1
|
The presence and distribution of gamma-aminobutyric acid and dopamine during the developmental stages of the sea cucumber, Holothuria scabra, with emphasis on settlement organs. Cell Tissue Res 2023; 391:457-483. [PMID: 36697719 DOI: 10.1007/s00441-023-03739-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/08/2023] [Indexed: 01/27/2023]
Abstract
In the sea cucumber, Holothuria scabra, the competent larvae require main settlement organs (SOs), including the ciliary bands (CiBs), tentacles (Ts), podia (PDs), and cues from neurotransmitters, including gamma-aminobutyric acid (GABA) and dopamine (DA), for successful settlement. In the present study, we investigated the spatial distribution of GABA and DA in the developmental stages of H. scabra, with special emphasis on SOs by detecting immunoreactivity (-ir) against these two neurotransmitters. Strong GABA-ir and DA-ir cells and fibers were specifically detected in several SO structures, including CiBs, CiB cells (CiBCs), and long cilia (LCi), of H. scabra larvae. Additionally, we found intense GABA-ir and DA-ir cells in the epithelial lining of bud-papillae (BP) and mesothelium (Me) in the stem (S) region of Ts in larvae and juveniles. Intense GABA-ir and DA-ir were observed in the epineural nerve plexus (ENP) and hyponeural nerve plexus (HNP) of Ts in H. scabra pentactula and juvenile stages. Staining for these two neurotransmitters was particularly intense in the PDs and their nerve fibers. We also found significant changes in the numbers of GABA-ir and DA-ir-positive cells and intensities in the CiBs, Ts, and PDs during the developmental stages. Taken together, we are the first to report on the existence and distribution of GABAergic and dopaminergic systems in structures associated with the settlement. Our findings provide new and important insights into the possible functions of these two neurotransmitters in regulating the settlement of this sea cucumber species.
Collapse
|
2
|
Sweet HC, Azriel G, Jaff N, Moser J, Riola TA, Ideman C, Barton M, Nelson J, Lenhart MM. Formation of Coelomic Cavities during Abbreviated Development of the Brittle Star Ophioplocus esmarki. THE BIOLOGICAL BULLETIN 2022; 243:283-298. [PMID: 36716487 DOI: 10.1086/721954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
AbstractIn brittle stars, the coelomic cavities that form during embryogenesis contribute to most of the internal organ systems of the juvenile. In the ancestral mode of development, the coelomic cavities begin with bilateral symmetry and play a minor role in the function of the ophiopluteus larva. However, the coelomic cavities undergo extensive changes during metamorphosis to set up the body systems of the juvenile brittle star. Many lineages of brittle stars have evolved life histories without the ophiopluteus larva. The non-feeding vitellaria larva has rapid development of juvenile structures. This work demonstrates the modifications to the origin and early development of the coelomic cavities in a vitellaria larva. Much of the archenteron forms an unpaired axocoel, hydrocoel, and somatocoel. The posterior-most portion of the archenteron forms the rudiment of the juvenile stomach. The right somatocoel and a portion of the left somatocoel form as invaginations of the lateral ectoderm. Later morphogenesis of the axocoel, the hydrocoel, and the two somatocoels is similar to what has been shown for brittle stars with an ophiopluteus larva. Confocal microscopy and three-dimensional modeling were used to show new details for the later morphogenesis of the coelomic cavities. The stone canal originates as an outgrowth of the hydrocoel between lobes 4 and 5. The hydrocoel lobes have minimal migration after they meet to complete the ring canal. The right somatocoel contributes to a component of the axial complex and perihemal system. A detailed description is given for how the left somatocoel contributes to multiple organ systems.
Collapse
|
3
|
Thompson JR, Paganos P, Benvenuto G, Arnone MI, Oliveri P. Post-metamorphic skeletal growth in the sea urchin Paracentrotus lividus and implications for body plan evolution. EvoDevo 2021; 12:3. [PMID: 33726833 PMCID: PMC7968366 DOI: 10.1186/s13227-021-00174-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Understanding the molecular and cellular processes that underpin animal development are crucial for understanding the diversity of body plans found on the planet today. Because of their abundance in the fossil record, and tractability as a model system in the lab, skeletons provide an ideal experimental model to understand the origins of animal diversity. We herein use molecular and cellular markers to understand the growth and development of the juvenile sea urchin (echinoid) skeleton. Results We developed a detailed staging scheme based off of the first ~ 4 weeks of post-metamorphic life of the regular echinoid Paracentrotus lividus. We paired this scheme with immunohistochemical staining for neuronal, muscular, and skeletal tissues, and fluorescent assays of skeletal growth and cell proliferation to understand the molecular and cellular mechanisms underlying skeletal growth and development of the sea urchin body plan. Conclusions Our experiments highlight the role of skeletogenic proteins in accretionary skeletal growth and cell proliferation in the addition of new metameric tissues. Furthermore, this work provides a framework for understanding the developmental evolution of sea urchin body plans on macroevolutionary timescales. Supplementary Information The online version contains supplementary material available at 10.1186/s13227-021-00174-1.
