1
|
Maliano MR, Yetming KD, Kalejta RF. Triple lysine and nucleosome-binding motifs of the viral IE19 protein are required for human cytomegalovirus S-phase infections. mBio 2024; 15:e0016224. [PMID: 38695580 PMCID: PMC11237493 DOI: 10.1128/mbio.00162-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/29/2024] [Indexed: 06/13/2024] Open
Abstract
Herpesvirus genomes are maintained as extrachromosomal plasmids within the nuclei of infected cells. Some herpesviruses persist within dividing cells, putting the viral genome at risk of being lost to the cytoplasm during mitosis because karyokinesis (nuclear division) requires nuclear envelope breakdown. Oncogenic herpesviruses (and papillomaviruses) avoid genome loss during mitosis by tethering their genomes to cellular chromosomes, thereby ensuring viral genome uptake into newly formed nuclei. These viruses use viral proteins with DNA- and chromatin-binding capabilities to physically link viral and cellular genomes together in a process called tethering. The known viral tethering proteins of human papillomavirus (E2), Epstein-Barr virus (EBNA1), and Kaposi's sarcoma-associated herpesvirus (LANA) each contain two independent domains required for genome tethering, one that binds sequence specifically to the viral genome and another that binds to cellular chromatin. This latter domain is called a chromatin tethering domain (CTD). The human cytomegalovirus UL123 gene encodes a CTD that is required for the virus to productively infect dividing fibroblast cells within the S phase of the cell cycle, presumably by tethering the viral genome to cellular chromosomes during mitosis. The CTD-containing UL123 gene product that supports S-phase infections is the IE19 protein. Here, we define two motifs in IE19 required for S-phase infections: an N-terminal triple lysine motif and a C-terminal nucleosome-binding motif within the CTD.IMPORTANCEThe IE19 protein encoded by human cytomegalovirus (HCMV) is required for S-phase infection of dividing cells, likely because it tethers the viral genome to cellular chromosomes, thereby allowing them to survive mitosis. The mechanism through which IE19 tethers viral genomes to cellular chromosomes is not understood. For human papillomavirus, Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus, viral genome tethering is required for persistence (latency) and pathogenesis (oncogenesis). Like these viruses, HCMV also achieves latency, and it modulates the properties of glioblastoma multiforme tumors. Therefore, defining the mechanism through which IE19 tethers viral genomes to cellular chromosomes may help us understand, and ultimately combat or control, HCMV latency and oncomodulation.
Collapse
Affiliation(s)
- Minor R. Maliano
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Kristen D. Yetming
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Molecular Biology, Charles River Laboratories, Wayne, Pennsylvania, USA
| | - Robert F. Kalejta
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Mauch-Mücke K, Schön K, Paulus C, Nevels MM. Evidence for Tethering of Human Cytomegalovirus Genomes to Host Chromosomes. Front Cell Infect Microbiol 2020; 10:577428. [PMID: 33117732 PMCID: PMC7561393 DOI: 10.3389/fcimb.2020.577428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/17/2020] [Indexed: 11/27/2022] Open
Abstract
Tethering of viral genomes to host chromosomes has been recognized in a variety of DNA and RNA viruses. It can occur during both the productive cycle and latent infection and may impact viral genomes in manifold ways including their protection, localization, transcription, replication, integration, and segregation. Tethering is typically accomplished by dedicated viral proteins that simultaneously associate with both the viral genome and cellular chromatin via nucleic acid, histone and/or non-histone protein interactions. Some of the most prominent tethering proteins have been identified in DNA viruses establishing sustained latent infections, including members of the papillomaviruses and herpesviruses. Herpesvirus particles have linear genomes that circularize in infected cell nuclei and usually persist as extrachromosomal episomes. In several γ-herpesviruses, tethering facilitates the nuclear retention and faithful segregation of viral episomes during cell division, thus contributing to persistence of these viruses in the absence of infectious particle production. However, it has not been studied whether the genomes of human Cytomegalovirus (hCMV), the prototypical β-herpesvirus, are tethered to host chromosomes. Here we provide evidence by fluorescence in situ hybridization that hCMV genomes associate with the surface of human mitotic chromosomes following infection of both non-permissive myeloid and permissive fibroblast cells. This chromosome association occurs at lower frequency in the absence of the immediate-early 1 (IE1) proteins, which bind to histones and have been implicated in the maintenance of hCMV episomes. Our findings point to a mechanism of hCMV genome maintenance through mitosis and suggest a supporting but non-essential role of IE1 in this process.
