1
|
Harry ND, Zakas C. The role of heterochronic gene expression and regulatory architecture in early developmental divergence. eLife 2024; 13:RP93062. [PMID: 39177024 PMCID: PMC11343563 DOI: 10.7554/elife.93062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
New developmental programs can evolve through adaptive changes to gene expression. The annelid Streblospio benedicti has a developmental dimorphism, which provides a unique intraspecific framework for understanding the earliest genetic changes that take place during developmental divergence. Using comparative RNAseq through ontogeny, we find that only a small proportion of genes are differentially expressed at any time, despite major differences in larval development and life history. These genes shift expression profiles across morphs by either turning off any expression in one morph or changing the timing or amount of gene expression. We directly connect the contributions of these mechanisms to differences in developmental processes. We examine F1 offspring - using reciprocal crosses - to determine maternal mRNA inheritance and the regulatory architecture of gene expression. These results highlight the importance of both novel gene expression and heterochronic shifts in developmental evolution, as well as the trans-acting regulatory factors in initiating divergence.
Collapse
Affiliation(s)
- Nathan D Harry
- Department of Biological Sciences, North Carolina State UniversityRaleighUnited States
| | - Christina Zakas
- Department of Biological Sciences, North Carolina State UniversityRaleighUnited States
| |
Collapse
|
2
|
Konstantinidis I, Sætrom P, Fernandes JMO. Genome-wide hydroxymethylation profiles in liver of female Nile tilapia with distinct growth performance. Sci Data 2023; 10:114. [PMID: 36859394 PMCID: PMC9977925 DOI: 10.1038/s41597-023-01996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
The mechanisms underlying the fast genome evolution that occurs during animal domestication are poorly understood. Here, we present a genome-wide epigenetic dataset that quantifies DNA hydroxymethylation at single nucleotide resolution among full-sib Nile tilapia (Oreochromis niloticus) with distinct growth performance. In total, we obtained 355 million, 75 bp reads from 5 large- and 5 small-sized fish on an Illumina NextSeq500 platform. We identified several growth-related genes to be differentially hydroxymethylated, especially within gene bodies and promoters. Previously, we proposed that DNA hydroxymethylation greatly affects the earliest responses to adaptation and potentially drives genome evolution through its targeted enrichment and elevated nucleotide transversion rates. This dataset can be analysed in various contexts (e.g., epigenetics, evolution and growth) and compared to other epigenomic datasets in the future, namely DNA methylation and histone modifications. With forthcoming advancements in genome research, this hydroxymethylation dataset will also contribute to better understand the epigenetic regulation of key genomic features, such as cis-regulatory and transposable elements.
Collapse
Affiliation(s)
| | - Pål Sætrom
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- Department of Computer Science, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- Bioinformatics core facility-BioCore, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | | |
Collapse
|
3
|
Beck SV, Räsänen K, Kristjánsson BK, Skúlason S, Jónsson ZO, Tsinganis M, Leblanc CA. Variation in egg size and offspring phenotype among and within seven Arctic charr morphs. Ecol Evol 2022; 12:e9427. [PMID: 36267683 PMCID: PMC9577412 DOI: 10.1002/ece3.9427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/07/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Maternal effects have the potential to alter early developmental processes of offspring and contribute to adaptive diversification. Egg size is a major contributor to offspring phenotype, which can influence developmental trajectories and potential resource use. However, to what extent intraspecific variation in egg size facilitates evolution of resource polymorphism is poorly understood. We studied multiple resource morphs of Icelandic Arctic charr, ranging from an anadromous morph-with a phenotype similar to the proposed ancestral phenotype-to sympatric morphs that vary in their degree of phenotypic divergence from the ancestral anadromous morph. We characterized variation in egg size and tested whether egg size influenced offspring phenotype at early life stages (i.e., timing of- and size at- hatching and first feeding [FF]). We predicted that egg size would differ among morphs and be less variable as morphs diverge away from the ancestral anadromous phenotype. We also predicted that egg size would correlate with offspring size and developmental timing. We found morphs had different egg size, developmental timing, and size at hatching and FF. Egg size increased as phenotypic proximity to the ancestral anadromous phenotype decreased, with larger eggs generally giving rise to larger offspring, especially at FF, but egg size had no effect on developmental rate. The interaction between egg size and the environment may have a profound impact on offspring fitness, where the resulting differences in early life-history traits may act to initiate and/or maintain resource morphs diversification.