Collapse
Affiliation(s)
- Jeffrey R Thompson
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK. .,UCL Center for Life's Origins and Evolution, London, UK.
| | - Periklis Paganos
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK. .,UCL Center for Life's Origins and Evolution, London, UK.
| |
Collapse
|
4
|
Byrne M, Koop D, Strbenac D, Cisternas P, Balogh R, Yang JYH, Davidson PL, Wray G. Transcriptomic analysis of sea star development through metamorphosis to the highly derived pentameral body plan with a focus on neural transcription factors. DNA Res 2021; 27:5825731. [PMID: 32339242 PMCID: PMC7315356 DOI: 10.1093/dnares/dsaa007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
The Echinodermata is characterized by a secondarily evolved pentameral body plan. While the evolutionary origin of this body plan has been the subject of debate, the molecular mechanisms underlying its development are poorly understood. We assembled a de novo developmental transcriptome from the embryo through metamorphosis in the sea star Parvulastra exigua. We use the asteroid model as it represents the basal-type echinoderm body architecture. Global variation in gene expression distinguished the gastrula profile and showed that metamorphic and juvenile stages were more similar to each other than to the pre-metamorphic stages, pointing to the marked changes that occur during metamorphosis. Differential expression and gene ontology (GO) analyses revealed dynamic changes in gene expression throughout development and the transition to pentamery. Many GO terms enriched during late metamorphosis were related to neurogenesis and signalling. Neural transcription factor genes exhibited clusters with distinct expression patterns. A suite of these genes was up-regulated during metamorphosis (e.g. Pax6, Eya, Hey, NeuroD, FoxD, Mbx, and Otp). In situ hybridization showed expression of neural genes in the CNS and sensory structures. Our results provide a foundation to understand the metamorphic transition in echinoderms and the genes involved in development and evolution of pentamery.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Demian Koop
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dario Strbenac
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paula Cisternas
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Regina Balogh
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jean Yee Hwa Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Gregory Wray
- Department of Biology, Duke University, Durham, NC 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Byrne M, Koop D, Strbenac D, Cisternas P, Yang JYH, Davidson PL, Wray G. Transcriptomic analysis of Nodal - and BMP- associated genes during development to the juvenile seastar in Parvulastra exigua (Asterinidae). Mar Genomics 2021; 59:100857. [PMID: 33676872 DOI: 10.1016/j.margen.2021.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
The molecular mechanisms underlying development of the pentameral body of adult echinoderms are poorly understood but are important to solve with respect to evolution of a unique body plan that contrasts with the bilateral body plan of other deuterostomes. As Nodal and BMP2/4 signalling is involved in axis formation in larvae and development of the echinoderm body plan, we used the developmental transcriptome generated for the asterinid seastar Parvulastra exigua to investigate the temporal expression patterns of Nodal and BMP2/4 genes from the embryo and across metamorphosis to the juvenile. For echinoderms, the Asteroidea represents the basal-type body architecture with a distinct (separated) ray structure. Parvulastra exigua has lecithotrophic development forming the juvenile soon after gastrulation providing ready access to the developing adult stage. We identified 39 genes associated with the Nodal and BMP2/4 network in the P. exigua developmental transcriptome. Clustering analysis of these genes resulted in 6 clusters with similar temporal expression patterns across development. A co-expression analysis revealed genes that have similar expression profiles as Nodal and BMP2/4. These results indicated genes that may have a regulatory relationship in patterning morphogenesis of the juvenile seastar. Developmental RNA-seq analyses of Parvulastra exigua show changes in Nodal and BMP2/4 signalling genes across the metamorphic transition. We provide the foundation for detailed analyses of this cascade in the evolution of the unusual pentameral echinoderm body and its deuterostome affinities.