Collapse
Affiliation(s)
- Katrin Mauch-Mücke
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Kathrin Schön
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Christina Paulus
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Michael M Nevels
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
3
|
Warecki B, Sullivan W. Mechanisms driving acentric chromosome transmission. Chromosome Res 2020; 28:229-246. [PMID: 32712740 DOI: 10.1007/s10577-020-09636-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
The kinetochore-microtubule association is a core, conserved event that drives chromosome transmission during mitosis. Failure to establish this association on even a single chromosome results in aneuploidy leading to cell death or the development of cancer. However, although many chromosomes lacking centromeres, termed acentrics, fail to segregate, studies in a number of systems reveal robust alternative mechanisms that can drive segregation and successful poleward transport of acentrics. In contrast to the canonical mechanism that relies on end-on microtubule attachments to kinetochores, mechanisms of acentric transmission largely fall into three categories: direct attachments to other chromosomes, kinetochore-independent lateral attachments to microtubules, and long-range tether-based attachments. Here, we review these "non-canonical" methods of acentric chromosome transmission. Just as the discovery and exploration of cell cycle checkpoints provided insight into both the origins of cancer and new therapies, identifying mechanisms and structures specifically involved in acentric segregation may have a significant impact on basic and applied cancer research.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
4
|
Molin WT, Yaguchi A, Blenner M, Saski CA. The EccDNA Replicon: A Heritable, Extranuclear Vehicle That Enables Gene Amplification and Glyphosate Resistance in Amaranthus palmeri. THE PLANT CELL 2020; 32:2132-2140. [PMID: 32327538 PMCID: PMC7346551 DOI: 10.1105/tpc.20.00099] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 05/10/2023]
Abstract
Gene copy number variation is a predominant mechanism used by organisms to respond to selective pressures from the environment. This often results in unbalanced structural variations that perpetuate as adaptations to sustain life. However, the underlying mechanisms that give rise to gene proliferation are poorly understood. Here, we show a unique result of genomic plasticity in Amaranthus palmeri: a massive, ∼400-kb extrachromosomal circular DNA (eccDNA) that harbors the 5-ENOYLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE (EPSPS) gene and 58 other genes whose encoded functions traverse detoxification, replication, recombination, transposition, tethering, and transport. Gene expression analysis under glyphosate stress showed transcription of 41 of these 59 genes, with high expression of EPSPS, as well as genes coding for aminotransferases, zinc finger proteins, and several uncharacterized proteins. The genomic architecture of the eccDNA replicon is composed of a complex arrangement of repeat sequences and mobile genetic elements interspersed among arrays of clustered palindromes that may be crucial for stability, DNA duplication and tethering, and/or a means of nuclear integration of the adjacent and intervening sequences. Comparative analysis of orthologous genes in grain amaranth (Amaranthus hypochondriacus) and waterhemp (Amaranthus tuberculatus) suggests that higher order chromatin interactions contribute to the genomic origins of the A. palmeri eccDNA replicon structure.
Collapse
Affiliation(s)
- William T Molin
- Crop Protection Systems Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Stoneville, Mississippi 38776
| | - Allison Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina 29634
| |
Collapse
|
5
|
Burley M, Roberts S, Parish JL. Epigenetic regulation of human papillomavirus transcription in the productive virus life cycle. Semin Immunopathol 2020; 42:159-171. [PMID: 31919577 PMCID: PMC7174255 DOI: 10.1007/s00281-019-00773-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPV) are a large family of viruses which contain a circular, double-stranded DNA genome of approximately 8000 base pairs. The viral DNA is chromatinized by the recruitment of cellular histones which are subject to host cell-mediated post-translational epigenetic modification recognized as an important mechanism of virus transcription regulation. The HPV life cycle is dependent on the terminal differentiation of the target cell within epithelia-the keratinocyte. The virus life cycle begins in the undifferentiated basal compartment of epithelia where the viral chromatin is maintained in an epigenetically repressed state, stabilized by distal chromatin interactions between the viral enhancer and early gene region. Migration of the infected keratinocyte towards the surface of the epithelium induces cellular differentiation which disrupts chromatin looping and stimulates epigenetic remodelling of the viral chromatin. These epigenetic changes result in enhanced virus transcription and activation of the virus late promoter facilitating transcription of the viral capsid proteins. In this review article, we discuss the complexity of virus- and host-cell-mediated epigenetic regulation of virus transcription with a specific focus on differentiation-dependent remodelling of viral chromatin during the HPV life cycle.
