazil
| | - Miguel Carneiro
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Nuno Ferrand
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland Park, South Africa
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Ramaciotti Centre for Genomics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fernando Sequeira
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Lee A Rollins
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, VIC, 3216, Australia.,Evolution and Ecology Research Centre, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Richard Shine
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
32
|
Gilbert KJ, Peischl S, Excoffier L. Mutation load dynamics during environmentally-driven range shifts. PLoS Genet 2018; 14:e1007450. [PMID: 30265675 PMCID: PMC6179293 DOI: 10.1371/journal.pgen.1007450] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/10/2018] [Accepted: 08/29/2018] [Indexed: 11/29/2022] Open
Abstract
The fitness of spatially expanding species has been shown to decrease over time and space, but specialist species tracking their changing environment and shifting their range accordingly have been little studied. We use individual-based simulations and analytical modeling to compare the impact of range expansions and range shifts on genetic diversity and fitness loss, as well as the ability to recover fitness after either a shift or expansion. We find that the speed of a shift has a strong impact on fitness evolution. Fastest shifts show the strongest fitness loss per generation, but intermediate shift speeds lead to the strongest fitness loss per geographic distance. Range shifting species lose fitness more slowly through time than expanding species, however, their fitness measured at equal geographic distances from the source of expansion can be considerably lower. These counter-intuitive results arise from the combination of time over which selection acts and mutations enter the system. Range shifts also exhibit reduced fitness recovery after a geographic shift and may result in extinction, whereas range expansions can persist from the core of the species range. The complexity of range expansions and range shifts highlights the potential for severe consequences of environmental change on species survival.
Collapse
Affiliation(s)
- Kimberly J. Gilbert
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stephan Peischl
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Laurent Excoffier
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
33
|
Behavioural responses of an Australian colubrid snake (Dendrelaphis punctulatus) to a novel toxic prey item (the Cane Toad Rhinella marina). Biol Invasions 2018. [DOI: 10.1007/s10530-018-1716-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Gruber J, Whiting MJ, Brown G, Shine R. The loneliness of the long-distance toad: invasion history and social attraction in cane toads ( Rhinella marina). Biol Lett 2018; 13:rsbl.2017.0445. [PMID: 29118242 DOI: 10.1098/rsbl.2017.0445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/13/2017] [Indexed: 11/12/2022] Open
Abstract
Individuals at the leading edge of a biological invasion constantly encounter novel environments. These pioneers may benefit from increased social attraction, because low population densities reduce competition and risks of pathogen transfer, and increase benefits of information transfer. In standardized trials, cane toads (Rhinella marina) from invasion-front populations approached conspecifics more often, and spent more time close to them, than did conspecifics from high-density, long-colonized populations.
Collapse
Affiliation(s)
- Jodie Gruber
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Gregory Brown
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Richard Shine
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
35
|
Russo AG, Eden JS, Enosi Tuipulotu D, Shi M, Selechnik D, Shine R, Rollins LA, Holmes EC, White PA. Viral Discovery in the Invasive Australian Cane Toad ( Rhinella marina) Using Metatranscriptomic and Genomic Approaches. J Virol 2018; 92:JVI.00768-18. [PMID: 29899109 PMCID: PMC6096826 DOI: 10.1128/jvi.00768-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
Cane toads are poisonous amphibians that were introduced to Australia in 1935 for insect control. Since then, their population has increased dramatically, and they now threaten many native Australian species. One potential method to control the population is to release a cane toad virus with high mortality rates, yet few cane toad viruses have been characterized. This study samples cane toads from different Australian locations and uses an RNA sequencing and computational approach to find new viruses. We report novel complete picornavirus and retrovirus sequences that were genetically similar to viruses infecting frogs, reptiles, and fish. Using data generated in other studies, we show that these viral sequences are present in cane toads from distinct Australian locations. Three sequences related to circoviruses were also found in the toad genome. The identification of new viral sequences will aid future studies that investigate their prevalence and potential as agents for biocontrol. Cane toads are a notorious invasive species, inhabiting over 1.2 million km2 of Australia and threatening native biodiversity. The release of pathogenic cane toad viruses is one possible biocontrol strategy yet is currently hindered by the poorly described cane toad virome. Metatranscriptomic analysis of 16 cane toad livers revealed the presence of a novel and full-length picornavirus, Rhimavirus A (RhiV-A), a member of a reptile- and amphibian-specific cluster of the Picornaviridae basal to the Kobuvirus-like group. In the combined liver transcriptome, we also identified a complete genome sequence of a distinct epsilonretrovirus, Rhinella marina endogenous retrovirus (RMERV). The recently sequenced cane toad genome contains 8 complete RMERV proviruses as well as 21 additional truncated insertions. The oldest full-length RMERV provirus was estimated to have inserted 1.9 million years ago (MYA). To screen for these viral sequences in additional toads, we analyzed publicly available transcriptomes from six diverse Australian locations. RhiV-A