1
|
Will I, Stevens EJ, Belcher T, King KC. 'Re-Wilding' an Animal Model With Microbiota Shifts Immunity and Stress Gene Expression During Infection. Mol Ecol 2025; 34:e17586. [PMID: 39529601 DOI: 10.1111/mec.17586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The frequency of emerging disease is growing with ongoing human activity facilitating new host-pathogen interactions. Novel infection outcomes can also be shaped by the host microbiota. Caenorhabditis elegans nematodes experimentally colonised by a wild microbiota community and infected by the widespread animal pathogen, Staphylococcus aureus, have been shown to suffer higher mortality than those infected by the pathogen alone. Understanding the host responses to such microbiota-pathogen ecological interactions is key to pinpointing the mechanism underlying severe infection outcomes. We conducted transcriptomic analyses of C. elegans colonised by its native microbiota, S. aureus and both in combination. Correlations between altered collagen gene expression and heightened mortality in co-colonised hosts suggest the microbiota modified host resistance to infection. Furthermore, microbiota colonised hosts showed increased expression of immunity genes and variable expression of stress response genes during infection. Changes in host immunity and stress response could encompass both causes and effects of severe infection outcomes. 'Re-wilding' this model nematode host with its native microbiota indicated that typically commensal microbes can mediate molecular changes in the host that are costly when challenged by a novel emerging pathogen.
Collapse
Affiliation(s)
- Ian Will
- Department of Biology, University of Oxford, Oxford, UK
| | - Emily J Stevens
- Department of Biology, University of Oxford, Oxford, UK
- School of Life Sciences, Keele University, Newcastle-under-Lyme, UK
| | | | - Kayla C King
- Department of Biology, University of Oxford, Oxford, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Hawadak J, Arya A, Chaudhry S, Singh V. Genetic diversity and natural selection analysis of VAR2CSA and vir genes: implication for vaccine development. Genomics Inform 2024; 22:11. [PMID: 39010183 PMCID: PMC11247734 DOI: 10.1186/s44342-024-00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/27/2023] [Indexed: 07/17/2024] Open
Abstract
Variable surface antigens (VSAs) encoded by var and vir genes in Plasmodium falciparum and Plasmodium vivax, respectively, are known to be involved in malaria pathogenesis and host immune escape through antigenic variations. Knowledge of the genetic diversity of these antigens is essential for malaria control and effective vaccine development. In this study, we analysed the genetic diversity and evolutionary patterns of two fragments (DBL2X and DBL3X) of VAR2CSA gene and four vir genes (vir 4, vir 12, vir 21 and vir 27) from different endemic regions, including Southeast Asia and sub-Saharan Africa. High levels of segregating sites (S) and haplotype diversity (Hd) were observed in both var and vir genes. Among vir genes, vir 12 (S = 131, Hd = 0.996) and vir 21 (S = 171, Hd = 892) were found to be more diverse as compared to vir 4 (S = 11, Hd = 0.748) and vir 27 (S = 23, Hd = 0.814). DBL2X (S = 99, Hd = 0.996) and DBL3X (S = 307, Hd = 0.999) fragments showed higher genetic diversity. Our analysis indicates that var and vir genes are highly diverse and follow the similar evolutionary pattern globally. Some codons showed signatures of positive or negative selection pressure, but vir and var genes are likely to be under balancing selection. This study highlights the high variability of var and vir genes and underlines the need of functional experimental studies to determine the most relevant allelic forms for effective progress towards vaccine formulation and testing.
Collapse
Affiliation(s)
- Joseph Hawadak
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India
| | - Aditi Arya
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India
| | - Shewta Chaudhry
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Franz M, Regoes RR, Rolff J. How infection-triggered pathobionts influence virulence evolution. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230067. [PMID: 38497269 PMCID: PMC10945393 DOI: 10.1098/rstb.2023.0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/28/2023] [Indexed: 03/19/2024] Open
Abstract
Host-pathogen interactions can be influenced by the host microbiota, as the microbiota can facilitate or prevent pathogen infections. In addition, members of the microbiota can become virulent. Such pathobionts can cause co-infections when a pathogen infection alters the host immune system and triggers dysbiosis. Here we performed a theoretical investigation of how pathobiont co-infections affect the evolution of pathogen virulence. We explored the possibility that the likelihood of pathobiont co-infection depends on the evolving virulence of the pathogen. We found that, in contrast to the expectation from classical theory, increased virulence is not always selected for. For an increasing likelihood of co-infection with increasing pathogen virulence, we found scenario-specific selection for either increased or decreased virulence. Evolutionary changes, however, in pathogen virulence do not always translate into similar changes in combined virulence of the pathogen and the pathobiont. Only in one of the scenarios where pathobiont co-infection is triggered above a specific virulence level we found a reduction in combined virulence. This was not the case when the probability of pathobiont co-infection linearly increased with pathogen virulence. Taken together, our study draws attention to the possibility that host-microbiota interactions can be both the driver and the target of pathogen evolution. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Mathias Franz
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Jens Rolff
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
4
|
Duan XC, Zhao J, Martcheva M. Coevolutionary Dynamics of Host Immune and Parasite Virulence Based on an Age-Structured Epidemic Model. Bull Math Biol 2023; 85:28. [PMID: 36853371 DOI: 10.1007/s11538-023-01131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023]
Abstract
Hosts can activate a defensive response to clear the parasite once being infected. To explore how host survival and fecundity are affected by host-parasite coevolution for chronic parasitic diseases, in this paper, we proposed an age-structured epidemic model with infection age, in which the parasite transmission rate and parasite-induced mortality rate are structured by the infection age. By use of critical function analysis method, we obtained the existence of the host immune evolutionary singular strategy which is a continuous singular strategy (CSS). Assume that parasite-induced mortality begins at infection age [Formula: see text] and is constant v thereafter. We got that the value of the CSS, [Formula: see text], monotonically decreases with respect to infection age [Formula: see text] (see Case (I)), while it is non-monotone if the constant v positively depends on the immune trait c (see Case (II)). This non-monotonicity is verified by numerical simulations and implies that the direction of immune evolution depends on the initial value of immune trait. Besides that, we adopted two special forms of the parasite transmission rate to study the parasite's virulence evolution, by maximizing the basic reproduction ratio [Formula: see text]. The values of the convergence stable parasite's virulence evolutionary singular strategies [Formula: see text] and [Formula: see text] increase monotonically with respect to time lag L (i.e., the time lag between the onset of transmission and mortality). At the singular strategy [Formula: see text] and [Formula: see text], we further obtained the expressions of the case mortalities [Formula: see text] and how they are affected by the time lag L. Finally, we only presented some preliminary results about host and parasite coevolution dynamics, including a general condition under which the coevolutionary singular strategy [Formula: see text] is evolutionarily stable.