Collapse
Affiliation(s)
- Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Demian Koop
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dario Strbenac
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paula Cisternas
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jean Yee Hwa Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Phillip L Davidson
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Gregory Wray
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Byrne M, Selvakumaraswamy P. Evolutionary modification of gastrulation in Parvulastra exigua, an asterinid seastar with holobenthic lecithotrophic development. Evol Dev 2021; 23:63-71. [PMID: 33465275 DOI: 10.1111/ede.12371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
Gastrulation is a fundamental morphogenetic process in development. In echinoderms with ancestral-type development through feeding larvae, gastrulation involves radially symmetrical invagination of cells around the blastopore. Gastrulation in the seastar Parvulastra exigua, a species with non-feeding larvae deviates from this pattern. Microinjection of cells with fluorescent lineage tracer dye revealed that early blastomeres contribute unequally to ectoderm and endoderm. In embryos injected at the two-cell stage, asymmetry was evident in the fluorescence at the top of the archenteron and animal pole ectoderm. Archenteron elongation is driven by asymmetrical involution of cells with more cells crossing the blastopore on one side. Lineages of cells injected at the four-cell stage also differed in allocation to endoderm and ectoderm. In embryos injected at the eight-cell stage ectodermal and endodermal fates were evident reflecting the animal and vegetal fates determined by third cleavage as typical of echinoderms. Modification of gastrulation associated with evolution of development in P. exigua shows that this foundational morphogenetic process can be altered despite its importance for subsequent development. However, observations of slight asymmetry in the lineage fates of blastomeres in asterinids with planktotrophic development indicates that gastrulation by asymmetrical involution in P. exigua may be a hypertrophic elaboration of a pre-existing state in ancestral-type development. As for echinoids with lecithotrophic development, involution as a mechanism to contribute to archenteron elongation may be associated with the impact of extensive maternal nutritive reserves on the mechanics of cell movement and a novel innovation to facilitate early development of the adult rudiment.
Collapse
Affiliation(s)
- Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Paulina Selvakumaraswamy
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
7
|
Byrne M, Koop D, Morris VB, Chui J, Wray GA, Cisternas P. Expression of genes and proteins of the pax-six-eya-dach network in the metamorphic sea urchin: Insights into development of the enigmatic echinoderm body plan and sensory structures. Dev Dyn 2017; 247:239-249. [PMID: 28850769 DOI: 10.1002/dvdy.24584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Photoreception-associated genes of the Pax-Six-Eya-Dach network (PSEDN) are deployed for many roles in addition to photoreception development. In this first study of PSEDN genes during development of the pentameral body in sea urchins, we investigated their spatial expression in Heliocidaris erythrogramma. RESULTS Expression of PSEDN genes in the hydrocoele of early (Dach, Eya, Six1/2) and/or late (Pax6, Six3/6) larvae, and the five hydrocoele lobes, the first morphological expression of pentamery, supports a role in body plan development. Pax6, Six1/2, and Six3/6 were localized to the primary and/or secondary podia and putative sensory/neuronal cells. Six1/2 and Six3/6 were expressed in the neuropil region in the terminal disc of the podia. Dach was localized to spines. Sequential up-regulation of gene expression as new podia and spines formed was evident. Rhabdomeric opsin and pax6 protein were localized to cells in the primary podia and spines. CONCLUSIONS Our results support roles for PSEDN genes in development of the pentameral body plan, contributing to our understanding of how the most unusual body plan in the Bilateria may have evolved. Development of sensory cells within the Pax-Six expression field is consistent with the role of these genes in sensory cell development in diverse species. Developmental Dynamics 247:239-249, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Sciences, The University of Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Demian Koop
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Valerie B Morris
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Juanita Chui
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Gregory A Wray
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
| | - Paula Cisternas
- School of Medical Sciences, The University of Sydney, NSW, Australia
| |
Collapse
|
8
|
Petie R, Garm A, Hall MR. Crown-of-thorns starfish have true image forming vision. Front Zool 2016; 13:41. [PMID: 27605999 PMCID: PMC5013567 DOI: 10.1186/s12983-016-0174-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/31/2016] [Indexed: 11/28/2022] Open
