1
|
Lenschow C, Mendes ARP, Lima SQ. Hearing, touching, and multisensory integration during mate choice. Front Neural Circuits 2022; 16:943888. [PMID: 36247731 PMCID: PMC9559228 DOI: 10.3389/fncir.2022.943888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mate choice is a potent generator of diversity and a fundamental pillar for sexual selection and evolution. Mate choice is a multistage affair, where complex sensory information and elaborate actions are used to identify, scrutinize, and evaluate potential mating partners. While widely accepted that communication during mate assessment relies on multimodal cues, most studies investigating the mechanisms controlling this fundamental behavior have restricted their focus to the dominant sensory modality used by the species under examination, such as vision in humans and smell in rodents. However, despite their undeniable importance for the initial recognition, attraction, and approach towards a potential mate, other modalities gain relevance as the interaction progresses, amongst which are touch and audition. In this review, we will: (1) focus on recent findings of how touch and audition can contribute to the evaluation and choice of mating partners, and (2) outline our current knowledge regarding the neuronal circuits processing touch and audition (amongst others) in the context of mate choice and ask (3) how these neural circuits are connected to areas that have been studied in the light of multisensory integration.
Collapse
Affiliation(s)
- Constanze Lenschow
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Ana Rita P Mendes
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
2
|
Lymphocytic Choriomeningitis Virus Alters the Expression of Male Mouse Scent Proteins. Viruses 2021; 13:v13061180. [PMID: 34205512 PMCID: PMC8234142 DOI: 10.3390/v13061180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Mature male mice produce a particularly high concentration of major urinary proteins (MUPs) in their scent marks that provide identity and status information to conspecifics. Darcin (MUP20) is inherently attractive to females and, by inducing rapid associative learning, leads to specific attraction to the individual male’s odour and location. Other polymorphic central MUPs, produced at much higher abundance, bind volatile ligands that are slowly released from a male’s scent marks, forming the male’s individual odour that females learn. Here, we show that infection of C57BL/6 males with LCMV WE variants (v2.2 or v54) alters MUP expression according to a male’s infection status and ability to clear the virus. MUP output is substantially reduced during acute adult infection with LCMV WE v2.2 and when males are persistently infected with LCMV WE v2.2 or v54. Infection differentially alters expression of darcin and, particularly, suppresses expression of a male’s central MUP signature. However, following clearance of acute v2.2 infection through a robust virus-specific CD8 cytotoxic T cell response that leads to immunity to the virus, males regain their normal mature male MUP pattern and exhibit enhanced MUP output by 30 days post-infection relative to uninfected controls. We discuss the likely impact of these changes in male MUP signals on female attraction and mate selection. As LCMV infection during pregnancy can substantially reduce embryo survival and lead to lifelong infection in surviving offspring, we speculate that females use LCMV-induced changes in MUP expression both to avoid direct infection from a male and to select mates able to develop immunity to local variants that will be inherited by their offspring.
Collapse
|
3
|
Bartoš L, Dušek A, Bartošová J, Pluháček J, Putman R. How to escape male infanticide: mechanisms for avoiding or terminating pregnancy in mammals. Mamm Rev 2020. [DOI: 10.1111/mam.12219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Luděk Bartoš
- Department of Ethology Institute of Animal Science Praha Uhříněves10400 Czech Republic
- Department of Ethology and Companion Animal Science Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences in Prague Praha 6‐Suchdol16500 Czech Republic
| | - Adam Dušek
- Department of Ethology Institute of Animal Science Praha Uhříněves10400 Czech Republic
| | - Jitka Bartošová
- Department of Ethology Institute of Animal Science Praha Uhříněves10400 Czech Republic
- Department of Ethology and Companion Animal Science Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences in Prague Praha 6‐Suchdol16500 Czech Republic
| | - Jan Pluháček
- Department of Ethology Institute of Animal Science Praha Uhříněves10400 Czech Republic
| | - Rory Putman
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| |
Collapse
|
4
|
Stokes RH, Sandel AA. Data quality and the comparative method: the case of pregnancy failure in rodents. J Mammal 2019. [DOI: 10.1093/jmammal/gyz096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
In mammalian species where infanticide by males is likely, females exhibit counterstrategies to prevent or mitigate the costs of infanticide. One putative mitigation strategy is the “Bruce effect,” in which pregnant or inseminated females exposed to an unfamiliar male experience pregnancy block or failure. Females then mate with the new male, thus shifting investment from a “doomed” pregnancy to a more fruitful one. However, the Bruce effect may be an adaptive response to other factors besides infanticide. For example, if paternal care is necessary for offspring survival, and an unfamiliar male replacing the original mate is unlikely to provide such care to offspring of a litter it did not sire, then a female may terminate a pregnancy to initiate a new one. The infanticide and paternal care hypotheses have not been rigorously tested because comparative data on the Bruce effect across mammals are scarce. We compiled data on the Bruce effect, infanticide, and paternal care from one particularly rich source of information, rodents, but found the data set to be less rich than expected. The Bruce effect, infanticide, and paternal care were common among rodent species, but we found no clear relationship among the traits. However, this was likely due to 1) a bias toward positive results, 2) missing data, and 3) a reliance on studies of captive animals. These are common problems in comparative research, and we outline standards that should be implemented to successfully answer questions of importance in the field.