transcripts were identified in toads sampled from three locations across 1,000 km of Australia, stretching to the current Western Australia (WA) invasion front, while RMERV transcripts were observed at all six sites. Finally, we scanned the cane toad genome for nonretroviral endogenous viral elements, finding three sequences related to small DNA viruses in the family Circoviridae. This shows ancestral circoviral infection with subsequent genomic integration. The identification of these current and past viral infections enriches our knowledge of the cane toad virome, an understanding of which will facilitate future work on infection and disease in this important invasive species. IMPORTANCE Cane toads are poisonous amphibians that were introduced to Australia in 1935 for insect control. Since then, their population has increased dramatically, and they now threaten many native Australian species. One potential method to control the population is to release a cane toad virus with high mortality rates, yet few cane toad viruses have been characterized. This study samples cane toads from different Australian locations and uses an RNA sequencing and computational approach to find new viruses. We report novel complete picornavirus and retrovirus sequences that were genetically similar to viruses infecting frogs, reptiles, and fish. Using data generated in other studies, we show that these viral sequences are present in cane toads from distinct Australian locations. Three sequences related to circoviruses were also found in the toad genome. The identification of new viral sequences will aid future studies that investigate their prevalence and potential as agents for biocontrol.
Collapse
Affiliation(s)
- Alice G. Russo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Disease and Biosecurity, School of Life and Environmental Sciences and Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- The Westmead Institute of Medical Research, Centre for Virus Research, Westmead, NSW, Australia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Disease and Biosecurity, School of Life and Environmental Sciences and Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel Selechnik
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard Shine
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Lee Ann Rollins
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Disease and Biosecurity, School of Life and Environmental Sciences and Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter A. White
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Greenlees MJ, Harris S, White AW, Shine R. The establishment and eradication of an extra-limital population of invasive cane toads. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1681-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Vimercati G, Davies SJ, Measey J. Rapid adaptive response to a Mediterranean environment reduces phenotypic mismatch in a recent amphibian invader. ACTA ACUST UNITED AC 2018; 221:jeb.174797. [PMID: 29615531 DOI: 10.1242/jeb.174797] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Invasive species frequently cope with ecological conditions that are different from those to which they adapted, presenting an opportunity to investigate how phenotypes change across short time scales. In 2000, the guttural toad Sclerophrys gutturalis was first detected in a peri-urban area of Cape Town, where it is now invasive. The ability of the species to invade Cape Town is surprising as the area is characterized by a Mediterranean climate significantly drier and colder than that of the native source area. We measured field hydration state of guttural toads from the invasive Cape Town population and a native source population from Durban. We also obtained from laboratory trials: rates of evaporative water loss and water uptake, sensitivity of locomotor endurance to hydration state, critical thermal minimum (CTmin) and sensitivity of CTmin to hydration state. Field hydration state of invasive toads was significantly lower than that of native toads. Although the two populations had similar rates of water loss and uptake, invasive toads were more efficient in minimizing water loss through postural adjustments. In locomotor trials, invasive individuals noticeably outperformed native individuals when dehydrated but not when fully hydrated. CTmin was lower in invasive individuals than in native individuals, independent of hydration state. Our results indicate that an invasive population that is only 20 years old shows adaptive responses that reduce phenotypic mismatch with the novel environment. The invasion potential of the species in Cape Town is higher than we could infer from its characteristics in the native source population.
Collapse
Affiliation(s)
- Giovanni Vimercati
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Sarah J Davies
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
38
|
Kosmala GK, Brown GP, Christian KA, Hudson CM, Shine R. The thermal dependency of locomotor performance evolves rapidly within an invasive species. Ecol Evol 2018; 8:4403-4408. [PMID: 29760882 PMCID: PMC5938468 DOI: 10.1002/ece3.3996] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/05/2018] [Accepted: 02/14/2018] [Indexed: 02/03/2023] Open
Abstract
Biological invasions can stimulate rapid shifts in organismal performance, via both plasticity and adaptation. We can distinguish between these two proximate mechanisms by rearing offspring from populations under identical conditions and measuring their locomotor abilities in standardized trials. We collected adult cane toads (Rhinella marina) from invasive populations that inhabit regions of Australia with different climatic conditions. We bred those toads and raised their offspring under common‐garden conditions before testing their locomotor performance. At high (but not low) temperatures, offspring of individuals from a hotter location (northwestern Australia) outperformed offspring of conspecifics from a cooler location (northeastern Australia). This disparity indicates that, within less than 100 years, thermal performance in cane toads has adapted to the novel abiotic challenges that cane toads have encountered during their invasion of tropical Australia.