Collapse
Affiliation(s)
- Megan Burley
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Sally Roberts
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Joanna L Parish
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK.
| |
Collapse
|
6
|
McNees AL, Harrigal LJ, Kelly A, Minard CG, Wong C, Butel JS. Viral microRNA effects on persistent infection of human lymphoid cells by polyomavirus SV40. PLoS One 2018; 13:e0192799. [PMID: 29432481 PMCID: PMC5809058 DOI: 10.1371/journal.pone.0192799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Polyomaviruses, including simian virus 40 (SV40), display evidence of lymphotropic properties. This study analyzed the nature of SV40-human lymphocyte interactions in established cell lines and in primary lymphocytes. The effects of viral microRNA and the structure of the viral regulatory region on SV40 persistence were examined. RESULTS SV40 DNA was maintained in infected B cell and myeloid cell lines during cell growth for at least 28 days. Limiting dilution analysis showed that low amounts of SV40 DNA (~2 copies per cell) were retained over time. Infected B cells remained viable and able to proliferate. Genome copies of the SV40 microRNA-null mutant persisted at higher levels than the DNA of wild-type viruses. Complex viral regulatory regions produced modestly higher DNA levels than simple regulatory regions. Viral large T-antigen protein was detected at low frequency and at low levels in infected B cells. Following infection of primary lymphocytes, SV40 DNA was detected in CD19+ B cells and CD14+ monocytes, but not in CD3+ T cells. Rescue attempts using either lysates of SV40-infected B lymphocytes, coculture of live cells, or infectious center assays all showed that replication-competent SV40 could be recovered on rare occasions. SV40 infections altered the expression of several B cell surface markers, with more pronounced changes following infections with the microRNA-null mutant. CONCLUSION These findings indicate that SV40 can establish persistent infections in human B lymphocytes. The cells retain low copy numbers of viral DNA; the infections are nonproductive and noncytolytic but can occasionally produce infectious virus. SV40 microRNA negatively regulates the degree of viral effects on B cells. SIGNIFICANCE Lymphocytes may serve as viral reservoirs and may function to disseminate polyomaviruses to different tissues in a host. To our knowledge, this report is the first extensive analysis of viral microRNA effects on SV40 infection of human lymphocytes.
Collapse
Affiliation(s)
- Adrienne L. McNees
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lindsay J. Harrigal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aoife Kelly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Charles G. Minard
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Connie Wong
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Janet S. Butel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
7
|
The Cellular DNA Helicase ChlR1 Regulates Chromatin and Nuclear Matrix Attachment of the Human Papillomavirus 16 E2 Protein and High-Copy-Number Viral Genome Establishment. J Virol 2016; 91:JVI.01853-16. [PMID: 27795438 PMCID: PMC5165203 DOI: 10.1128/jvi.01853-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/07/2016] [Indexed: 01/13/2023] Open
Abstract
In papillomavirus infections, the viral genome is established as a double-stranded DNA episome. To segregate the episomes into daughter cells during mitosis, they are tethered to cellular chromatin by the viral E2 protein. We previously demonstrated that the E2 proteins of diverse papillomavirus types, including bovine papillomavirus (BPV) and human papillomavirus 16 (HPV16), associate with the cellular DNA helicase ChlR1. This virus-host interaction is important for the tethering of BPV E2 to mitotic chromatin and the stable maintenance of BPV episomes. The role of the association between E2 and ChlR1 in the HPV16 life cycle is unresolved. Here we show that an HPV16 E2 Y131A mutant (E2Y131A) had significantly reduced binding to ChlR1 but retained transcriptional activation and viral origin-dependent replication functions. Subcellular fractionation of keratinocytes expressing E2Y131A showed a marked change in the localization of the protein. Compared to that of wild-type E2 (E2WT), the chromatin-bound pool of E2Y131A was decreased, concomitant with an increase in nuclear matrix-associated protein. Cell cycle synchronization indicated that the shift in subcellular localization of E2Y131A occurred in mid-S phase. A similar alteration between the subcellular pools of the E2WT protein occurred upon ChlR1 silencing. Notably, in an HPV16 life cycle model in primary human keratinocytes, mutant E2Y131A genomes were established as episomes, but at a markedly lower copy number than that of wild-type HPV16 genomes, and they were not maintained upon cell passage. Our studies indicate that ChlR1 is an important regulator of the chromatin association of E2 and of the establishment and maintenance of HPV16 episomes.
IMPORTANCE Infections with high-risk human papillomaviruses (HPVs) are a major cause of anogenital and oropharyngeal cancers. During infection, the circular DNA genome of HPV persists within the nucleus, independently of the host cell chromatin. Persistence of infection is a risk factor for cancer development and is partly achieved by the attachment of viral DNA to cellular chromatin during cell division. The HPV E2 protein plays a critical role in this tethering by binding simultaneously to the viral genome and to chromatin during mitosis. We previously showed that the cellular DNA helicase ChlR1 is required for loading of the bovine papillomavirus E2 protein onto chromatin during DNA synthesis. Here we identify a mutation in HPV16 E2 that abrogates interaction with ChlR1, and we show that ChlR1 regulates the chromatin association of HPV16 E2 and that this virus-host interaction is essential for viral episome maintenance.