Collapse
Affiliation(s)
| | - Aaron A Sandel
- Department of Anthropology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
5
|
Zipple MN, Roberts EK, Alberts SC, Beehner JC. Male-mediated prenatal loss: Functions and mechanisms. Evol Anthropol 2019; 28:114-125. [PMID: 30953577 PMCID: PMC6548597 DOI: 10.1002/evan.21776] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/12/2018] [Accepted: 02/26/2019] [Indexed: 12/17/2022]
Abstract
Sexually selected infanticide has been the subject of intense empirical and theoretical study for decades; a related phenomenon, male-mediated prenatal loss, has received much less attention in evolutionary studies. Male-mediated prenatal loss occurs when inseminated or pregnant females terminate reproductive effort following exposure to a nonsire male, either through implantation failure or pregnancy termination. Male-mediated prenatal loss encompasses two sub-phenomena: sexually selected feticide and the Bruce effect. In this review, we provide a framework that explains the relationship between feticide and the Bruce effect and describes what is known about the proximate and ultimate mechanisms involved in each. Using a simple model, we demonstrate that male-mediated prenatal loss can provide greater reproductive benefits to males than infanticide. We therefore suggest that, compared to infanticide, male-mediated prenatal loss may be more prevalent in mammalian species and may have played a greater role in their social evolution than has previously been documented.
Collapse
Affiliation(s)
| | - Eila K Roberts
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, North Carolina
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Jacinta C Beehner
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Furness AI, Morrison KR, Orr TJ, Arendt JD, Reznick DN. Reproductive mode and the shifting arenas of evolutionary conflict. Ann N Y Acad Sci 2015; 1360:75-100. [PMID: 26284738 DOI: 10.1111/nyas.12835] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/21/2015] [Accepted: 06/05/2015] [Indexed: 12/11/2022]
Abstract
In sexually reproducing organisms, the genetic interests of individuals are not perfectly aligned. Conflicts among family members are prevalent since interactions involve the transfer of limited resources between interdependent players. Intrafamilial conflict has traditionally been considered along three major axes: between the sexes, between parents and offspring, and between siblings. In these interactions, conflict is expected over traits in which the resulting phenotypic value is determined by multiple family members who have only partially overlapping fitness optima. We focus on four major categories of animal reproductive mode (broadcast spawning, egg laying, live bearing, and live bearing with matrotrophy) and identify the shared phenotypes or traits over which conflict is expected, and then review the empirical literature for evidence of their occurrence. Major transitions among reproductive mode, such as a shift from external to internal fertilization, an increase in egg-retention time, modifications of embryos and mothers for nutrient transfer, the evolution of postnatal parental care, and increased interaction with the kin network, mark key shifts that both change and expand the arenas in which conflict is played out.
Collapse
Affiliation(s)
- Andrew I Furness
- Department of Biology, University of California, Riverside, California.,Department of Ecology and Evolutionary Biology, University of California, Irvine, California
| | - Keenan R Morrison
- Department of Biology, University of California, Riverside, California
| | - Teri J Orr
- Department of Biology, University of California, Riverside, California.,Department of Biology, University of Massachusetts, Amherst, Massachusetts
| | - Jeff D Arendt
- Department of Biology, University of California, Riverside, California
| | - David N Reznick
- Department of Biology, University of California, Riverside, California
| |
Collapse
|
7
|
deCatanzaro D. Sex steroids as pheromones in mammals: the exceptional role of estradiol. Horm Behav 2015; 68:103-16. [PMID: 25125222 DOI: 10.1016/j.yhbeh.2014.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/18/2022]
Abstract
This article is part of a Special Issue (Chemosignals and Reproduction). Whether from endogenous or exogenous sources, 17β-estradiol (E2) has very powerful influences over mammalian female reproductive physiology and behavior. Given its highly lipophilic nature and low molecular mass, E2 readily enters excretions and can be absorbed from exogenous sources via nasal, cutaneous, and other modes of exposure. Indeed, systemic injection of tritiated estradiol ((3)H-E2) into a male mouse or bat has been shown to produce significant levels of radioactivity in the reproductive tissues and brain of cohabiting female conspecifics. Bioactive E2 and other steroids are naturally found in male mouse urine and other excretions, and males actively direct their urine at proximate females. Very low doses of E2 can mimic the Bruce effect (disruption of peri-implantation pregnancy by novel males), the Vandenbergh effect (early reproductive maturation induced by novel males), and male-induced estrus and ovulation. Males' capacities to induce the Bruce and Vandenbergh effects can both be diminished by manipulations that reduce their urinary E2. Uterine dynamics during the Bruce and Vandenbergh effects are consistent with the actions of E2. Collectively, these data demonstrate a critical role of male-sourced E2 in these major mammalian pheromonal effects.