Collapse
Affiliation(s)
- Samantha V. Beck
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókurIceland
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavíkIceland
| | - Katja Räsänen
- Department of Aquatic EcologyEawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Department of Biology and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | | | - Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókurIceland
- Icelandic Museum of Natural HistoryReykjavíkIceland
| | - Zophonías O. Jónsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavíkIceland
| | - Markos Tsinganis
- Department of Aquatic EcologyEawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Camille A. Leblanc
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókurIceland
| |
Collapse
|
4
|
Predator-induced maternal effects determine adaptive antipredator behaviors via egg composition. Proc Natl Acad Sci U S A 2021; 118:2017063118. [PMID: 34507981 DOI: 10.1073/pnas.2017063118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
In high-risk environments with frequent predator encounters, efficient antipredator behavior is key to survival. Parental effects are a powerful mechanism to prepare offspring for coping with such environments, yet clear evidence for adaptive parental effects on offspring antipredator behaviors is missing. Rapid escape reflexes, or "C-start reflexes," are a key adaptation in fish and amphibians to escape predator strikes. We hypothesized that mothers living in high-risk environments might induce faster C-start reflexes in offspring by modifying egg composition. Here, we show that offspring of the cichlid fish Neolamprologus pulcher developed faster C-start reflexes and were more risk averse if their parents had been exposed to cues of their most dangerous natural predator during egg production. This effect was mediated by differences in egg composition. Eggs of predator-exposed mothers were heavier with higher net protein content, and the resulting offspring were heavier and had lower igf-1 gene expression than control offspring shortly after hatching. Thus, changes in egg composition can relay multiple putative pathways by which mothers can influence adaptive antipredator behaviors such as faster escape reflexes.
Collapse
|
5
|
Effect of parental phenotype on dispersal, growth and maturation of offspring in wild masu salmon (Oncorhynchus masou). Evol Ecol 2021. [DOI: 10.1007/s10682-020-10098-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Beck SV, Räsänen K, Leblanc CA, Skúlason S, Jónsson ZO, Kristjánsson BK. Differences among families in craniofacial shape at early life-stages of Arctic charr (Salvelinus alpinus). BMC DEVELOPMENTAL BIOLOGY 2020; 20:21. [PMID: 33106153 PMCID: PMC7586659 DOI: 10.1186/s12861-020-00226-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 10/15/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Organismal fitness can be determined at early life-stages, but phenotypic variation at early life-stages is rarely considered in studies on evolutionary diversification. The trophic apparatus has been shown to contribute to sympatric resource-mediated divergence in several taxa. However, processes underlying diversification in trophic traits are poorly understood. Using phenotypically variable Icelandic Arctic charr (Salvelinus alpinus), we reared offspring from multiple families under standardized laboratory conditions and tested to what extent family (i.e. direct genetic and maternal effects) contributes to offspring morphology at hatching (H) and first feeding (FF). To understand the underlying mechanisms behind early life-stage variation in morphology, we examined how craniofacial shape varied according to family, offspring size, egg size and candidate gene expression. RESULTS Craniofacial shape (i.e. the Meckel's cartilage and hyoid arch) was more variable between families than within families both across and within developmental stages. Differences in craniofacial morphology between developmental stages correlated with offspring size, whilst within developmental stages only shape at FF correlated with offspring size, as well as female mean egg size. Larger offspring and offspring from females with larger eggs consistently had a wider hyoid arch and contracted Meckel's cartilage in comparison to smaller offspring. CONCLUSIONS This study provides evidence for family-level variation in early life-stage trophic morphology, indicating the potential for parental effects to facilitate resource polymorphism.