Collapse
|
8
|
Di Domenico EG, Toma L, Bordignon V, Trento E, D'Agosto G, Cordiali-Fei P, Ensoli F. Activation of DNA Damage Response Induced by the Kaposi's Sarcoma-Associated Herpes Virus. Int J Mol Sci 2016; 17:ijms17060854. [PMID: 27258263 PMCID: PMC4926388 DOI: 10.3390/ijms17060854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 01/24/2023] Open
Abstract
The human herpes virus 8 (HHV-8), also known as Kaposi sarcoma-associated herpes virus (KSHV), can infect endothelial cells often leading to cell transformation and to the development of tumors, namely Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and the plasmablastic variant of multicentric Castleman’s disease. KSHV is prevalent in areas such as sub-Saharan Africa and the Mediterranean region presenting distinct genotypes, which appear to be associated with differences in disease manifestation, according to geographical areas. In infected cells, KSHV persists in a latent episomal form. However, in a limited number of cells, it undergoes spontaneous lytic reactivation to ensure the production of new virions. During both the latent and the lytic cycle, KSHV is programmed to express genes which selectively modulate the DNA damage response (DDR) through the activation of the ataxia telangiectasia mutated (ATM) pathway and by phosphorylating factors associated with the DDR, including the major tumor suppressor protein p53 tumor suppressor p53. This review will focus on the interplay between the KSHV and the DDR response pathway throughout the viral lifecycle, exploring the putative molecular mechanism/s that may contribute to malignant transformation of host cells.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology Department, San Gallicano Institute, IRCCS, Rome 00144, Italy.
| | - Luigi Toma
- Infectious Disease Consultant, San Gallicano Institute, IRCCS, Rome 00144, Italy.
| | - Valentina Bordignon
- Clinical Pathology and Microbiology Department, San Gallicano Institute, IRCCS, Rome 00144, Italy.
| | - Elisabetta Trento
- Clinical Pathology and Microbiology Department, San Gallicano Institute, IRCCS, Rome 00144, Italy.
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology Department, San Gallicano Institute, IRCCS, Rome 00144, Italy.
| | - Paola Cordiali-Fei
- Clinical Pathology and Microbiology Department, San Gallicano Institute, IRCCS, Rome 00144, Italy.
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology Department, San Gallicano Institute, IRCCS, Rome 00144, Italy.
| |
Collapse
|
9
|
Rahayu R, Ohsaki E, Omori H, Ueda K. Localization of latency-associated nuclear antigen (LANA) on mitotic chromosomes. Virology 2016; 496:51-58. [PMID: 27254595 DOI: 10.1016/j.virol.2016.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 01/25/2023]
Abstract
In latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), viral gene expression is extremely limited and copy numbers of viral genomes remain constant. Latency-associated nuclear antigen (LANA) is known to have a role in maintaining viral genome copy numbers in growing cells. Several studies have shown that LANA is localized in particular regions on mitotic chromosomes, such as centromeres/pericentromeres. We independently examined the distinct localization of LANA on mitotic chromosomes during mitosis, using super-resolution laser confocal microscopy and correlative fluorescence microscopy-electron microscopy (FM-EM) analyses. We found that the majority of LANA were not localized at particular regions such as telomeres/peritelomeres, centromeres/pericentromeres, and cohesion sites, but at the bodies of condensed chromosomes. Thus, LANA may undergo various interactions with the host factors on the condensed chromosomes in order to tether the viral genome to mitotic chromosomes and realize faithful viral genome segregation during cell division.
Collapse
Affiliation(s)
- Retno Rahayu
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Eriko Ohsaki
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroko Omori
- Central Instrumentation Laboratory Research Institute for Microbial Diseases (BIKEN), Osaka University, Osaka 565-0871, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
10
|
Ding X, Liu N, Matsuo K, Sun M, Zhao X. Use of cell morphology as early bioindicator for viral infection. IET Nanobiotechnol 2014; 8:24-30. [DOI: 10.1049/iet-nbt.2013.0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Xianting Ding
- Med‐X Research InstituteSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Ningxia Liu
- Institute of Robotics & Automatic Information SystemNankai UniversityTianjinPeople's Republic of China
| | - Kyle Matsuo
- Bioengineering DepartmentUniversity of CaliforniaLos AngelesUSA
| | - Mingzhu Sun
- Institute of Robotics & Automatic Information SystemNankai UniversityTianjinPeople's Republic of China
| | - Xin Zhao
- Institute of Robotics & Automatic Information SystemNankai UniversityTianjinPeople's Republic of China
| |
Collapse
|
11
|
Human cytomegalovirus major immediate early 1 protein targets host chromosomes by docking to the acidic pocket on the nucleosome surface. J Virol 2013; 88:1228-48. [PMID: 24227840 DOI: 10.1128/jvi.02606-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The 72-kDa immediate early 1 (IE1) protein encoded by human cytomegalovirus (hCMV) is a nuclearly localized promiscuous regulator of viral and cellular transcription. IE1 has long been known to associate with host mitotic chromatin, yet the mechanisms underlying this interaction have not been specified. In this study, we identify the cellular chromosome receptor for IE1. We demonstrate that the viral protein targets human nucleosomes by directly binding to core histones in a nucleic acid-independent manner. IE1 exhibits two separable histone-interacting regions with differential binding specificities for H2A-H2B and H3-H4. The H2A-H2B binding region was mapped to an evolutionarily conserved 10-amino-acid motif within the chromatin-tethering domain (CTD) of IE1. Results from experimental approaches combined with molecular modeling indicate that the IE1 CTD adopts a β-hairpin structure, docking with the acidic pocket formed by H2A-H2B on the nucleosome surface. IE1 binds to the acidic pocket in a way similar to that of the latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus. Consequently, the IE1 and LANA CTDs compete for binding to nucleosome cores and chromatin. Our work elucidates in detail how a key viral regulator is anchored to human chromosomes and identifies the nucleosomal acidic pocket as a joint target of proteins from distantly related viruses. Based on the striking similarities between the IE1 and LANA CTDs and the fact that nucleosome targeting by IE1 is dispensable for productive replication even in "clinical" strains of hCMV, we speculate that the two viral proteins may serve analogous functions during latency of their respective viruses.