Collapse
Affiliation(s)
- Denys deCatanzaro
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
8
|
Trojan Genes or Transparent Genomes? Sexual Selection and Potential Impacts of Genetically Modified Animals in Natural Ecosystems. Evol Biol 2013. [DOI: 10.1007/s11692-013-9268-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Low incidence of miscarriage induced by the scent of male littermates of original mates: male kinship reduces the bruce effect in female mice, Mus musculus. PLoS One 2013; 8:e68673. [PMID: 23874716 PMCID: PMC3714254 DOI: 10.1371/journal.pone.0068673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/06/2013] [Indexed: 12/02/2022] Open
Abstract
The scent of a novel male can elicit pregnancy block in recently mated female mice (Mus musculus), a phenomenon known as the Bruce effect. Despite abundant literature on the Bruce effect in rodents, it remains unclear whether males related to a female’s original mate can induce the Bruce effect in out-bred, communally living mice. We investigated this question using Kunming (KM) male mice of varying genetic relatedness. Recently mated females were subjected to three treatments: exposure to the urine of the mate, urine of the mate’s male littermate, and urine of a male unrelated to the mate. It was found that the urine of male littermates of the females’ mates did not elicit more pregnancy block than that of the females’ mates. However, the urine of novel males caused a higher rate of female miscarriage than that of the females’ mates. By using a habituation-dishabituation paradigm, we found that unmated females could discriminate the urine scents of two male littermates from those of a novel male unrelated to the littermates. To understand how females use urinary cues to discriminate between males with different genetic relationships, we used gas chromatography coupled with mass spectrometry (GC-MS) to examine the volatile composition of urine from males with varying relatedness. It was found that KM male littermates shared similar volatile compositions in their urine. Our results suggest that male kinship reduces the Bruce effect in female KM mice, and provide additional evidence for mate choice being partly mediated by the Bruce effect in KM mice.
Collapse
|
10
|
Petrulis A. Chemosignals, hormones and mammalian reproduction. Horm Behav 2013; 63:723-41. [PMID: 23545474 PMCID: PMC3667964 DOI: 10.1016/j.yhbeh.2013.03.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 11/21/2022]
Abstract
Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as "pheromones" but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking.
Collapse
Affiliation(s)
- Aras Petrulis
- Georgia State University, Neuroscience Institute, Atlanta, GA 30303, USA.
| |
Collapse
|
11
|
Affiliation(s)
- Eila K Roberts
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Intrauterine implantation of fertilized ova can be blocked by exposing recently inseminated females with an unfamiliar male. This selective pregnancy failure, designated as the Bruce effect (Bruce, Nature 1959; 184:105), is well studied in laboratory mice and has been confirmed in several other rodent species. However, no clear information exists concerning this phenomenon in the laboratory rat. The present study was conducted to investigate whether or not the Bruce effect exists in the rat. Females of two F1 hybrid strains (n(total) = 354) with different MHC genotypes (F344BNF1, RT1(lv1/n), and LEWPVGF1, RT1(l/c)) were mated with males of their own strain and subsequently exposed during the first 4 days postcoitus either to a male of the other hybrid strain or to an unfamiliar male of the same strain as the stud. The litter rate of each treatment group was determined. As a control, mated females of both strains were reexposed to the stud male to determine baseline litter rates. Female rats of both F1 hybrid strains showed a significantly lower litter rate when exposed to males of a different strain than their stud male, compared to the expected values of birth rates observed in control females (F344BNF1: P = 0.017; LEWPVGF1: P = 0.019). In contrast, there was no difference between expected and observed litter rates in females of both F1 hybrid strains after exposure to an unfamiliar male of the same strain as their stud. Our results demonstrate for the first time that the Bruce effect, well documented in mice, occurs in the Norway rat.
Collapse
Affiliation(s)
- Vera Marashi
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Austria
| | | |
Collapse
|
13
|
Bartoš L, Bartošová J, Pluháček J, Šindelářová J. Promiscuous behaviour disrupts pregnancy block in domestic horse mares. Behav Ecol Sociobiol 2011. [DOI: 10.1007/s00265-011-1166-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|