Collapse
Affiliation(s)
- Xi-Chao Duan
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Jiangyue Zhao
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Maia Martcheva
- Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, Gainesville, FL, 32611-8105, USA
| |
Collapse
|
5
|
Lazzaro BP, Tate AT. Balancing sensitivity, risk, and immunopathology in immune regulation. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100874. [PMID: 35051619 PMCID: PMC9133098 DOI: 10.1016/j.cois.2022.100874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Activation of an immune response is energetically costly and excessive immune system activity can result in immunopathology, yet a slow or insufficient immune response carries the risk of pathogen establishment with consequent pathology arising from the infection. Mathematical theory and empirical data demonstrate that hosts balance the costs of immunity against the risk of infection by closely regulating immunological dynamics. An optimal immune system is rapidly and robustly deployed against a true infectious threat and rapidly deactivated once the threat has been controlled. Genetic variation in the sensitivity of an immune system, as well as in the activation and shutdown kinetics of host immune responses, can contribute to the evolution of pathogen virulence and host tolerance of infection. Improved understanding of the adaptive forces that operate on immune regulatory dynamics will clarify fundamental principles governing the evolution and maintenance of innate immune systems.
Collapse
Affiliation(s)
- Brian P Lazzaro
- Departments of Entomology and Ecology & Evolutionary Biology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA.
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
6
|
Raymond B, Erdos Z. Passage and the evolution of virulence in invertebrate pathogens: Fundamental and applied perspectives. J Invertebr Pathol 2021; 187:107692. [PMID: 34798134 DOI: 10.1016/j.jip.2021.107692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023]
Abstract
Understanding the ecological and genetic factors that determine the evolution of virulence has broad value for invertebrate pathology. In addition to helping us understand the fundamental biology of our study organisms this body of theory has important applications in microbial biocontrol. Experimental tests of virulence theory are often carried out in invertebrate models and yet theory rarely informs applied passage experiments that aim to increase or maintain virulence. This review summarizes recent progress in this field with a focus on work most relevant to biological control: the virulence of invertebrate pathogens that are 'obligate killers' and which require cadavers for the production of infectious propagules. We discuss recent theory and fundamental and applied experimental evolution with bacteria, fungi, baculoviruses and nematodes. While passage experiments using baculoviruses have a long history of producing isolates with increased virulence, studies with other pathogens have not been so successful. Recent passage experiments that have applied evolution of virulence frameworks based on cooperation (kin selection) have produced novel methods and promising mutants with increased killing power. Evolution of virulence theory can provide plausible explanations for the varied results of passage experiments as well as a predictive framework for improving artificial selection.
Collapse
Affiliation(s)
- Ben Raymond
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK.
| | - Zoltan Erdos
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK
| |
Collapse
|
7
|
Hite JL, Pfenning AC, Cressler CE. Starving the Enemy? Feeding Behavior Shapes Host-Parasite Interactions. Trends Ecol Evol 2019; 35:68-80. [PMID: 31604593 DOI: 10.1016/j.tree.2019.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 01/09/2023]
Abstract
The loss of appetite that typically accompanies infection or mere exposure to parasites is traditionally considered a negative byproduct of infection, benefitting neither the host nor the parasite. Numerous medical and veterinary practices directly or indirectly subvert this 'illness-mediated anorexia'. However, the ecological factors that influence it, its effects on disease outcomes, and why it evolved remain poorly resolved. We explore how hosts use anorexia to defend against infection and how parasites manipulate anorexia to enhance transmission. Then, we use a coevolutionary model to illustrate how shifts in the magnitude of anorexia (e.g., via drugs) affect disease dynamics and virulence evolution. Anorexia could be exploited to improve disease management; we propose an interdisciplinary approach to minimize unintended consequences.
Collapse
Affiliation(s)
- Jessica L Hite
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | - Alaina C Pfenning
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Clayton E Cressler
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
8
|
Clay PA, Rudolf VHW. How parasite interaction strategies alter virulence evolution in multi-parasite communities. Evolution 2019; 73:2189-2203. [PMID: 31506940 DOI: 10.1111/evo.13843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/15/2019] [Accepted: 07/06/2019] [Indexed: 12/11/2022]
Abstract
The majority of organisms host multiple parasite species, each of which can interact with hosts and competitors through a diverse range of direct and indirect mechanisms. These within-host interactions can directly alter the mortality rate of coinfected hosts and alter the evolution of virulence (parasite-induced host mortality). Yet we still know little about how within-host interactions affect the evolution of parasite virulence in multi-parasite communities. Here, we modeled the virulence evolution of two coinfecting parasites in a host population in which parasites interacted through cross immunity, immune suppression, immunopathology, or spite. We show (1) that these within-host interactions have different effects on virulence evolution when all parasites interact with each other in the same way versus when coinfecting parasites have unique interaction strategies, (2) that these interactions cause the evolution of lower virulence in some hosts, and higher virulence in other hosts, depending on the hosts infection status, and (3) that for cross immunity and spite, whether parasites increase or decrease the evolutionarily stable virulence in coinfected hosts depended on interaction strength. These results improve our understanding of virulence evolution in complex parasite communities, and show that virulence evolution must be understood at the community scale.
Collapse
|
9
|
Greischar MA, Beck-Johnson LM, Mideo N. Partitioning the influence of ecology across scales on parasite evolution. Evolution 2019; 73:2175-2188. [PMID: 31495911 DOI: 10.1111/evo.13840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/31/2019] [Indexed: 11/30/2022]
Abstract
Vector-borne parasites must succeed at three scales to persist: they must proliferate within a host, establish in vectors, and transmit back to hosts. Ecology outside the host undergoes dramatic seasonal and human-induced changes, but predicting parasite evolutionary responses requires integrating their success across scales. We develop a novel, data-driven model to titrate the evolutionary impact of ecology at multiple scales on human malaria parasites. We investigate how parasites invest in transmission versus proliferation, a life-history trait that influences disease severity and spread. We find that transmission investment controls the pattern of host infectiousness over the course of infection: a trade-off emerges between early and late infectiousness, and the optimal resolution of that trade-off depends on ecology outside the host. An expanding epidemic favors rapid proliferation, and can overwhelm the evolutionary influence of host recovery rates and mosquito population dynamics. If transmission investment and recovery rate are positively correlated, then ecology outside the host imposes potent selection for aggressive parasite proliferation at the expense of transmission. Any association between transmission investment and recovery represents a key unknown, one that is likely to influence whether the evolutionary consequences of interventions are beneficial or costly for human health.
Collapse
Affiliation(s)
- Megan A Greischar
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | | | - Nicole Mideo
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
10
|
γδ-T cells promote IFN-γ-dependent Plasmodium pathogenesis upon liver-stage infection. Proc Natl Acad Sci U S A 2019; 116:9979-9988. [PMID: 31028144 DOI: 10.1073/pnas.1814440116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cerebral malaria (CM) is a major cause of death due to Plasmodium infection. Both parasite and host factors contribute to the onset of CM, but the precise cellular and molecular mechanisms that contribute to its pathogenesis remain poorly characterized. Unlike conventional αβ-T cells, previous studies on murine γδ-T cells failed to identify a nonredundant role for this T cell subset in experimental cerebral malaria (ECM). Here we show that mice lacking γδ-T cells are resistant to ECM when infected with Plasmodium berghei ANKA sporozoites, the liver-infective form of the parasite and the natural route of infection, in contrast with their susceptible phenotype if challenged with P. berghei ANKA-infected red blood cells that bypass the liver stage of infection. Strikingly, the presence of γδ-T cells enhanced the expression of Plasmodium immunogenic factors and exacerbated subsequent systemic and brain-infiltrating inflammatory αβ-T cell responses. These phenomena were dependent on the proinflammatory cytokine IFN-γ, which was required during liver stage for modulation of the parasite transcriptome, as well as for downstream immune-mediated pathology. Our work reveals an unanticipated critical role of γδ-T cells in the development of ECM upon Plasmodium liver-stage infection.