Collapse
Affiliation(s)
- Samantha V Beck
- Department of Aquaculture and Fish Biology, Hólar University, 551, Sauðárkrókur, Iceland. .,Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland. .,The Rivers and Lochs Institute, University of the Highlands and Islands, Inverness, UK.
| | - Katja Räsänen
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Camille A Leblanc
- Department of Aquaculture and Fish Biology, Hólar University, 551, Sauðárkrókur, Iceland
| | - Skúli Skúlason
- Department of Aquaculture and Fish Biology, Hólar University, 551, Sauðárkrókur, Iceland
| | - Zophonías O Jónsson
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Bjarni K Kristjánsson
- Department of Aquaculture and Fish Biology, Hólar University, 551, Sauðárkrókur, Iceland
| |
Collapse
|
7
|
Rahman MM, Biswas R, Gazi L, Arafat ST, Rahman MM, Asaduzzaman M, Rahman SM, Ahsan MN. Annually twice induced spawnings provide multiple benefits: Experimental evidence from an Indian major carp (
Catla catla
, Hamilton 1822). AQUACULTURE RESEARCH 2020; 51:2275-2290. [DOI: 10.1111/are.14572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 09/27/2023]
Affiliation(s)
- Md. Moshiur Rahman
- Tokyo University of Marine Science and Technology Tokyo Japan
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Ripon Biswas
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Litan Gazi
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Shaikh Tareq Arafat
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Md. Mostafizur Rahman
- Department of Disaster and Human Security Management Bangladesh University of Professionals Dhaka Bangladesh
| | - Md. Asaduzzaman
- Department of Marine Bioresource Science Chattogram Veterinary and Animal Sciences University Chittagong Bangladesh
| | - Sheikh Mustafizur Rahman
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
- Fish Resources Research Center King Faisal University Hofuf Saudi Arabia
| | - Md. Nazmul Ahsan
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| |
Collapse
|
8
|
Burton T, Rollinson N, McKelvey S, Stewart DC, Armstrong JD, Metcalfe NB. Adaptive Maternal Investment in the Wild? Links between Maternal Growth Trajectory and Offspring Size, Growth, and Survival in Contrasting Environments. Am Nat 2020; 195:678-690. [PMID: 32216673 DOI: 10.1086/707518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Life-history theory predicts that investment per offspring should correlate negatively with the quality of the environment that offspring are anticipated to encounter; parents may use their own experience as juveniles to predict this environment and may modulate offspring traits, such as growth capacity and initial size. We manipulated nutrient levels in the juvenile habitat of wild Atlantic salmon (Salmo salar) to investigate the hypothesis that the egg size that maximizes juvenile growth and survival depends on environmental quality. We also tested whether offspring traits were related to parental growth trajectory. Mothers that grew fast when young produced more offspring and smaller offspring than mothers that grew slowly to reach the same size. Despite their size disadvantage, offspring of faster-growing mothers grew faster than those of slower-growing mothers in all environments, counter to the expectation that they would be competitively disadvantaged. However, they had lower relative survival in environments where the density of older predatory/competitor fish was relatively high. These links between maternal (but not paternal) growth trajectory and offspring survival rate were independent of egg size, underscoring that mothers may be adjusting egg traits other than size to suit the environment their offspring are anticipated to face.
Collapse
|
9
|
Celino-Brady FT, Petro-Sakuma CK, Breves JP, Lerner DT, Seale AP. Early-life exposure to 17β-estradiol and 4-nonylphenol impacts the growth hormone/insulin-like growth-factor system and estrogen receptors in Mozambique tilapia, Oreochromis mossambicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105336. [PMID: 31733503 PMCID: PMC6935514 DOI: 10.1016/j.aquatox.2019.105336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/28/2019] [Accepted: 10/14/2019] [Indexed: 05/31/2023]
Abstract
It is widely recognized that endocrine disrupting chemicals (EDCs) released into the environment through anthropogenic activities can have short-term impacts on physiological and behavioral processes and/or sustained or delayed long-term developmental effects on aquatic organisms. While numerous studies have characterized the effects of EDCs on temperate fishes, less is known on the effects of EDCs on the growth and reproductive physiology of tropical species. To determine the long-term effects of early-life exposure to common estrogenic chemicals, we exposed Mozambique tilapia (Oreochromis mossambicus) yolk-sac fry to 17β-estradiol (E2) and nonylphenol (NP) and subsequently characterized the expression of genes involved in growth and reproduction in adults. Fry were exposed to waterborne E2 (0.1 and 1 μg/L) and NP (10 and 100 μg/L) for 21 days. After the exposure period, juveniles were reared for an additional 112 days until males were sampled. Gonadosomatic index was elevated in fish exposed to E2 (0.1 μg/L) while hepatosomatic index was decreased by exposure to NP (100 μg/L). Exposure to E2 (0.1 μg/L) induced hepatic growth hormone receptor (ghr) mRNA expression. The high concentration of E2 (1 μg/L), and both concentrations of NP, increased hepatic insulin-like growth-factor 1 (igf1) expression; E2 and NP did not affect hepatic igf2 and pituitary growth hormone (gh) levels. Both E2 (1 μg/L) and NP (10 μg/L) induced hepatic igf binding protein 1b (igfbp1b) levels while only NP (100 μg/L) induced hepatic igfbp2b levels. By contrast, hepatic igfbp6b was reduced in fish exposed to E2 (1 μg/L). There were no effects of E2 or NP on hepatic igfbp4 and igfbp5a expression. Although the expression of three vitellogenin transcripts was not affected, E2 and NP stimulated hepatic estrogen receptor (erα and erβ) mRNA expression. We conclude that tilapia exposed to E2 and NP as yolk-sac fry exhibit subsequent changes in the endocrine systems that control growth and reproduction during later life stages.