Collapse
Affiliation(s)
- Georgia K Kosmala
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| | - Gregory P Brown
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| | - Keith A Christian
- Research Institute for the Environment and Livelihoods Charles Darwin University Darwin NT Australia
| | - Cameron M Hudson
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| | - Richard Shine
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| |
Collapse
|
39
|
Gruber J, Brown G, Whiting MJ, Shine R. Behavioural divergence during biological invasions: a study of cane toads ( Rhinella marina) from contrasting environments in Hawai'i. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180197. [PMID: 29765696 PMCID: PMC5936961 DOI: 10.1098/rsos.180197] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Invasive species must deal with novel challenges, both from the alien environment and from pressures arising from range expansion per se (e.g. spatial sorting). Those conditions can create geographical variation in behaviour across the invaded range, as has been documented across regions of Australia invaded by cane toads; range-edge toads are more exploratory and willing to take risks than are conspecifics from the range-core. That behavioural divergence might be a response to range expansion and invasion per se, or to the different environments encountered. Climate differs across the cane toads' invasion range from the wet tropics of Queensland to the seasonally dry climates of northwestern Western Australia. The different thermal and hydric regimes may affect behavioural traits via phenotypic plasticity or through natural selection. We cannot tease apart the effects of range expansion versus climate in an expanding population but can do so in a site where the colonizing species was simultaneously released in all suitable areas, thus removing any subsequent phase of range expansion. Cane toads were introduced to Hawai'i in 1932; and thence to Australia in 1935. Toads were released in all major sugarcane-growing areas in Hawai'i within a 12-month period. Hence, Hawai'ian cane toads provide an opportunity to examine geographical divergence in behavioural traits in a climatically diverse region (each island has both wet and dry sides) in the absence of range expansion subsequent to release. We conducted laboratory-based behavioural trials testing exploration, risk-taking and response to novelty using field-caught toads from the wet and dry sides of two Hawai'ian islands (Oahu and Hawai'i). Toads from the dry side of Oahu had a higher propensity to take risks than did toads from the dry side of Hawai'i. Toads from Oahu were also more exploratory than were conspecifics from the island of Hawai'i. However, toads from wet versus dry climates were similar in all behaviours that we scored, suggesting that founder effects, genetic drift, or developmentally plastic responses to ecological factors other than climate may have driven behavioural divergence between islands.
Collapse
Affiliation(s)
- Jodie Gruber
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Gregory Brown
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Martin J. Whiting
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Richard Shine
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
40
|
Indigo N, Smith J, Webb JK, Phillips B. Not such silly sausages: Evidence suggests northern quolls exhibit aversion to toads after training with toad sausages. AUSTRAL ECOL 2018. [DOI: 10.1111/aec.12595] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Naomi Indigo
- School of Life Sciences University of Technology Sydney PO Box 123 Broadway Sydney New South Wales 2007 Australia
- Australian Wildlife Conservancy Mornington Wildlife Sanctuary Derby Western Australia Australia
| | - James Smith
- Australian Wildlife Conservancy Mornington Wildlife Sanctuary Derby Western Australia Australia
| | - Jonathan K. Webb
- School of Life Sciences University of Technology Sydney PO Box 123 Broadway Sydney New South Wales 2007 Australia
| | - Ben Phillips
- School of Biosciences University of Melbourne Parkville Victoria Australia
| |
Collapse
|
41
|
Doody JS, McHenry C, Letnic M, Everitt C, Sawyer G, Clulow S. Forecasting the spatiotemporal pattern of the cane toad invasion into north-western Australia. WILDLIFE RESEARCH 2018. [DOI: 10.1071/wr18091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
The toxic cane toad (Rhinella marina) has invaded over 50 countries and is a serious conservation issue in Australia. Because the cane toad has taken several decades to colonise northern Australia, due to the large size of the continent and the east–west invasion axis, there is scope for making testable predictions about how toads will invade new areas. The western toad invasion front is far from linear, providing clear evidence for heterogeneity in invasion speed.