Collapse
|
11
|
Bailey C, Strepparava N, Wahli T, Segner H. Exploring the immune response, tolerance and resistance in proliferative kidney disease of salmonids. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:165-175. [PMID: 30248359 DOI: 10.1016/j.dci.2018.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 05/24/2023]
Abstract
Proliferative kidney disease (PKD) of salmonids is a disease of economic and environmental concern caused by the myxozoan parasite Tetracapsuloides bryosalmonae. Finer details of the immune repertoire during T. bryosalmonae infection have been elucidated in rainbow trout (Oncorhynchus mykiss). In contrast, there remain many unanswered questions regarding the immune response of the wild fish host in Europe, the brown trout (Salmo trutta) to this parasite. The first aim of this study is to examine the brown trout immune response to T. bryosalmonae and compare it with the published information on rainbow trout as two species that have undergone a different coevolution with the parasite. According to ecoimmunology terminology, infected organisms may manage infection by reducing the damage caused by parasites (tolerance) or by limiting parasite burden (resistance). The second aim of this study is to investigate tolerance/resistance patterns of these species during PKD infection. Our results suggest subtle differences in sequential aspects of the immune response and of immune genes that correlate with parasite intensity for the brown trout, in contrast to rainbow trout, in terms of the B cell response and Th-like interplay that may be linked to PKD pathogenesis. These differences in the immune response also correlate with species-specific differences in tolerance/resistance patterns, in that brown trout had increased tolerance but rainbow trout had greater resistance to infection. The variance in tolerance/resistance investment resulted in a different evolutionary outcome for each host-parasite interaction. A greater exploration of these concepts and an association of immune mechanisms could open an additional gateway for interpreting fish host-parasite interactions.
Collapse
Affiliation(s)
- Christyn Bailey
- University of Bern, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012, Bern, Switzerland.
| | - Nicole Strepparava
- University of Bern, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012, Bern, Switzerland
| | - Thomas Wahli
- University of Bern, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012, Bern, Switzerland
| | - Helmut Segner
- University of Bern, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012, Bern, Switzerland
| |
Collapse
|
12
|
Transmission-clearance trade-offs indicate that dengue virulence evolution depends on epidemiological context. Nat Commun 2018; 9:2355. [PMID: 29907741 PMCID: PMC6003961 DOI: 10.1038/s41467-018-04595-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
An extensive body of theory addresses the topic of pathogen virulence evolution, yet few studies have empirically demonstrated the presence of fitness trade-offs that would select for intermediate virulence. Here we show the presence of transmission-clearance trade-offs in dengue virus using viremia measurements. By fitting a within-host model to these data, we further find that the interaction between dengue and the host immune response can account for the observed trade-offs. Finally, we consider dengue virulence evolution when selection acts on the virus’s production rate. By combining within-host model simulations with empirical findings on how host viral load affects human-to-mosquito transmission success, we show that the virus’s transmission potential is maximized at production rates associated with intermediate virulence and that the optimal production rate critically depends on dengue’s epidemiological context. These results indicate that long-term changes in dengue’s global distribution impact the invasion and spread of virulent dengue virus genotypes. Theory predicts that pathogens will evolve towards intermediate virulence, yet the necessary trade-offs invoked by this theory have rarely been demonstrated empirically. Here, the authors show that dengue virus dynamics exhibit a trade-off between transmission and clearance rates.
Collapse
|
13
|
Kamiya T, Mideo N, Alizon S. Coevolution of virulence and immunosuppression in multiple infections. J Evol Biol 2018; 31:995-1005. [DOI: 10.1111/jeb.13280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/19/2018] [Accepted: 03/29/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Tsukushi Kamiya
- Department of Ecology & Evolutionary Biology; University of Toronto; Toronto ON Canada
| | - Nicole Mideo
- Department of Ecology & Evolutionary Biology; University of Toronto; Toronto ON Canada
| | - Samuel Alizon
- Laboratoire MIVEGEC (UMR CNRS 5290, UR IRD 224, UM); Montpellier France
| |
Collapse
|
14
|
Lynsdale CL, Mumby HS, Hayward AD, Mar KU, Lummaa V. Parasite-associated mortality in a long-lived mammal: Variation with host age, sex, and reproduction. Ecol Evol 2017; 7:10904-10915. [PMID: 29299268 PMCID: PMC5743535 DOI: 10.1002/ece3.3559] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/23/2017] [Accepted: 09/28/2017] [Indexed: 01/03/2023] Open
Abstract
Parasites can cause severe host morbidity and threaten survival. As parasites are generally aggregated within certain host demographics, they are likely to affect a small proportion of the entire population, with specific hosts being at particular risk. However, little is known as to whether increased host mortality from parasitic causes is experienced by specific host demographics. Outside of theoretical studies, there is a paucity of literature concerning dynamics of parasite-associated host mortality. Empirical evidence mainly focuses on short-lived hosts or model systems, with data lacking from long-lived wild or semi-wild vertebrate populations. We investigated parasite-associated mortality utilizing a multigenerational database of mortality, health, and reproductive data for over 4,000 semi-captive timber elephants (Elephas maximus), with known causes of death for mortality events. We determined variation in mortality according to a number of host traits that are commonly associated with variation in parasitism within mammals: age, sex, and reproductive investment in females. We found that potentially parasite-associated mortality varied significantly across elephant ages, with individuals at extremes of lifespan (young and old) at highest risk. Mortality probability was significantly higher for males across all ages. Female reproducers experienced a lower probability of potentially parasite-associated mortality than females who did not reproduce at any investigated time frame. Our results demonstrate increased potentially parasite-associated mortality within particular demographic groups. These groups (males, juveniles, elderly adults) have been identified in other studies as susceptible to parasitism, stressing the need for further work investigating links between infection and mortality. Furthermore, we show variation between reproductive and non-reproductive females, with mothers being less at risk of potentially parasite mortality than nonreproducers.
Collapse
Affiliation(s)
- Carly L. Lynsdale
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Hannah S. Mumby
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Department of Environmental SciencesApplied Behavioural Ecology and Ecosystem Research UnitUniversity of South AfricaJohannesburgSouth Africa
| | - Adam D. Hayward
- Department of Biological and Environmental SciencesUniversity of StirlingStirlingUK
| | - Khyne U. Mar
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Virpi Lummaa
- Department of BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
15
|
Ritter M, Kalbe M, Henrich T. Virulence in the three-spined stickleback specific parasite Schistocephalus solidus is inherited additively. Exp Parasitol 2017; 180:133-140. [DOI: 10.1016/j.exppara.2017.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/14/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
|
16
|
Sorci G, Lippens C, Léchenault C, Faivre B. Benefits of immune protection versus immunopathology costs: A synthesis from cytokine KO models. INFECTION GENETICS AND EVOLUTION 2017; 54:491-495. [PMID: 28818622 DOI: 10.1016/j.meegid.2017.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/19/2017] [Accepted: 08/14/2017] [Indexed: 12/24/2022]
Abstract
The inflammatory response can produce damage to host tissues and in several infectious diseases the most severe symptoms are due to immunopathology rather than a direct effect of pathogen multiplication. One hypothesis for the persistence of inflammatory damage posits that the benefits of protection towards infection outweigh the costs. We used data on knocked-out (KO) cytokine models [and the corresponding wild-type (WT) controls] to test this hypothesis. We computed differences in pathogen load and host survival between WT and KO and divided them by the WT values. Using this ratio provides an internal control for variation in pathogen species, host strain, pathogen dose, and inoculation route. We predicted that i) if mortality is essentially due to immunopathology, there should be a loose association between pathogen load and host survival; ii) if mortality is essentially due to pathogen proliferation, we expect a tight association between pathogen load and host survival. The results provide strong support to this latter hypothesis. In 85% of WT - KO comparisons (n=126), an increase in pathogen load was associated with an increase in host mortality, and a decrease in pathogen load was associated with a decrease in host mortality. Overall, these findings are in agreement with the idea that immunopathology persists because immune protection confers immediate benefits in terms of infection clearance.