Collapse
Affiliation(s)
- Fritzie T Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| | - Cody K Petro-Sakuma
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Darren T Lerner
- University of Hawai'i Sea Grant College Program, University of Hawai'i at Mānoa, 2525 Correa Road, Honolulu, HI 96822, USA.
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
10
|
Skúlason S, Parsons KJ, Svanbäck R, Räsänen K, Ferguson MM, Adams CE, Amundsen P, Bartels P, Bean CW, Boughman JW, Englund G, Guðbrandsson J, Hooker OE, Hudson AG, Kahilainen KK, Knudsen R, Kristjánsson BK, Leblanc CA, Jónsson Z, Öhlund G, Smith C, Snorrason SS. A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biol Rev Camb Philos Soc 2019; 94:1786-1808. [PMID: 31215138 PMCID: PMC6852119 DOI: 10.1111/brv.12534] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well-suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism - emphasizing eco evo devo, and identify current gaps in knowledge.
Collapse
Affiliation(s)
- Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
- Icelandic Museum of Natural History, Brynjólfsgata 5ReykjavíkIS‐107Iceland
| | - Kevin J. Parsons
- Institute of Biodiversity, Animal Health & Comparative MedicineUniversity of GlasgowGlasgow, G12 8QQU.K.
| | - Richard Svanbäck
- Animal Ecology, Department of Ecology and Genetics, Science for Life LaboratoryUppsala University, Norbyvägen 18DUppsala, SE‐752 36Sweden
| | - Katja Räsänen
- Department of Aquatic EcologyEAWAG, Swiss Federal Institute of Aquatic Science and Technology, and Institute of Integrative Biology, ETH‐Zurich, Ueberlandstrasse 133CH‐8600DübendorfSwitzerland
| | - Moira M. Ferguson
- Department of Integrative BiologyUniversity of GuelphGuelph, Ontario N1G 2W1Canada
| | - Colin E. Adams
- Scottish Centre for Ecology and the Natural Environment, IBAHCMUniversity of GlasgowGlasgow G12 8QQU.K.
| | - Per‐Arne Amundsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | - Pia Bartels
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Colin W. Bean
- Scottish Natural Heritage, Caspian House, Mariner Court, Clydebank Business ParkClydebank, G81 2NRU.K.
| | - Janette W. Boughman
- Department of Integrative BiologyMichigan State UniversityEast Lansing, MI 48824U.S.A.
| | - Göran Englund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Jóhannes Guðbrandsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | | | - Alan G. Hudson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Kimmo K. Kahilainen
- Inland Norway University of Applied Sciences, Department of Forestry and Wildlife Management, Campus Evenstad, Anne Evenstadvei 80Koppang, NO‐2480Norway
| | - Rune Knudsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | | | - Camille A‐L. Leblanc
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
| | - Zophonías Jónsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | - Gunnar Öhlund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Carl Smith
- School of BiologyUniversity of St Andrews, St. AndrewsFife, KY16 9AJU.K.