Aims
Several ad hoc hypotheses have been offered to explain this heterogeneity, including the evolution of traits that could facilitate dispersal, and spatial heterogeneity in climate patterns. Here an alternative hypothesis is offered, and a prediction generated for the spatiotemporal pattern of invasion into the Kimberley Region – the next frontier for the invading toads in Australia.
Methods
Using observations of spatiotemporal patterns of cane toad colonisation in northern Australia over the last 15 years, a conceptual model is offered, based on the orientation of wet season river flows relative to the invasion axis, as well as toad rafting and floating behaviour during the wet season.
Key results
Our model predicts that toads will invade southern areas before northern areas; an alternative model based on rainfall amounts makes the opposite prediction. The models can now be tested by monitoring the spread of invasion front over the next 5–10 years.
Conclusions
Our conceptual models present a pleuralistic approach to understanding the spatiotemporal invasion dynamics of toads; such an approach and evaluation of the models could prove useful for managing other invasive species.
Implications
Although control of cane toads has largely proved ineffective, knowledge of the spatiotemporal pattern of the toad invasion in the Kimberley could: (1) facilitate potential management tools for slowing the spread of toads; (2) inform stakeholders in the local planning for the invasion; (3) provide researchers with a temporal context for quantifying toad impacts on animal communities; and (4) reveal the mechanism(s) causing the heterogeneity in invasion speed.
Collapse
|
42
|
Kelly DO, Scott RJ, Campbell CE, Warkentin IG. Initial Dispersal and Breeding Habitat Use of Newly Introduced Mink Frogs in Western Newfoundland, Canada. COPEIA 2017. [DOI: 10.1643/ch-16-485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
On the fringe of the invasion: the ecology of cane toads in marginally-suitable habitats. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1479-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Lettoof DC, Lyons JA, Shine R, Maniel G, Mayer M, Natusch DJD. Cane toads beneath bird rookeries: utilization of a natural disturbance by an invasive species. Curr Zool 2017; 64:433-439. [PMID: 30108623 PMCID: PMC6084566 DOI: 10.1093/cz/zox041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/03/2017] [Indexed: 11/13/2022] Open
Abstract
Many invasive species exploit anthropogenically disturbed habitats, but most of those taxa evolved long before humans. Presumably, then, an ability to use natural (non-anthropogenic) disturbances pre-adapted invaders to a world later degraded by people. Studies on invasive species in naturally disturbed habitats thus can clarify the ancestral niche of invaders. In the Australian tropics, metallic starlings Aplonis metallica nest communally in emergent rainforest trees during the wet-season, and invasive cane toads Rhinella marina join other predators (mammals, birds, reptiles, and other anurans) to exploit the food resources beneath those trees. Compared to conspecifics found along nearby roads through the forest, cane toads beneath bird-nesting trees occur at higher densities, and are smaller in body size. The sex ratio is female-biased, and recapture records suggest that females may be philopatric at these sites (whereas recaptures were rare for both sexes found along the roads). Some toads were found under the same trees in successive wet-seasons. Spooling showed that distances moved per night were similar along the road versus under the trees, but toads under trees showed lower net displacements. Diets also differed (based upon scat analysis), with tree toads feeding more on beetles and less on ants. These nutrient-rich hotspots are exploited primarily by adult females and juvenile toads, whereas adult males congregate at breeding sites. By magnifying pre-existing intraspecific divergences in habitat use, bird rookeries may enhance population viability of cane toads by enabling critical age and sex classes to exploit food-rich patches that are rarely used by adult males.
Collapse
Affiliation(s)
- Damian C Lettoof
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | | | - Richard Shine
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | | | - Martin Mayer
- Faculty of Arts and Sciences, University College of Southeast Norway, Bø i Telemark, Norway
| | - Daniel J D Natusch
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| |
Collapse
|
45
|
The impact of transportation and translocation on dispersal behaviour in the invasive cane toad. Oecologia 2017; 184:411-422. [PMID: 28432445 DOI: 10.1007/s00442-017-3871-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
Biological invasions transport organisms to novel environments; but how does the translocation process influence movement patterns of the invader? Plausibly, the stress of encountering a novel environment, or of the transport process, might induce rapid dispersal from the release site-potentially enhancing (or reducing) invader success and spread. We investigated the effect of transportation and release to novel environments on dispersal-relevant traits of one of the world's most notorious invaders, the cane toad (Rhinella marina). We collected toads in northern New South Wales from heath and woodland habitats, manipulated the level of transport stress and either returned toads to their exact collection point (residents) or reciprocally translocated them to a novel site. Both translocation and the level of transport stress drastically altered toad dispersal rates for at least 5 days post-release. Translocated toads (depending on their level of transport stress and release habitat) moved on average two to five times further per day (mean range 67-148 m) than did residents (mean range 22-34 m). Translocated toads also moved on more days, and moved further from their release point than did resident toads, but did not move in straighter lines. A higher level of transport stress (simulating long-distance translocation) had no significant effect on movements of resident toads but amplified the dispersal of translocated toads only when released into woodland habitat. These behavioural shifts induced by translocation and transportation may affect an invader's ability to colonise novel sites, and need to be incorporated into plans for invader control.