Collapse
Affiliation(s)
- Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France.
| | - Cédric Lippens
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Clothilde Léchenault
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
17
|
Jirsová D, Štefka J, Jirků M. Discordant population histories of host and its parasite: A role for ecological permeability of extreme environment? PLoS One 2017; 12:e0175286. [PMID: 28394904 PMCID: PMC5386267 DOI: 10.1371/journal.pone.0175286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 03/23/2017] [Indexed: 12/24/2022] Open
Abstract
Biogeographical and ecological barriers strongly affect the course of micro-evolutionary processes in free living organisms. Here we assess the impact of a recently emerged barrier on populations of limnic fauna. Genetic diversity and population structure in a host-parasite system (Wenyonia virilis tapeworm, Synodontis schall catfish) are analyzed in the recently divided Turkana and Nile basins. The two basins, were repeatedly connected during the Holocene wet/dry climatic oscillations, following late Pleistocene dessication of the Turkana basin. Mitochondrial DNA sequences for cytochrome oxidase I gene (cox I) and a whole genome scanning method—amplified fragment length polymorphism (AFLP) were employed. A total of 347 cox I sequences (representing 209 haplotypes) and 716 AFLP fragments, as well as 120 cox I sequences (20 haplotypes) and 532 AFLP fragments were obtained from parasites and hosts, respectively. Although results indicate that host and parasite populations share some formative traits (bottlenecks, Nilotic origin), their population histories/patterns differ markedly. Mitochondrial analysis revealed that parasite populations evolve significantly faster and show remarkably higher genetic variability. Analyses of both markers confirmed that the parasites undergo lineage fission, forming new clusters specific for either freshwater or saline parts of Lake Turkana. In congruence with the geological history, these clusters apparently indicate multiple colonisations of Lake Turkana from the Nile. In contrast, the host population pattern indicates fusion of different colonisation waves. Although fish host populations remain connected, saline habitats in Lake Turkana (absent in the Nile), apparently pose a barrier to the gene flow in the parasite, possibly due to its multihost lifecycle, which involves freshwater annelids. Despite partially corroborating mitochondrial results, AFLP data was not sufficiently informative for analyzing populations with recently mixed biogeographic histories.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská, České Budějovice, Czech Republic
- * E-mail:
| | - Jan Štefka
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská, České Budějovice, Czech Republic
| | - Miloslav Jirků
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská, České Budějovice, Czech Republic
| |
Collapse
|
18
|
Weigert M, Ross-Gillespie A, Leinweber A, Pessi G, Brown SP, Kümmerli R. Manipulating virulence factor availability can have complex consequences for infections. Evol Appl 2016; 10:91-101. [PMID: 28035238 PMCID: PMC5192820 DOI: 10.1111/eva.12431] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/07/2016] [Indexed: 12/12/2022] Open
Abstract
Given the rise of bacterial resistance against antibiotics, we urgently need alternative strategies to fight infections. Some propose we should disarm rather than kill bacteria, through targeted disruption of their virulence factors. It is assumed that this approach (i) induces weak selection for resistance because it should only minimally impact bacterial fitness, and (ii) is specific, only interfering with the virulence factor in question. Given that pathogenicity emerges from complex interactions between pathogens, hosts and their environment, such assumptions may be unrealistic. To address this issue in a test case, we conducted experiments with the opportunistic human pathogen Pseudomonas aeruginosa, where we manipulated the availability of a virulence factor, the iron‐scavenging pyoverdine, within the insect host Galleria mellonella. We observed that pyoverdine availability was not stringently predictive of virulence and affected bacterial fitness in nonlinear ways. We show that this complexity could partly arise because pyoverdine availability affects host responses and alters the expression of regulatorily linked virulence factors. Our results reveal that virulence factor manipulation feeds back on pathogen and host behaviour, which in turn affects virulence. Our findings highlight that realizing effective and evolutionarily robust antivirulence therapies will ultimately require deeper engagement with the intrinsic complexity of host–pathogen systems.
Collapse
Affiliation(s)
- Michael Weigert
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland; Microbiology Department of Biology I Ludwig Maximilians University Munich Martinsried Germany
| | - Adin Ross-Gillespie
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland; Bioinformatics Core Facility SIB Swiss Institute of Bioinformatics Lausanne Switzerland
| | - Anne Leinweber
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland
| | - Sam P Brown
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland
| |
Collapse
|
19
|
Tago D, Meyer DF. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium. Front Cell Infect Microbiol 2016; 6:86. [PMID: 27610355 PMCID: PMC4997789 DOI: 10.3389/fcimb.2016.00086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022] Open
Abstract
Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Damian Tago
- La Recherche Agronomique Pour le Développement (CIRAD), UMR Contrôle des Maladies Animales, Exotiques et Émergentes (CMAEE)Petit-Bourg, France; Institut National de la Recherche Agronomique, UMR1309 CMAEEMontpellier, France
| | - Damien F Meyer
- La Recherche Agronomique Pour le Développement (CIRAD), UMR Contrôle des Maladies Animales, Exotiques et Émergentes (CMAEE)Petit-Bourg, France; Institut National de la Recherche Agronomique, UMR1309 CMAEEMontpellier, France
| |
Collapse
|
20
|
Cressler CE, Graham AL, Day T. Evolution of hosts paying manifold costs of defence. Proc Biol Sci 2015; 282:20150065. [PMID: 25740895 DOI: 10.1098/rspb.2015.0065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Hosts are expected to incur several physiological costs in defending against parasites. These include constitutive energetic (or other resource) costs of a defence system, facultative resource costs of deploying defences when parasites strike, and immunopathological costs of collateral damage. Here, we investigate the evolution of host recovery rates, varying the source and magnitude of immune costs. In line with previous work, we find that hosts paying facultative resource costs evolve faster recovery rates than hosts paying constitutive costs. However, recovery rate is more sensitive to changes in facultative costs, potentially explaining why constitutive costs are hard to detect empirically. Moreover, we find that immunopathology costs which increase with recovery rate can erode the benefits of defence, promoting chronicity of infection. Immunopathology can also lead to hosts evolving low recovery rate in response to virulent parasites. Furthermore, when immunopathology reduces fecundity as recovery rate increases (e.g. as for T-cell responses to urogenital chlamydiosis), then recovery and reproductive rates do not covary as predicted in eco-immunology. These results suggest that immunopathological and resource costs have qualitatively different effects on host evolution and that embracing the complexity of immune costs may be essential for explaining variability in immune defence in nature.