| | - Sigurður S. Snorrason
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| |
Collapse
|
11
|
Leblanc CA, Horri K, Skúlason S, Benhaim D. Subtle temperature increase can interact with individual size and social context in shaping phenotypic traits of a coldwater fish. PLoS One 2019; 14:e0213061. [PMID: 30917136 PMCID: PMC6436715 DOI: 10.1371/journal.pone.0213061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/15/2019] [Indexed: 11/25/2022] Open
Abstract
Temperature and individual egg size have been long studied in the development of fishes because of their direct effects on individual fitness. Here we studied the combined effects of three important factors for fish development, i.e. egg size, social environment and water temperature. Arctic charr (Salvelinus alpinus), a coldwater fish known to be phenotypically plastic, was used to investigate how these factors may affect growth and foraging behaviour of juvenile fish in a benign environment. We accounted for the social environment during early development by comparing fish raised in groups and in isolation. We examined the effect of egg size and a 2 °C difference on foraging behaviour, activity and growth a few weeks after first feeding. Growth trajectories of fish originating from large and small eggs were similar within each temperature: larger fish coming large eggs were at all time larger than smaller fish. There was no indication that small fish raised at a higher temperature grew faster than larger fish raised at a lower temperature. A 2 °C difference in temperature affected the behaviour of fish differently according to body size and/or social context. The foraging probability difference between fish raised in groups and fish briefly isolated was higher at 4.5 °C than at 6.5 °C for both size fish. Finally, there was no repeatability in foraging behaviour and mobility for isolated individuals. These results highlight the importance of small changes in temperature when evaluating growth and behaviour of fishes, and reveal the importance of considering the interaction of temperature with other factors, e.g. individual size and social environment, especially at early stages of development in fishes. We discuss these findings in the context of rapid changes in temperature and how temperature and its interaction with other factors may affect the phenotypes, ecology and evolution of coldwater fishes.
Collapse
Affiliation(s)
- C. A. Leblanc
- Department of Aquaculture and Fish Biology, Hólar University College, Saudárkrókur, Iceland
- * E-mail:
| | - K. Horri
- Ifremer, Laboratoire Ressources Halieutiques, Centre Manche Mer du Nord, Boulogne-sur-Mer, France
- UMR-I 02 SEBIO, INERIS, URCA, ULH, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, FR CNRS 3730 Scale, Université Le Havre Normandie, Le Havre, France
| | - S. Skúlason
- Department of Aquaculture and Fish Biology, Hólar University College, Saudárkrókur, Iceland
| | - D. Benhaim
- Department of Aquaculture and Fish Biology, Hólar University College, Saudárkrókur, Iceland
| |
Collapse
|
12
|
Low food availability during gestation enhances offspring post-natal growth, but reduces survival, in a viviparous lizard. Oecologia 2019; 189:611-620. [PMID: 30725369 DOI: 10.1007/s00442-019-04349-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
The environment experienced by a mother can have profound effects on the fitness of her offspring (i.e., maternal effects). Maternal effects can be adaptive when the developmental environments experienced by offspring promote phenotypes that provide fitness benefits either via matching offspring phenotype to the post-developmental environment (also known as anticipatory maternal effects) or through direct effects on offspring growth and survival. We tested these hypotheses in a viviparous lizard using a factorial experimental design in which mothers received either high or low amounts of food during gestation, and resultant offspring were raised on either high or low amounts of food post-birth. We found no effect of food availability during gestation on reproductive traits of mothers or offspring traits at birth. However, offspring from mothers who received low food during gestation exhibited a greater increase in condition in the post-birth period, suggesting some form of priming of offspring by mothers to cope with an anticipated poor environment after birth. Offspring that received low food during gestation were also more likely to die, suggesting a trade-off for this accelerated growth. There were also significant effects of post-birth food availability on offspring snout-vent length and body condition growth, with offspring with high food availability post birth doing better. However, the effects of the pre- and post-natal resource evnironment on offspring growth were independent on one another, therefore, providing no support for the presence of anticipatory maternal effects in the traditional sense.