Abstract
Background Photoreceptors have evolved numerous times giving organisms the ability to detect light and respond to specific visual stimuli. Studies into the visual abilities of the Asteroidea (Echinodermata) have recently shown that species within this class have a more developed visual sense than previously thought and it has been demonstrated that starfish use visual information for orientation within their habitat. Whereas image forming eyes have been suggested for starfish, direct experimental proof of true spatial vision has not yet been obtained. Results The behavioural response of the coral reef inhabiting crown-of-thorns starfish (Acanthaster planci) was tested in controlled aquarium experiments using an array of stimuli to examine their visual performance. We presented starfish with various black-and-white shapes against a mid-intensity grey background, designed such that the animals would need to possess true spatial vision to detect these shapes. Starfish responded to black-and-white rectangles, but no directional response was found to black-and-white circles, despite equal areas of black and white. Additionally, we confirmed that starfish were attracted to black circles on a white background when the visual angle is larger than 14°. When changing the grey tone of the largest circle from black to white, we found responses to contrasts of 0.5 and up. The starfish were attracted to the dark area’s of the visual stimuli and were found to be both attracted and repelled by the visual targets. Conclusions For crown-of-thorns starfish, visual cues are essential for close range orientation towards objects, such as coral boulders, in the wild. These visually guided behaviours can be replicated in aquarium conditions. Our observation that crown-of-thorns starfish respond to black-and-white shapes on a mid-intensity grey background is the first direct proof of true spatial vision in starfish and in the phylum Echinodermata. Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0174-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ronald Petie
- Department of Biology, Marine Biological Section, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen Ø, Denmark
| | - Anders Garm
- Department of Biology, Marine Biological Section, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen Ø, Denmark
| | - Michael R Hall
- Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, 4810 QLD Australia
| |
Collapse
|
9
|
Delroisse J, Ullrich-Lüter E, Ortega-Martinez O, Dupont S, Arnone MI, Mallefet J, Flammang P. High opsin diversity in a non-visual infaunal brittle star. BMC Genomics 2014; 15:1035. [PMID: 25429842 PMCID: PMC4289182 DOI: 10.1186/1471-2164-15-1035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/19/2014] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND In metazoans, opsins are photosensitive proteins involved in both vision and non-visual photoreception. Echinoderms have no well-defined eyes but several opsin genes were found in the purple sea urchin (Strongylocentrotus purpuratus) genome. Molecular data are lacking for other echinoderm classes although many species are known to be light sensitive. RESULTS In this study focused on the European brittle star Amphiura filiformis, we first highlighted a blue-green light sensitivity using a behavioural approach. We then identified 13 new putative opsin genes against eight bona fide opsin genes in the genome of S. purpuratus. Six opsins were included in the rhabdomeric opsin group (r-opsins). In addition, one putative ciliary opsin (c-opsin), showing high similarity with the c-opsin of S. purpuratus (Sp-opsin 1), one Go opsin similar to Sp-opsins 3.1 and 3.2, two basal-branch opsins similar to Sp-opsins 2 and 5, and two neuropsins similar to Sp-opsin 8, were identified. Finally, two sequences from one putative RGR opsin similar to Sp-opsin 7 were also detected. Adult arm transcriptome analysis pinpointed opsin mRNAs corresponding to one r-opsin, one neuropsin and the homologue of Sp-opsin 2. Opsin phylogeny was determined by maximum likelihood and Bayesian analyses. Using antibodies designed against c- and r-opsins from S. purpuratus, we detected putative photoreceptor cells mainly in spines and tube feet of A. filiformis, respectively. The r-opsin expression pattern is similar to the one reported in S. purpuratus with cells labelled at the tip and at the base of the tube feet. In addition, r-opsin positive cells were also identified in the radial nerve of the arm. C-opsins positive cells, expressed in pedicellariae, spines, tube feet and epidermis in S. purpuratus were observed at the level of the spine stroma in the brittle star. CONCLUSION Light perception in A. filiformis seems to be mediated by opsins (c- and r-) in, at least, spines, tube feet and in the radial nerve cord. Other non-visual opsin types could participate to the light perception process indicating a complex expression pattern of opsins in this infaunal brittle star.