Collapse
|
12
|
Reaiche-Miller GY, Thorpe M, Low HC, Qiao Q, Scougall CA, Mason WS, Litwin S, Jilbert AR. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver. Virology 2013; 446:357-64. [PMID: 24074600 DOI: 10.1016/j.virol.2013.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/24/2013] [Accepted: 08/14/2013] [Indexed: 01/05/2023]
Abstract
Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 10(5)-fold, during a period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis.
Collapse
Affiliation(s)
- Georget Y Reaiche-Miller
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Interaction of gamma-herpesvirus genome maintenance proteins with cellular chromatin. PLoS One 2013; 8:e62783. [PMID: 23667520 PMCID: PMC3646995 DOI: 10.1371/journal.pone.0062783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/24/2013] [Indexed: 11/19/2022] Open
Abstract
The capacity of gamma-herpesviruses to establish lifelong infections is dependent on the expression of genome maintenance proteins (GMPs) that tether the viral episomes to cellular chromatin and allow their persistence in latently infected proliferating cells. Here we have characterized the chromatin interaction of GMPs encoded by viruses belonging to the genera Lymphocryptovirus (LCV) and Rhadinovirus (RHV). We found that, in addition to a similar diffuse nuclear localization and comparable detergent resistant interaction with chromatin in transfected cells, all GMPs shared the capacity to promote the decondensation of heterochromatin in the A03-1 reporter cell line. They differed, however, in their mobility measured by fluorescence recovery after photobleaching (FRAP), and in the capacity to recruit accessory molecules required for the chromatin remodeling function. While the AT-hook containing GMPs of LCVs were highly mobile, a great variability was observed among GMPs encoded by RHV, ranging from virtually immobile to significantly reduced mobility compared to LCV GMPs. Only the RHV GMPs recruited the bromo- and extra terminal domain (BET) proteins BRD2 and BRD4 to the site of chromatin remodeling. These findings suggest that differences in the mode of interaction with cellular chromatin may underlie different strategies adopted by these viruses for reprogramming of the host cells during latency.
Collapse
|
14
|
H2AX phosphorylation is important for LANA-mediated Kaposi's sarcoma-associated herpesvirus episome persistence. J Virol 2013; 87:5255-69. [PMID: 23449797 DOI: 10.1128/jvi.03575-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The DNA damage response (DDR) of host cells is utilized by a number of viruses to establish and propagate their genomes in the infected cells. We examined the expression of the DDR genes during Kaposi's sarcoma-associated herpesvirus (KSHV) infection of human peripheral blood mononuclear cells (PBMCs). The genes were mostly downregulated, except H2AX, which was upregulated during infection. H2AX is important for gammaherpesvirus infectivity, and its phosphorylation at serine 139 is crucial for maintenance of latency during mouse gamma-herpesvirus 68 (MHV-68) infection. We now also observed phosphorylation of H2AX at serine 139 during KSHV infection. H2AX is a histone H2A isoform shown to interact with the latency-associated nuclear antigen (LANA) encoded by KSHV. Here, we show that LANA directly interacted with H2AX through domains at both its N and C termini. The phosphorylated form of H2AX (γH2AX) was shown to colocalize with LANA. Chromatin immunoprecipitation (ChIP) assays showed that a reduction in H2AX levels resulted in reduced binding of LANA with KSHV terminal repeats (TRs). Binding preferences of H2AX and γH2AX along the KSHV episome were examined by whole-episome ChIP analysis. We showed that γH2AX had a higher relative binding activity along the TR regions than that of the long unique region (LUR), which highlighted the importance of H2AX phosphorylation during KSHV infection. Furthermore, knockdown of H2AX resulted in decreased KSHV episome copy number. Notably, the C terminus of LANA contributed to phosphorylation of H2AX. However, phosphorylation was not dependent on the ability of LANA to drive KSHV-infected cells into S-phase. Thus, H2AX contributes to association of LANA with the TRs, and phosphorylation of H2AX is likely important for its increased density at the TRs.