Collapse
|
13
|
Ahi EP, Singh P, Lecaudey LA, Gessl W, Sturmbauer C. Maternal mRNA input of growth and stress-response-related genes in cichlids in relation to egg size and trophic specialization. EvoDevo 2018; 9:23. [PMID: 30519389 PMCID: PMC6271631 DOI: 10.1186/s13227-018-0112-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Egg size represents an important form of maternal effect determined by a complex interplay of long-term adaptation and short-term plasticity balancing egg size with brood size. Haplochromine cichlids are maternal mouthbrooders showing differential parental investment in different species, manifested in great variation in egg size, brood size and duration of maternal care. Little is known about maternally determined molecular characters of eggs in fishes and their relation to egg size and trophic specialization. Here we investigate maternal mRNA inputs of selected growth- and stress-related genes in eggs of mouthbrooding cichlid fishes adapted to different trophic niches from Lake Tanganyika, Lake Malawi, Lake Victoria and compare them to their riverine allies. RESULTS We first identified two reference genes, atf7ip and mid1ip1, to be suitable for cross-species quantification of mRNA abundance via qRT-PCR in the cichlid eggs. Using these reference genes, we found substantial variation in maternal mRNA input for a set of candidate genes related to growth and stress response across species and lakes. We observed negative correlation of mRNA abundance between two of growth hormone receptor paralogs (ghr1 and ghr2) across all haplochromine cichlid species which also differentiate the species in the two younger lakes, Malawi and Lake Victoria, from those in Lake Tanganyika and ancestral riverine species. Furthermore, we found correlations between egg size and maternal mRNA abundance of two growth-related genes igf2 and ghr2 across the haplochromine cichlids as well as distinct clustering of the species based on their trophic specialization using maternal mRNA abundance of five genes (ghr1, ghr2, igf2, gr and sgk1). CONCLUSIONS These findings indicate that variations in egg size in closely related cichlid species can be linked to differences in maternal RNA deposition of key growth-related genes. In addition, the cichlid species with contrasting trophic specialization deposit different levels of maternal mRNAs in their eggs for particular growth-related genes; however, it is unclear whether such differences contribute to differential morphogenesis at later stages of development. Our results provide first insights into this aspect of gene activation, as a basis for future studies targeting their role during ecomorphological specialization and adaptive radiation.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | | | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
14
|
Beck SV, Räsänen K, Ahi EP, Kristjánsson BK, Skúlason S, Jónsson ZO, Leblanc CA. Gene expression in the phenotypically plastic Arctic charr (Salvelinus alpinus): A focus on growth and ossification at early stages of development. Evol Dev 2018; 21:16-30. [PMID: 30474913 PMCID: PMC9285049 DOI: 10.1111/ede.12275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gene expression during development shapes the phenotypes of individuals. Although embryonic gene expression can have lasting effects on developmental trajectories, few studies consider the role of maternal effects, such as egg size, on gene expression. Using qPCR, we characterize relative expression of 14 growth and/or skeletal promoting genes across embryonic development in Arctic charr (Salvelinus alpinus). We test to what extent their relative expression is correlated with egg size and size at early life‐stages within the study population. We predict smaller individuals to have higher expression of growth and skeletal promoting genes, due to less maternal resources (i.e., yolk) and prioritization of energy toward ossification. We found expression levels to vary across developmental stages and only three genes (Mmp9, Star, and Sgk1) correlated with individual size at a given developmental stage. Contrary to our hypothesis, expression of Mmp9 and Star showed a non‐linear relationship with size (at post fertilization and hatching, respectively), whilst Sgk1 was higher in larger embryos at hatching. Interestingly, these genes are also associated with craniofacial divergence of Arctic charr morphs. Our results indicate that early life‐stage variation in gene expression, concomitant to maternal effects, can influence developmental plasticity and potentially the evolution of resource polymorphism in fishes.