Collapse
Affiliation(s)
- Jérôme Delroisse
- />Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences, University of Mons, Avenue du Champs de Mars 6, 7000 Mons, Belgium
| | | | - Olga Ortega-Martinez
- />Department of Biological and Environmental Science, The Sven Lovén Centre for Marine Sciences – Kristineberg, University of Gothenburg, 45178 Fiskebäckskil, Sweden
| | - Sam Dupont
- />Department of Biological and Environmental Science, The Sven Lovén Centre for Marine Sciences – Kristineberg, University of Gothenburg, 45178 Fiskebäckskil, Sweden
| | - Maria-Ina Arnone
- />Stazione Zoologica Anton Dohrn, Cellular and Developmental Biology, Villa Comunale, 80121 Naples, Italy
| | - Jérôme Mallefet
- />Laboratory of Marine Biology, Earth and Life Institute, Catholic University of Louvain, Louvain-La-Neuve, Place Croix du Sud 3, bt L7.06.04, 1348 Louvain-la-Neuve, Belgium
| | - Patrick Flammang
- />Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences, University of Mons, Avenue du Champs de Mars 6, 7000 Mons, Belgium
| |
Collapse
|
10
|
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V. The biology of the germ line in echinoderms. Mol Reprod Dev 2014; 81:679-711. [PMID: 23900765 PMCID: PMC4102677 DOI: 10.1002/mrd.22223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae Brayboy
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Tara Fresques
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Eric A. Gustafson
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - S. Zachary Swartz
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa Zazueta
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
11
|
Wessel GM, Fresques T, Kiyomoto M, Yajima M, Zazueta V. Origin and development of the germ line in sea stars. Genesis 2014; 52:367-77. [PMID: 24648114 PMCID: PMC4116737 DOI: 10.1002/dvg.22772] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/14/2014] [Indexed: 12/17/2022]
Abstract
This review summarizes and integrates our current understanding of how sea stars make gametes. Although little is known of the mechanism of germ line formation in these animals, recent results point to specific cells and to cohorts of molecules in the embryos and larvae that may lay the ground work for future research efforts. A coelomic outpocketing forms in the posterior of the gut in larvae, referred to as the posterior enterocoel (PE), that when removed, significantly reduces the number of germ cell later in larval growth. This same PE structure also selectively accumulates several germ-line associated factors-vasa, nanos, piwi-and excludes factors involved in somatic cell fate. Since its formation is relatively late in development, these germ cells may form by inductive mechanisms. When integrated into the morphological observations of germ cells and gonad development in larvae, juveniles, and adults, the field of germ line determination appears to have a good model system to study inductive germ line determination to complement the recent work on the molecular mechanisms in mice. We hope this review will also guide investigators interested in germ line determination and regulation of the germ line into how these animals can help in this research field. The review is not intended to be comprehensive-sea star reproduction has been studied for over 100 years and many reviews are comprehensive in their coverage of, for example, seasonal growth of the gonads in response to light, nutrient, and temperature. Rather the intent of this review is to help the reader focus on new experimental results attached to the historical underpinnings of how the germ cell functions in sea stars with particular emphasis to clarify the important areas of priority for future research.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence RI USA
| | - Tara Fresques
- Department of Molecular and Cellular Biology, Brown University, Providence RI USA
| | | | - Mamiko Yajima
- Department of Molecular and Cellular Biology, Brown University, Providence RI USA
| | - Vanesa Zazueta
- Department of Molecular and Cellular Biology, Brown University, Providence RI USA
| |
Collapse
|
12
|
Abstract
Different sea urchin species show a vast variety of responses to variations in light intensity; however, despite this behavioral evidence for photosensitivity, light sensing in these animals has remained an enigma. Genome information of the recently sequenced purple sea urchin (Strongylocentrotus purpuratus) allowed us to address this question from a previously unexplored molecular perspective by localizing expression of the rhabdomeric opsin Sp-opsin4 and Sp-pax6, two genes essential for photoreceptor function and development, respectively. Using a specifically designed antibody against Sp-Opsin4 and in situ hybridization for both genes, we detected expression in two distinct groups of photoreceptor cells (PRCs) located in the animal's numerous tube feet. Specific reactivity of the Sp-Opsin4 antibody with sea star optic cushions, which regulate phototaxis, suggests a similar visual function in sea urchins. Ultrastructural characterization of the sea urchin PRCs revealed them to be of a microvillar receptor type. Our data suggest that echinoderms, in contrast to chordates, deploy a microvillar, r-opsin-expressing PRC type for vision, a feature that has been so far documented only in protostome animals. Surprisingly, sea urchin PRCs lack any associated screening pigment. Indeed, one of the tube foot PRC clusters may account for directional vision by being shaded through the opaque calcite skeleton. The PRC axons connect to the animal internal nervous system, suggesting an integrative function beyond local short circuits. Because juveniles display no phototaxis until skeleton completion, we suggest a model in which the entire sea urchin, deploying its skeleton as PRC screening device, functions as a huge compound eye.