Collapse
|
15
|
Tellam JT, Lekieffre L, Zhong J, Lynn DJ, Khanna R. Messenger RNA sequence rather than protein sequence determines the level of self-synthesis and antigen presentation of the EBV-encoded antigen, EBNA1. PLoS Pathog 2012; 8:e1003112. [PMID: 23300450 PMCID: PMC3531512 DOI: 10.1371/journal.ppat.1003112] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/19/2012] [Indexed: 11/18/2022] Open
Abstract
Unique purine-rich mRNA sequences embedded in the coding sequences of a distinct group of gammaherpesvirus maintenance proteins underlie the ability of the latently infected cell to minimize immune recognition. The Epstein-Barr virus nuclear antigen, EBNA1, a well characterized lymphocryptovirus maintenance protein has been shown to inhibit in cis antigen presentation, due in part to a large internal repeat domain encoding glycine and alanine residues (GAr) encoded by a purine-rich mRNA sequence. Recent studies have suggested that it is the purine-rich mRNA sequence of this repeat region rather than the encoded GAr polypeptide that directly inhibits EBNA1 self-synthesis and contributes to immune evasion. To test this hypothesis, we generated a series of EBNA1 internal repeat frameshift constructs and assessed their effects on cis-translation and endogenous antigen presentation. Diverse peptide sequences resulting from alternative repeat reading frames did not alleviate the translational inhibition characteristic of EBNA1 self-synthesis or the ensuing reduced surface presentation of EBNA1-specific peptide-MHC class I complexes. Human cells expressing the EBNA1 frameshift variants were also poorly recognized by antigen-specific T-cells. Furthermore, a comparative analysis of the mRNA sequences of the corresponding repeat regions of different viral maintenance homologues highlights the high degree of identity between the nucleotide sequences despite very little homology in the encoded amino acid sequences. Based on these combined observations, we propose that the cis-translational inhibitory effect of the EBNA1 internal repeat sequence operates mechanistically at the nucleotide level, potentially through RNA secondary structural elements, and is unlikely to be mediated through the GAr polypeptide. The demonstration that the EBNA1 repeat mRNA sequence and not the encoded protein sequence underlies immune evasion in this class of virus suggests a novel approach to therapeutic development through the use of anti-sense strategies or small molecules targeting EBNA1 mRNA structure. Viruses establishing persistent latent infections have evolved various mechanisms to avoid immune surveillance. The Epstein-Barr virus-encoded nuclear antigen, EBNA1, expressed in all EBV-associated malignancies, modulates its own protein levels at quantities sufficient to maintain viral infection but low enough so as to minimize an immune response by the infected host cell. This evasion mechanism is regulated through an internal purine-rich mRNA repeat sequence encoding glycine and alanine residues. In this study we assess the impact of the repeat's nucleotide versus peptide sequence on inhibiting EBNA1 self-synthesis and antigen presentation. We demonstrate that altered peptide sequences resulting from frameshift mutations within the repeat do not alleviate the immune-evasive function of EBNA1, suggesting that the repetitive purine-rich mRNA sequence itself is responsible for inhibiting EBNA1 synthesis and subsequent poor immunogenicity. Our comparative analysis of the mRNA sequences of the corresponding repeat regions of different gammaherpesvirus maintenance homologues to EBNA1 highlights the high degree of identity between the nucleotide sequences despite very little homology in the encoded amino acid sequences. These studies demonstrate the importance of gammaherpesvirus purine-rich mRNA repeat sequences on antigenic epitope generation and evasion from T-cell mediated immune control, suggesting novel approaches to prevention and treatment of latent infection by this class of virus.
Collapse
Affiliation(s)
- Judy T Tellam
- Tumour Immunology, Department of Immunology, Clive Berghofer Cancer Research Centre and Australian Centre for Vaccine Development, Queensland Institute of Medical Research, Herston, Queensland, Australia.
| | | | | | | | | |
Collapse
|
16
|
Bornavirus Closely Associates and Segregates with Host Chromosomes to Ensure Persistent Intranuclear Infection. Cell Host Microbe 2012; 11:492-503. [DOI: 10.1016/j.chom.2012.04.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/07/2012] [Accepted: 04/11/2012] [Indexed: 11/22/2022]
|
17
|
In vivo analysis of the cell cycle dependent association of the bovine papillomavirus E2 protein and ChlR1. Virology 2011; 414:1-9. [PMID: 21489590 DOI: 10.1016/j.virol.2011.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/14/2011] [Accepted: 03/17/2011] [Indexed: 11/22/2022]
Abstract
It has been shown that the genomes of episomally maintained DNA viruses are tethered to host cell chromosomes during cell division, facilitating maintenance in dividing cells. The papillomavirus E2 protein serves this mechanism of viral genome persistence by simultaneously associating with chromatin and the viral genome during mitosis. Several host cell proteins are reported to be necessary for the association of E2 with chromatin including the cohesion establishment factor ChlR1. Here we use fluorescence resonance energy transfer (FRET) technology to confirm the interaction between BPV-1 E2 and ChlR1. Furthermore, we use synchronised live cells to study the temporal nature of this dynamic protein interaction and show that ChlR1 and E2 interact during specific phases of the cell cycle. These data provide evidence that the association of E2 with ChlR1 contributes to a loading mechanism during DNA replication rather than direct tethering during mitotic division.