Collapse
Affiliation(s)
- Clayton E Cressler
- Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Troy Day
- Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada K7L 3N6 Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
21
|
Abstract
Why is it that some parasites cause high levels of host damage (i.e. virulence) whereas others are relatively benign? There are now numerous reviews of virulence evolution in the literature but it is nevertheless still difficult to find a comprehensive treatment of the theory and data on the subject that is easily accessible to non-specialists. Here we attempt to do so by distilling the vast theoretical literature on the topic into a set of relatively few robust predictions. We then provide a comprehensive assessment of the available empirical literature that tests these predictions. Our results show that there have been some notable successes in integrating theory and data but also that theory and empiricism in this field do not ‘speak’ to each other very well. We offer a few suggestions for how the connection between the two might be improved.
Collapse
|
22
|
Boots M. The Need for Evolutionarily Rational Disease Interventions: Vaccination Can Select for Higher Virulence. PLoS Biol 2015; 13:e1002236. [PMID: 26305571 PMCID: PMC4548947 DOI: 10.1371/journal.pbio.1002236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There is little doubt evolution has played a major role in preventing the control of infectious disease through antibiotic and insecticide resistance, but recent theory suggests disease interventions such as vaccination may lead to evolution of more harmful parasites. A new study published in PLOS Biology by Andrew Read and colleagues shows empirically that vaccination against Marek's disease has favored higher virulence; without intervention, the birds die too quickly for any transmission to occur, but vaccinated hosts can both stay alive longer and shed the virus. This is an elegant empirical demonstration of how evolutionary theory can predict potentially dangerous responses of infectious disease to human interventions.
Collapse
Affiliation(s)
- Mike Boots
- Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
- Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Hummert S, Bohl K, Basanta D, Deutsch A, Werner S, Theissen G, Schroeter A, Schuster S. Evolutionary game theory: cells as players. MOLECULAR BIOSYSTEMS 2015; 10:3044-65. [PMID: 25270362 DOI: 10.1039/c3mb70602h] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In two papers we review game theory applications in biology below the level of cognitive living beings. It can be seen that evolution and natural selection replace the rationality of the actors appropriately. Even in these micro worlds, competing situations and cooperative relationships can be found and modeled by evolutionary game theory. Also those units of the lowest levels of life show different strategies for different environmental situations or different partners. We give a wide overview of evolutionary game theory applications to microscopic units. In this first review situations on the cellular level are tackled. In particular metabolic problems are discussed, such as ATP-producing pathways, secretion of public goods and cross-feeding. Further topics are cyclic competition among more than two partners, intra- and inter-cellular signalling, the struggle between pathogens and the immune system, and the interactions of cancer cells. Moreover, we introduce the theoretical basics to encourage scientists to investigate problems in cell biology and molecular biology by evolutionary game theory.
Collapse
Affiliation(s)
- Sabine Hummert
- Fachhochschule Schmalkalden, Faculty of Electrical Engineering, Blechhammer, 98574 Schmalkalden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Five challenges in evolution and infectious diseases. Epidemics 2015; 10:40-4. [DOI: 10.1016/j.epidem.2014.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 01/09/2023] Open
|
25
|
Zylberberg M. Common measures of immune function vary with time of day and sampling protocol in five passerine species. J Exp Biol 2015; 218:757-66. [DOI: 10.1242/jeb.111716] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
ABSTRACT
Ecological immunology is a rapidly growing field of study that focuses on understanding variation in immune systems across species and how this relates to species ecology and evolution. Newly developed field methods aimed at studying variation in immune function in a field setting have yielded many insights. Nonetheless, there continues to be much debate regarding the interpretation of field measures of immune function. There is substantial evidence to suggest that handling stress could introduce variation into measures of immune function, yet no study has examined the impacts of incremental changes in handling times under 30 min on immune measures. Nor has any study examined variation in immune function with time of day, though other physiological measures, including glucocorticoids known to impact immune function, vary with time of day. Here, I used observational field data to test the hypothesis that innate immune function varies with handling stress. Furthermore, I tested the hypothesis that innate immune function changes over the course of the day. I show that measures of innate immune function vary with (1) handling stress over short time periods typical of sample collection in the field, and (2) the time of day that an individual is sampled. I discuss these findings from an ecological perspective and suggest that the observed variation is not random, but is likely to have important adaptive functions. I end with a summary of the practical implications of these findings for field studies of ecological immunology.
Collapse
Affiliation(s)
- Maxine Zylberberg
- University of California, San Francisco, 1700 4th St, San Francisco, CA 94158-2330, USA
| |
Collapse
|
26
|
Long GH, Graham AL. Consequences of immunopathology for pathogen virulence evolution and public health: malaria as a case study. Evol Appl 2015; 4:278-91. [PMID: 25567973 PMCID: PMC3352548 DOI: 10.1111/j.1752-4571.2010.00178.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 12/01/2010] [Indexed: 12/25/2022] Open
Abstract
Evolutionary theories explaining virulence—the fitness damage incurred by infected hosts—often focus on parasite strategies for within-host exploitation. However, much virulence can be caused by the host's own immune response: for example, pro-inflammatory cytokines, although essential for killing malaria parasites, also damage host tissue. Here we argue that immune-mediated virulence, or ‘immunopathology,’ may affect malaria virulence evolution and should be considered in the design of medical interventions. Our argument is based on the ability of immunopathology to disrupt positive virulence-transmission relationships assumed under the trade-off theory of virulence evolution. During rodent malaria infections, experimental reduction of inflammation using reagents approved for field use decreases virulence but increases parasite transmission potential. Importantly, rodent malaria parasites exhibit genetic diversity in the propensity to induce inflammation and invest in transmission-stage parasites in the presence of pro-inflammatory cytokines. If immunopathology positively correlates with malaria parasite density, theory suggests it could select for relatively low malaria virulence. Medical interventions which decrease immunopathology may therefore inadvertently select for increased malaria virulence. The fitness consequences to parasites of variations in immunopathology must be better understood in order to predict trajectories of parasite virulence evolution in heterogeneous host populations and in response to medical interventions.
Collapse
Affiliation(s)
- Gráinne H Long
- Department of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine London, UK
| | - Andrea L Graham
- Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, University of Edinburgh Edinburgh, UK ; Department of Ecology and Evolutionary Biology, Princeton University Princeton, NJ, USA
| |
Collapse
|
27
|
Barclay VC, Kennedy DA, Weaver VC, Sim D, Lloyd-Smith JO, Read AF. The Effect of Immunodeficiency on the Evolution of Virulence: An Experimental Test with the Rodent MalariaPlasmodium chabaudi. Am Nat 2014; 184 Suppl 1:S47-57. [DOI: 10.1086/676887] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Vale PF, Fenton A, Brown SP. Limiting damage during infection: lessons from infection tolerance for novel therapeutics. PLoS Biol 2014; 12:e1001769. [PMID: 24465177 PMCID: PMC3897360 DOI: 10.1371/journal.pbio.1001769] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the field of infectious disease control, novel therapies are focusing on reducing illness caused by pathogens rather than on reducing the pathogen burden itself. Here, Vale and colleagues highlight some potential consequences of such therapeutics for pathogen spread and evolution.