Collapse
|
13
|
Morris VB, Selvakumaraswamy P, Whan R, Byrne M. The coeloms in a late brachiolaria larva of the asterinid sea star Parvulastra exigua: deriving an asteroid coelomic model. ACTA ZOOL-STOCKHOLM 2010. [DOI: 10.1111/j.1463-6395.2010.00468.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Elia L, Cisternas P, Byrne M. Characterization and expression of a sea star otx ortholog (Protxβ1/2) in the larva of Patiriella regularis. Gene Expr Patterns 2010; 10:323-7. [PMID: 20647060 DOI: 10.1016/j.gep.2010.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/15/2010] [Accepted: 07/09/2010] [Indexed: 11/25/2022]
Abstract
A transcript of otx from the sea star Patiriella regularis (Protxβ1/2) was characterized and its expression in early bipinnaria larvae was documented by whole mount in situ hybridization (WMISH). The nucleotide sequence exhibited 94% identity with Amotxβ1/2 from the closely related species Patiria miniata. Protxβ1/2 was expressed strongly in the developing archenteron in the future fore and mid-gut regions. This was followed by expression of Protxβ1/2 in the developing enterocoels, mesodermal derivatives. This suggests a role for Protx in endomesoderm development. In coelom development, Protxβ1/2 was first expressed in the left coelom. Subsequently expression was evident in the right coelom, but localization was never as strong as in the left coelom. This asymmetry in Protxβ1/2 expression in the coeloms was evident up to the stage when they started to extend posteriorly. These data indicate that Protxβ1/2 may have a role in coelom development, particularly in the left coelom, a definitive adult structure.
Collapse
Affiliation(s)
- Laura Elia
- School of Medical Sciences, F13, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
15
|
Morris VB. On the sites of secondary podia formation in a juvenile echinoid: growth of the body types in echinoderms. Dev Genes Evol 2009; 219:597-608. [PMID: 20229180 DOI: 10.1007/s00427-010-0321-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
The growth of the adult echinoderm body is addressed here in the echinoid Holopneustes purpurescens in a study of the early development of the secondary podia along the five radial canals of the adult rudiment. At a stage when the first four secondary podia have formed along each radius oral to the primary podium, two podia are on one side of the radius and two are on the other side, all at a different distance from the primary podium. The pattern of the connexions of these secondary podia to the radial canals changes in successive radii in a manner similar to Lovén's law for skeletal plates and matches the reported sequence in the times at which the first ambulacral skeletal plates form in the adult echinoid rudiment. A similar pattern is described for the reported origins of the secondary podia in apodid holothurians. A common plan for the growth of the body types is described for echinoids, asteroids, holothurians and concentricycloids. The five metameric series of secondary podia formed in echinoderms have a coelomic developmental origin like the single metameric series of somites formed in the axial structures of chordates.
Collapse
Affiliation(s)
- Valerie B Morris
- School of Biological Sciences A12, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
16
|
Cisternas P, Byrne M. Expression of Hox4 during development of the pentamerous juvenile sea star, Parvulastra exigua. Dev Genes Evol 2009; 219:613-8. [PMID: 20182887 DOI: 10.1007/s00427-010-0318-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 01/18/2010] [Indexed: 11/25/2022]
Abstract
Expression of Hox4 during development of the bilateral larva and pentameral juvenile sea star was investigated in Parvulastra exigua. The role of Hox4, possibly the anterior-most gene in the echinoderm Hox cluster, in the formation of the echinoderm adult body plan has not been examined previously. In the larva of P. exigua, PeHox4 is expressed in the developing coeloms-the anterior and the right and left coeloms that generate the aboral and oral coeloms of the juvenile. At the rudiment stage, PeHox4 was expressed in the five primary lobes of the hydrocoel that give rise to primary podia, the foundation of the adult body plan. This suggests a role for this gene in the development of the echinoderm body plan. In contrast to other bilaterians, Hox4 was not expressed in the developing asteroid central nervous system.
Collapse
Affiliation(s)
- Paula Cisternas
- School of Medical Sciences, Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| | | |
Collapse
|