Collapse
|
18
|
Dellarole M, Sánchez IE, de Prat Gay G. Thermodynamics of cooperative DNA recognition at a replication origin and transcription regulatory site. Biochemistry 2010; 49:10277-86. [PMID: 21047141 PMCID: PMC3091369 DOI: 10.1021/bi1014908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Binding cooperativity guides the formation of protein−nucleic acid complexes, in particular those that are highly regulated such as replication origins and transcription sites. Using the DNA binding domain of the origin binding and transcriptional regulator protein E2 from human papillomavirus type 16 as model, and through isothermal titration calorimetry analysis, we determined a positive, entropy-driven cooperativity upon binding of the protein to its cognate tandem double E2 site. This cooperativity is associated with a change in DNA structure, where the overall B conformation is maintained. Two homologous E2 domains, those of HPV18 and HPV11, showed that the enthalpic−entropic components of the reaction and DNA deformation can diverge. Because the DNA binding helix is almost identical in the three domains, the differences must lie dispersed throughout this unique dimeric β-barrel fold. This is in surprising agreement with previous results for this domain, which revealed a strong coupling between global dynamics and DNA recognition.
Collapse
Affiliation(s)
- Mariano Dellarole
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-Conicet, Patricias Argentinas 435, Buenos Aires, Argentina
| | | | | |
Collapse
|
19
|
The transforming parasite Theileria co-opts host cell mitotic and central spindles to persist in continuously dividing cells. PLoS Biol 2010; 8. [PMID: 20927361 PMCID: PMC2946958 DOI: 10.1371/journal.pbio.1000499] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 08/17/2010] [Indexed: 12/01/2022] Open
Abstract
The transforming protozoan Theileria recruits Plk1, a host kinase that regulates mitosis, to its surface and engages spindle microtubules to secure its division and inheritance into both daughter cells. The protozoan parasite Theileria inhabits the host cell cytoplasm and possesses the unique capacity to transform the cells it infects, inducing continuous proliferation and protection against apoptosis. The transforming schizont is a multinucleated syncytium that resides free in the host cell cytoplasm and is strictly intracellular. To maintain transformation, it is crucial that this syncytium is divided over the two daughter cells at each host cell cytokinesis. This process was dissected using different cell cycle synchronization methods in combination with the targeted application of specific inhibitors. We found that Theileria schizonts associate with newly formed host cell microtubules that emanate from the spindle poles, positioning the parasite at the equatorial region of the mitotic cell where host cell chromosomes assemble during metaphase. During anaphase, the schizont interacts closely with host cell central spindle. As part of this process, the schizont recruits a host cell mitotic kinase, Polo-like kinase 1, and we established that parasite association with host cell central spindles requires Polo-like kinase 1 catalytic activity. Blocking the interaction between the schizont and astral as well as central spindle microtubules prevented parasite segregation between the daughter cells during cytokinesis. Our findings provide a striking example of how an intracellular eukaryotic pathogen that evolved ways to induce the uncontrolled proliferation of the cells it infects usurps the host cell mitotic machinery, including Polo-like kinase 1, one of the pivotal mitotic kinases, to ensure its own persistence and survival. As part of their survival tactics, intracellular parasites often resort to cunning mechanisms to manipulate the cells they inhabit. Theileria, an important and particularly artful parasite of cattle in the tropics, transforms parasitized cells (that is, it induces continuous proliferation and protection from apoptosis—a state reminiscent of tumor cells). As a large, strictly intracellular syncytium, the transforming Theileria schizont cannot exit from the infected cell to invade other target cells. How then does the parasite ensure that each daughter cell, generated upon host cell division, remains infected and transformed? Our data show that the parasite co-opts the mitotic apparatus of the host cell and Plk1, a host protein kinase with a central regulatory role in mitosis and cytokinesis. As the host cell enters mitosis, the schizont binds to the microtubules that emanate symmetrically from the two spindle poles. This microtubule binding positions the schizont so that it spans the equatorial region of the mitotic cell where host cell chromosomes assemble. Then, as sister chromatids start to separate, the schizont associates with Plk1 and the central spindle that assembles between the separating chromosomes, with the activity of Plk1 presumably coordinating progression through mitosis with proper schizont positioning. This alignment with the central spindle positions the schizont to be included in the plane of cell division at the onset of cytokinesis, thus ensuring faithful passage of a Theileria schizont on to each daughter cell.