Collapse
Affiliation(s)
- Pedro F. Vale
- Centre for Immunity, Infection, and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sam P. Brown
- Centre for Immunity, Infection, and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Belloni V, Sorci G, Paccagnini E, Guerreiro R, Bellenger J, Faivre B. Disrupting immune regulation incurs transient costs in male reproductive function. PLoS One 2014; 9:e84606. [PMID: 24400103 PMCID: PMC3882243 DOI: 10.1371/journal.pone.0084606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
Background Immune protection against pathogenic organisms has been shown to incur costs. Previous studies investigating the cost of immunity have mostly focused on the metabolic requirements of immune maintenance and activation. In addition to these metabolic costs, the immune system can induce damage to the host if the immune response is mis-targeted or over-expressed. Given its non-specific nature, an over-expressed inflammatory response is often associated with substantial damage for the host. Here, we investigated the cost of an over-expressed inflammatory response in the reproductive function of male mice. Methodology/Principal Findings We experimentally blocked the receptors of an anti-inflammatory cytokine (IL-10) in male mice exposed to a mild inflammatory challenge, with each treatment having an appropriate control group. The experiment was conducted on two age classes, young (3 month old) and old (15 month old) mice, to assess any age-related difference in the cost of a disrupted immune regulation. We found that the concomitant exposure to an inflammatory insult and the blockade of IL-10 induced a reduction in testis mass, compared to the three other groups. The frequency of abnormal sperm morphology was also higher in the group of mice exposed to the inflammatory challenge but did not depend on the blockade of the IL-10. Conclusions Our results provide evidence that immune regulation confers protection against the risk of inflammation-induced infertility during infection. They also suggest that disruption of the effectors involved in the regulation of the inflammatory response can have serious fitness consequences even under mild inflammatory insult and benign environmental conditions.
Collapse
Affiliation(s)
- Virginia Belloni
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne, Dijon, France
- Department Tropical Medicine, University of Tulane, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne, Dijon, France
| | | | - Romain Guerreiro
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne, Dijon, France
| | - Jérôme Bellenger
- Lipides Nutrition Cancer, INSERM UMR 866, Université de Bourgogne, Dijon, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne, Dijon, France
| |
Collapse
|
30
|
Reder AT, Feng X. Aberrant Type I Interferon Regulation in Autoimmunity: Opposite Directions in MS and SLE, Shaped by Evolution and Body Ecology. Front Immunol 2013; 4:281. [PMID: 24062747 PMCID: PMC3775461 DOI: 10.3389/fimmu.2013.00281] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/30/2013] [Indexed: 01/18/2023] Open
Abstract
Studying the action of mechanisms of type I interferon (IFN) provides the insight to elucidate the cause and therapy for autoimmune diseases. There are high IFN responses in some diseases such as connective tissue diseases, but low responses in multiple sclerosis. Distinct IFN features lead us to understand pathology of a spectrum of autoimmune diseases and help us to search genetic changes, gene expression, and biomarkers for diagnosis, disease progression, and treatment response.
Collapse
Affiliation(s)
- Anthony T Reder
- Department of Neurology, The University of Chicago , Chicago, IL , USA
| | | |
Collapse
|
31
|
Cornet S, Bichet C, Larcombe S, Faivre B, Sorci G. Impact of host nutritional status on infection dynamics and parasite virulence in a bird-malaria system. J Anim Ecol 2013; 83:256-65. [DOI: 10.1111/1365-2656.12113] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 06/15/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Stéphane Cornet
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique; Evolution et Contrôle (MIVEGEC); UMR CNRS 5290-IRD 224-UM1-UM2; Montpellier France
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE); UMR CNRS 5175; Montpellier France
| | - Coraline Bichet
- Biogéosciences; UMR CNRS 6282; Université de Bourgogne; Dijon France
| | - Stephen Larcombe
- Edward Grey Institute; Department of Zoology; University of Oxford; Oxford UK
| | - Bruno Faivre
- Biogéosciences; UMR CNRS 6282; Université de Bourgogne; Dijon France
| | - Gabriele Sorci
- Biogéosciences; UMR CNRS 6282; Université de Bourgogne; Dijon France
| |
Collapse
|
32
|
Dances with worms: the ecological and evolutionary impacts of deworming on coinfecting pathogens. Parasitology 2013; 140:1119-32. [PMID: 23714427 PMCID: PMC3695730 DOI: 10.1017/s0031182013000590] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Parasitic helminths are ubiquitous in most host, including human, populations. Helminths
often alter the likelihood of infection and disease progression of coinfecting
microparasitic pathogens (viruses, bacteria, protozoa), and there is great interest in
incorporating deworming into control programmes for many major diseases (e.g. HIV,
tuberculosis, malaria). However, such calls are controversial; studies show the
consequences of deworming for the severity and spread of pathogens to be highly variable.
Hence, the benefits of deworming, although clear for reducing the morbidity due to
helminth infection per se, are unclear regarding the outcome of
coinfections and comorbidities. I develop a theoretical framework to explore how helminth
coinfection with other pathogens affects host mortality and pathogen spread and evolution
under different interspecific parasite interactions. In all cases the outcomes of
coinfection are highly context-dependent, depending on the mechanism of helminth-pathogen
interaction and the quantitative level of helminth infection, with the effects of
deworming potentially switching from beneficial to detrimental depending on helminth
burden. Such context-dependency may explain some of the variation in the benefits of
deworming seen between studies, and highlights the need for obtaining a quantitative
understanding of parasite interactions across realistic helminth infection ranges.
However, despite this complexity, this framework reveals predictable patterns in the
effects of helminths that may aid the development of more effective, integrated management
strategies to combat pathogens in this coinfected world.
Collapse
|
33
|
Moreno-García M, Córdoba-Aguilar A, Condé R, Lanz-Mendoza H. Current immunity markers in insect ecological immunology: assumed trade-offs and methodological issues. BULLETIN OF ENTOMOLOGICAL RESEARCH 2013; 103:127-139. [PMID: 22929006 DOI: 10.1017/s000748531200048x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The field of ecological immunology currently relies on using a number of immune effectors or markers. These markers are usually used to infer ecological trade-offs (via conflicts in resource allocation), though physiological nature of these markers remains elusive. Here, we review markers frequently used in insect evolutionary ecology research: cuticle darkening, haemocyte density, nodule/capsule formation, phagocytosis and encapsulation/melanization via use of nylon filaments and beads, phenoloxidase activity, nitric oxide production, lysozyme and antimicrobial peptide production. We also provide physiologically based information that may shed light on the probable trade-offs inferred when these markers are used. In addition, we provide a number of methodological suggestions to improve immune marker assessment.