Collapse
|
46
|
Pizzatto L, Both C, Brown G, Shine R. The accelerating invasion: dispersal rates of cane toads at an invasion front compared to an already-colonized location. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9896-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Cooper CE. Endocrinology of osmoregulation and thermoregulation of Australian desert tetrapods: A historical perspective. Gen Comp Endocrinol 2017; 244:186-200. [PMID: 26449158 DOI: 10.1016/j.ygcen.2015.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
Abstract
Many Australian tetrapods inhabit desert environments characterised by low productivity, unpredictable rainfall, high temperatures and high incident solar radiation. Maintaining a homeostatic milieu intérieur by osmoregulation and thermoregulation are two physiological challenges faced by tetrapods in deserts, and the endocrine system plays an important role in regulating these processes. There is a considerable body of work examining the osmoregulatory role of antidiuretic hormones for Australian amphibians, reptiles and mammals, with particular contributions concerning their role and function for wild, free-living animals in arid environments. The osmoregulatory role of the natriuretic peptide system has received some attention, while the role of adrenal corticosteroids has been more thoroughly investigated for reptiles and marsupials. The endocrinology of thermoregulation has not received similar attention. Reptiles are best-studied, with research examining the influence of arginine vasotocin and melatonin on body temperature, the role of prostaglandins in heart rate hysteresis and the effect of melanocyte-stimulating hormone on skin reflectivity. Australian mammals have been under-utilised in studies examining the regulation, development and evolution of endothermy, and there is little information concerning the endocrinology of thermoregulation for desert species. There is a paucity of data concerning the endocrinology of osmoregulation and thermoregulation for Australian desert birds. Studies of Australian desert fauna have made substantial contributions to endocrinology, but there is considerable scope for further research. A co-ordinated approach to examine arid-habitat adaptations of the endocrine system in an environmental and evolutionary context would be of particular value.
Collapse
Affiliation(s)
- Christine Elizabeth Cooper
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6847, Australia; School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
48
|
Kelly E, Phillips BL. Get smart: native mammal develops toad-smart behavior in response to a toxic invader. Behav Ecol 2017. [DOI: 10.1093/beheco/arx045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Rapid trait evolution drives increased speed and variance in experimental range expansions. Nat Commun 2017; 8:14303. [PMID: 28128350 PMCID: PMC5290145 DOI: 10.1038/ncomms14303] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 12/12/2016] [Indexed: 01/11/2023] Open
Abstract
Range expansions are central to two ecological issues reshaping patterns of global biodiversity: biological invasions and climate change. Traditional theory considers range expansion as the outcome of the demographic processes of birth, death and dispersal, while ignoring the evolutionary implications of such processes. Recent research suggests evolution could also play a critical role in determining expansion speed but controlled experiments are lacking. Here we use flour beetles (Tribolium castaneum) to show experimentally that mean expansion speed and stochastic variation in speed are both increased by rapid evolution of traits at the expansion edge. We find that higher dispersal ability and lower intrinsic growth rates evolve at the expansion edge compared with spatially nonevolving controls. Furthermore, evolution of these traits is variable, leading to enhanced variance in speed among replicate population expansions. Our results demonstrate that evolutionary processes must be considered alongside demographic ones to better understand and predict range expansions. Spatial structure provides unique opportunities for evolution during range expansions. Here, the authors show experimentally using the red flour beetle, Tribolium castaneum, that dispersal and growth can evolve through spatial processes, increasing expansion speed and its variance.
Collapse
|
50
|
A theoretical examination of environmental effects on the life cycle schedule and range limits of the invasive seaweed Undaria pinnatifida. Biol Invasions 2017. [DOI: 10.1007/s10530-016-1357-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|