Collapse
|
20
|
Effective formation of the segregation-competent complex determines successful partitioning of the bovine papillomavirus genome during cell division. J Virol 2010; 84:11175-88. [PMID: 20810736 DOI: 10.1128/jvi.01366-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Effective segregation of the bovine papillomavirus type 1 (BPV1), Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated human herpesvirus type 8 (KSHV) genomes into daughter cells is mediated by a single viral protein that tethers viral genomes to host mitotic chromosomes. The linker proteins that mediate BPV1, EBV, and KSHV segregation are E2, LANA1, and EBNA1, respectively. The N-terminal transactivation domain of BPV1 E2 is responsible for chromatin attachment and subsequent viral genome segregation. Because E2 transcriptional activation and chromatin attachment functions are not mutually exclusive, we aimed to determine the requirement of these activities during segregation by analyzing chimeric E2 proteins. This approach allowed us to separate the two activities. Our data showed that attachment of the segregation protein to chromatin is not sufficient for proper segregation. Rather, formation of a segregation-competent complex which carries multiple copies of the segregation protein is required. Complementation studies of E2 functional domains indicated that chromatin attachment and transactivation functions must act in concert to ensure proper plasmid segregation. These data indicate that there are specific interactions between linker molecules and transcription factors/complexes that greatly increase segregation-competent complex formation. We also showed, using hybrid E2 molecules, that restored segregation function does not involve interactions with Brd4.
Collapse
|
21
|
Bub1 and CENP-F can contribute to Kaposi's sarcoma-associated herpesvirus genome persistence by targeting LANA to kinetochores. J Virol 2010; 84:9718-32. [PMID: 20660191 DOI: 10.1128/jvi.00713-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The latency-associated nuclear antigen (LANA) encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) is critical for segregation of viral episomes to progeny nuclei and allows for maintenance of the viral genome in newly divided daughter cells. LANA binds to KSHV terminal repeat (TR) DNA and simultaneously associates with chromatin-bound cellular proteins. This process tethers the viral episomes to host chromosomes. However, the mechanism of tethering is complex and involves multiple protein-protein interactions. Our previous proteomics studies which showed the association of LANA with centromeric protein F (CENP-F) prompted us to further study whether LANA targets centromeric proteins for persistence of KSHV episomes during cell division. Here we show that LANA colocalized with CENP-F as speckles, some of which are paired at centromeric regions of a subset of chromosomes in KSHV-infected JSC-1 cells. We also confirm that both the amino and carboxy termini of LANA can bind to CENP-F. Moreover, LANA associated with another kinetochore protein, Bub1 (budding uninhibited by benzimidazole 1), which is known to form a complex with CENP-F. Importantly, we demonstrated the dynamic association of LANA and Bub1/CENP-F and the colocalization between Bub1, LANA, and the KSHV episome tethered to the host chromosome using fluorescence in situ hybridization (FISH). Knockdown of Bub1 expression by lentivirus-delivered short hairpin RNA (shRNA) dramatically reduced the number of KSHV genome copies, whereas no dramatic effect was seen with CENP-F knockdown. Therefore, the interaction between LANA and the kinetochore proteins CENP-F and Bub1 is important for KSHV genome tethering and its segregation to new daughter cells, with Bub1 potentially playing a more critical role in the long-term persistence of the viral genome in the infected cell.
Collapse
|
22
|
Abstract
Viruses that establish lifelong latent infections must ensure that the viral genome is maintained within the latently infected cell throughout the life of the host, yet at the same time must also be capable of avoiding elimination by the immune surveillance system. Gammaherpesviruses, which include the human viruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, establish latent infections in lymphocytes. Infection of this dynamic host-cell population requires that the viruses have appropriate strategies for enabling the viral genome to persist while these cells go through rounds of mitosis, but at the same time must avoid detection by host CD8(+) cytotoxic T lymphocytes (CTLs). The majority of gammaherpesviruses studied have been found to encode a specific protein that is critical for maintenance of the viral genome within latently infected cells. This protein is termed the genome maintenance protein (GMP). Due to its vital role in long-term latency, this offers the immune system a crucial target for detection and elimination of virus-infected cells. GMPs from different gammaherpesviruses have evolved related strategies that allow the protein to be present within latently infected cells, but to remain effectively hidden from circulating CD8(+) CTLs. In this review, I will summarize the role of the GMPs and highlight the available data describing the immune-evasion properties of these proteins.
Collapse
Affiliation(s)
- Neil Blake
- Division of Medical Microbiology, School of Infection and Host Defence, University of Liverpool, Liverpool L69 3GA, UK
| |
Collapse
|