Collapse
Affiliation(s)
- M Moreno-García
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México
| | | | | | | |
Collapse
|
34
|
Adelman JS, Kirkpatrick L, Grodio JL, Hawley DM. House finch populations differ in early inflammatory signaling and pathogen tolerance at the peak of Mycoplasma gallisepticum infection. Am Nat 2013; 181:674-89. [PMID: 23594550 DOI: 10.1086/670024] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Host individuals and populations often vary in their responses to infection, with direct consequences for pathogen spread and evolution. While considerable work has focused on the mechanisms underlying differences in resistance-the ability to kill pathogens-we know little about the mechanisms underlying tolerance-the ability to minimize fitness losses per unit pathogen. Here, we examine patterns and mechanisms of tolerance between two populations of house finches (Haemorhous [formerly Carpodacus] mexicanus) with different histories with the bacterial pathogen Mycoplasma gallisepticum (MG). After infection in a common environment, we assessed two metrics of pathology, mass loss and eye lesion severity, as proxies for fitness. We calculated tolerance using two methods, one based on pathology and pathogen load at the peak of infection (point tolerance) and the other based on the integrals of these metrics over time (range tolerance). Alabama birds, which have a significantly longer history of exposure to MG, showed more pronounced point tolerance than Arizona birds, while range tolerance did not differ between populations. Alabama birds also displayed lower inflammatory cytokine signaling and lower fever early in infection. These results suggest that differences in inflammatory processes, which can significantly damage host tissues, may contribute to variation in tolerance among house finch individuals and populations. Such variation can affect pathogen spread and evolution in ways not predictable by resistance alone and sheds light on the costs and benefits of inflammation in wild animals.
Collapse
Affiliation(s)
- James S Adelman
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | | | | | | |
Collapse
|
35
|
Immune evasion, immunopathology and the regulation of the immune system. Pathogens 2013; 2:71-91. [PMID: 25436882 PMCID: PMC4235712 DOI: 10.3390/pathogens2010071] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/26/2022] Open
Abstract
Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths) that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response.
Collapse
|
36
|
Alizon S, de Roode JC, Michalakis Y. Multiple infections and the evolution of virulence. Ecol Lett 2013; 16:556-67. [PMID: 23347009 DOI: 10.1111/ele.12076] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/30/2012] [Accepted: 12/17/2012] [Indexed: 12/13/2022]
Abstract
Infections that consist of multiple parasite strains or species are common in the wild and are a major public health concern. Theory suggests that these infections have a key influence on the evolution of infectious diseases and, more specifically, on virulence evolution. However, we still lack an overall vision of the empirical support for these predictions. We argue that within-host interactions between parasites largely determine how virulence evolves and that experimental data support model predictions. Then, we explore the main limitation of the experimental study of such 'mixed infections', which is that it draws conclusions on evolutionary outcomes from studies conducted at the individual level. We also discuss differences between coinfections caused by different strains of the same species or by different species. Overall, we argue that it is possible to make sense out of the complexity inherent to multiple infections and that experimental evolution settings may provide the best opportunity to further our understanding of virulence evolution.
Collapse
Affiliation(s)
- Samuel Alizon
- Laboratoire MIVEGEC (UMR CNRS 5290, UR IRD 224, UM1, UM2), Montpellier, France.
| | | | | |
Collapse
|
37
|
Sorci G, Cornet S, Faivre B. Immunity and the emergence of virulent pathogens. INFECTION GENETICS AND EVOLUTION 2013; 16:441-6. [PMID: 23333337 DOI: 10.1016/j.meegid.2012.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/24/2012] [Accepted: 12/27/2012] [Indexed: 12/28/2022]
Abstract
The emergence/re-emergence of infectious diseases has been one of the major concerns for human and wildlife health. In spite of the medical and veterinary progresses as to prevent and cure infectious diseases, during the last decades we have witnessed the emergence/re-emergence of virulent pathogens that pose a threat to humans and wildlife. Many factors that might drive the emergence of these novel pathogens have been identified and several reviews have been published on this topic in the last years. Among the most cited and recognized drivers of pathogen emergence are climate change, habitat destruction, increased contact with reservoirs, etc. These factors mostly refer to environmental determinants of emergence. However, the immune system of the host is probably the most important environmental trait parasites have to cope with. Here, we wish to discuss how immune-mediated selection might affect the emergence/re-emergence of infectious diseases and drive the evolution of disease severity. Vaccination, natural (age-associated) and acquired immunodeficiencies, organ transplantation, environmental contamination with chemicals that disrupt immune functions form populations of hosts that might exert specific immune-mediated selection on a range of pathogens, shaping their virulence and evolution, and favoring their spread to other populations of hosts.
Collapse
Affiliation(s)
- Gabriele Sorci
- Biogéosciences, UMR CNRS 6282, Université de Bourgogne, Dijon, France.
| | | | | |
Collapse
|
38
|
Brusini J, Wang Y, Matos L, Sylvestre LS, Bolker B, Wayne M. Virulence evolution in a host-parasite system in the absence of viral evolution. EVOLUTIONARY ECOLOGY RESEARCH 2013; 15:883-901. [PMID: 28217033 PMCID: PMC5315458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
QUESTION How does virulence evolve in the Drosophila melanogaster/sigma virus (DMelSV) system? ORGANISMS Drosophila melanogaster (host) and DMelSV (parasite). EMPIRICAL METHODS Artificial selection on whole-carcass viral titre of infected flies, including two selection regimes (maternal and biparental transmission) and three treatments within each regime (increased titre, decreased titre, and control). The maternal transmission selection regime lasted for six generations, while the biparental transmission selection regime lasted for twelve generations. We further quantified virulence by estimating the fecundity, viability, and development time of infected flies. Finally, we sequenced virus strains at the end of selection. PREDICTIONS AND CONCLUSIONS Titre is defined here as the number of viral genomes inside a single fly, while virulence is defined as harm to host. We predicted that titre would respond to both increased and decreased selection, that virulence would evolve as a positively correlated response, and that sequence evolution in the viruses would be responsible for these changes. Titre did respond to selection in the biparental regime, although both high and control lines both demonstrated increased titre, while the titre of the low lines did not change. One component of virulence, development time, was positively correlated with titre in the biparental transmission lines (maternal transmission lines were not scored for virulence). However, we detected few (and in some cases, no) genomic changes in the virus, making viral evolution unlikely to be responsible for the response to selection and the association between development time and titre.
Collapse
Affiliation(s)
- J. Brusini
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| | - Y. Wang
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Department of Chemistry, University of California, Irvine, California, USA
| | - L.F. Matos
- Department of Biology, Eastern Washington University, Cheney, Washington, USA
| | - L.-S. Sylvestre
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - B.M. Bolker
- Departments of Mathematics & Statistics and Biology, McMaster University, Hamilton, Ontario, Canada
| | - M.L. Wayne
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
39
|
Glass EJ. The molecular pathways underlying host resistance and tolerance to pathogens. Front Genet 2012; 3:263. [PMID: 23403960 PMCID: PMC3566117 DOI: 10.3389/fgene.2012.00263] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/05/2012] [Indexed: 01/31/2023] Open
Abstract
Breeding livestock that are better able to withstand the onslaught of endemic- and exotic pathogens is high on the wish list of breeders and farmers world-wide. However, the defense systems in both pathogens and their hosts are complex and the degree of genetic variation in resistance and tolerance will depend on the trade-offs that they impose on host fitness as well as their life-histories. The genes and pathways underpinning resistance and tolerance traits may be distinct or intertwined as the outcome of any infection is a result of a balance between collateral damage of host tissues and control of the invading pathogen. Genes and molecular pathways associated with resistance are mainly expressed in the mucosal tract and the innate immune system and control the very early events following pathogen invasion. Resistance genes encode receptors involved in uptake of pathogens, as well as pattern recognition receptors (PRR) such as the toll-like receptor family as well as molecules involved in strong and rapid inflammatory responses which lead to rapid pathogen clearance, yet do not lead to immunopathology. In contrast tolerance genes and pathways play a role in reducing immunopathology or enhancing the host's ability to protect against pathogen associated toxins. Candidate tolerance genes may include cytosolic PRRs and unidentified sensors of pathogen growth, perturbation of host metabolism and intrinsic danger or damage associated molecules. In addition, genes controlling regulatory pathways, tissue repair and resolution are also tolerance candidates. The identities of distinct genetic loci for resistance and tolerance to infectious pathogens in livestock species remain to be determined. A better understanding of the mechanisms involved and phenotypes associated with resistance and tolerance should ultimately help to improve livestock health and welfare.
Collapse
Affiliation(s)
- Elizabeth J. Glass
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghEdinburgh, UK
| |
Collapse
|
40
|
Ashley NT, Weil ZM, Nelson RJ. Inflammation: Mechanisms, Costs, and Natural Variation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2012. [DOI: 10.1146/annurev-ecolsys-040212-092530] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noah T. Ashley
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky 42101;
| | - Zachary M. Weil
- Department of Neuroscience, Wexner College of Medicine, Ohio State University, Columbus, Ohio 43210; ,
| | - Randy J. Nelson
- Department of Neuroscience, Wexner College of Medicine, Ohio State University, Columbus, Ohio 43210; ,
| |
Collapse
|
41
|
Bichet C, Cornet S, Larcombe S, Sorci G. Experimental inhibition of nitric oxide increases Plasmodium relictum (lineage SGS1) parasitaemia. Exp Parasitol 2012; 132:417-23. [PMID: 23022523 DOI: 10.1016/j.exppara.2012.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/23/2012] [Accepted: 09/13/2012] [Indexed: 01/29/2023]
Abstract
Malaria is a widespread vector-borne disease infecting a wide range of terrestrial vertebrates including reptiles, birds and mammals. In addition to being one of the most deadly infectious diseases for humans, malaria is a threat to wildlife. The host immune system represents the main defence against malaria parasites. Identifying the immune effectors involved in malaria resistance has therefore become a major focus of research. However, this has mostly involved humans and animal models (rodents) and how the immune system regulates malaria progression in non-model organisms has been largely ignored. The aim of the present study was to investigate the role of nitric oxide (NO) as an immune effector contributing to the control of the acute phase of infection with the avian malaria agent Plasmodium relictum. We used experimental infections of domestic canaries in conjunction with the inhibition of the enzyme inducible nitric oxide synthase (iNOS) to assess the protective function of NO during the infection, and the physiological costs paid by the host in the absence of an effective NO response. Our results show that birds treated with the iNOS inhibitor suffered from a higher parasitaemia, but did not pay a higher cost of infection (anaemia). While these findings confirm that NO contributes to the resistance to avian malaria during the acute phase of the infection, they also suggest that parasitaemia and costs of infection can be decoupled.
Collapse
Affiliation(s)
- Coraline Bichet
- BioGéosciences, UMR CNRS 5561, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France.
| | | | | | | |
Collapse
|
42
|
Best A, Long G, White A, Boots M. The implications of immunopathology for parasite evolution. Proc Biol Sci 2012; 279:3234-40. [PMID: 22553095 PMCID: PMC3385737 DOI: 10.1098/rspb.2012.0647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/13/2012] [Indexed: 11/12/2022] Open
Abstract
By definition, parasites harm their hosts, but in many infections much of the pathology is driven by the host immune response rather than through direct damage inflicted by parasites. While these immunopathological effects are often well studied and understood mechanistically in individual disease interactions, there remains relatively little understanding of their broader impact on the evolution of parasites and their hosts. Here, we theoretically investigate the implications of immunopathology, broadly defined as additional mortality associated with the host's immune response, on parasite evolution. In particular, we examine how immunopathology acting on different epidemiological traits (namely transmission, virulence and recovery) affects the evolution of disease severity. When immunopathology is costly to parasites, such that it reduces their fitness, for example by decreasing transmission, there is always selection for increased disease severity. However, we highlight a number of host-parasite interactions where the parasite may benefit from immunopathology, and highlight scenarios that may lead to the evolution of slower growing parasites and potentially reduced disease severity. Importantly, we find that conclusions on disease severity are highly dependent on how severity is measured. Finally, we discuss the effect of treatments used to combat disease symptoms caused by immunopathology.
Collapse
Affiliation(s)
- Alex Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK.
| | | | | | | |
Collapse
|
43
|
RÅBERG L. Infection intensity and infectivity of the tick-borne pathogen Borrelia afzelii. J Evol Biol 2012; 25:1448-53. [DOI: 10.1111/j.1420-9101.2012.02515.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
SALA-BOZANO MARIA, VAN OOSTERHOUT COCK, MARIANI STEFANO. Impact of a mouth parasite in a marine fish differs between geographical areas. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2011.01838.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
|
46
|
Auld SKJR, Graham AL, Wilson PJ, Little TJ. Elevated haemocyte number is associated with infection and low fitness potential in wild Daphnia magna. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2011.01959.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Osnas EE, Dobson AP. EVOLUTION OF VIRULENCE IN HETEROGENEOUS HOST COMMUNITIES UNDER MULTIPLE TRADE-OFFS. Evolution 2011; 66:391-401. [DOI: 10.1111/j.1558-5646.2011.01461.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Alizon S, Michalakis Y. THE TRANSMISSION-VIRULENCE TRADE-OFF AND SUPERINFECTION: COMMENTS TO SMITH. Evolution 2011; 65:3633-8; discussion 3639-41. [DOI: 10.1111/j.1558-5646.2011.01432.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Männiste M, Hõrak P. Effects of immune activation and glucocorticoid administration on feather growth in greenfinches. ACTA ACUST UNITED AC 2011; 315:527-35. [DOI: 10.1002/jez.701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/25/2011] [Accepted: 07/20/2011] [Indexed: 12/16/2022]
|
50
|
Long GH, Boots M. How can immunopathology shape the evolution of parasite virulence? Trends Parasitol 2011; 27:300-5. [PMID: 21531628 DOI: 10.1016/j.pt.2011.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 01/05/2023]
Abstract
Immunopathology (immune-mediated pathology) is a ubiquitous cause of disease during infection, but how will parasite exploitation strategies evolve in its presence? Immunopathology can act to increase parasite fitness if it increases transmission rate, but can equally act to decrease parasite fitness if it increases host mortality. The focus here is on understanding how immunopathology, mediated through different immune mechanisms, can influence parasite fitness and how experimental manipulations of the immune system can be carried out to examine this. A better understanding of how parasite fitness scales with, or responds to, immunopathology is crucial to understanding the nature of selection acting on parasite virulence traits and will allow more informed predictions to be made regarding the trajectory of parasite virulence evolution.
Collapse
Affiliation(s)
- Gráinne H Long
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | | |
Collapse
|