Collapse
Affiliation(s)
- Samantha V Beck
- Department of Aquaculture and Fish Biology, Hólar University College, Háskólinn á Hólum, Sauðárkrókur, Iceland.,Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Katja Räsänen
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Ehsan P Ahi
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland.,Institute of Zoology, University of Graz, Universitätsplatz 2, Graz, Austria
| | - Bjarni K Kristjánsson
- Department of Aquaculture and Fish Biology, Hólar University College, Háskólinn á Hólum, Sauðárkrókur, Iceland
| | - Skúli Skúlason
- Department of Aquaculture and Fish Biology, Hólar University College, Háskólinn á Hólum, Sauðárkrókur, Iceland
| | - Zophonías O Jónsson
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Camille A Leblanc
- Department of Aquaculture and Fish Biology, Hólar University College, Háskólinn á Hólum, Sauðárkrókur, Iceland
| |
Collapse
|
15
|
Cogliati KM, Unrein JR, Stewart HA, Schreck CB, Noakes DLG. Egg size and emergence timing affect morphology and behavior in juvenile Chinook Salmon, Oncorhynchus tshawytscha. Ecol Evol 2017; 8:778-789. [PMID: 29321913 PMCID: PMC5756839 DOI: 10.1002/ece3.3670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 11/08/2022] Open
Abstract
Variation in early life history traits often leads to differentially expressed morphological and behavioral phenotypes. We investigated whether variation in egg size and emergence timing influence subsequent morphology associated with migration timing in juvenile spring Chinook Salmon, Oncorhynchus tshawytscha. Based on evidence for a positive relationship between growth rate and migration timing, we predicted that fish from small eggs and fish that emerged earlier would have similar morphology to fall migrants, while fish from large eggs and individuals that emerged later would be more similar to older spring yearling migrants. We sorted eyed embryos within females into two size categories: small and large. We collected early and late‐emerging juveniles from each egg size category. We used landmark‐based geometric morphometrics and found that egg size appears to drive morphological differences. Egg size shows evidence for an absolute rather than relative effect on body morphology. Fish from small eggs were morphologically more similar to fall migrants, while fish from large eggs were morphologically more similar to older spring yearling migrants. Previous research has shown that the body morphology of fish that prefer the surface or bottom location in a tank soon after emergence also correlates with the morphological variations between wild fall and spring migrants, respectively. We found that late‐emerging fish spent more time near the surface. Our study shows that subtle differences in early life history characteristics may correlate with a diversity of future phenotypes.
Collapse
Affiliation(s)
- Karen M Cogliati
- Department of Fisheries and Wildlife Oregon State University Corvallis OR USA
| | - Julia R Unrein
- Department of Fisheries and Wildlife Oregon State University Corvallis OR USA
| | - Heather A Stewart
- Department of Fisheries and Wildlife Oregon State University Corvallis OR USA
| | - Carl B Schreck
- U.S. Geological Survey (U.S.G.S.) Oregon Cooperative Fish and Wildlife Research Unit Oregon State University Corvallis OR USA
| | - David L G Noakes
- Department of Fisheries and Wildlife Oregon State University Corvallis OR USA.,Oregon Hatchery Research Center Alsea OR USA
| |
Collapse
|
16
|
Parsons PJ, Bridle JR, Rüber L, Genner MJ. Evolutionary divergence in life history traits among populations of the Lake Malawi cichlid fish Astatotilapia calliptera. Ecol Evol 2017; 7:8488-8506. [PMID: 29075465 PMCID: PMC5648681 DOI: 10.1002/ece3.3311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/26/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
During the early stages of adaptive radiation, populations diverge in life history traits such as egg size and growth rates, in addition to eco‐morphological and behavioral characteristics. However, there are few studies of life history divergence within ongoing adaptive radiations. Here, we studied Astatotilapia calliptera, a maternal mouthbrooding cichlid fish within the Lake Malawi haplochromine radiation. This species occupies a rich diversity of habitats, including the main body of Lake Malawi, as well as peripheral rivers and shallow lakes. We used common garden experiments to test for life history divergence among populations, focussing on clutch size, duration of incubation, egg mass, offspring size, and growth rates. In a first experiment, we found significant differences among populations in average clutch size and egg mass, and larger clutches were associated with smaller eggs. In a second experiment, we found significant differences among populations in brood size, duration of incubation, juvenile length when released, and growth rates. Larger broods were associated with smaller juveniles when released and shorter incubation times. Although juvenile growth rates differed between populations, these were not strongly related to initial size on release. Overall, differences in life history characters among populations were not predicted by major habitat classifications (Lake Malawi or peripheral habitats) or population genetic divergence (microsatellite‐based FST). We suggest that the observed patterns are consistent with local selective forces driving the observed patterns of trait divergence. The results provide strong evidence of evolutionary divergence and covariance of life history traits among populations within a radiating cichlid species, highlighting opportunities for further work to identify the processes driving the observed divergence.
Collapse
Affiliation(s)
- Paul J Parsons
- School of Biological Sciences University of Bristol Bristol UK.,University of Exeter Penryn UK
| | - Jon R Bridle
- School of Biological Sciences University of Bristol Bristol UK
| | - Lukas Rüber
- Naturhistorisches Museum der Burgergemeinde Bern Bern Switzerland.,Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Martin J Genner
- School of Biological Sciences University of Bristol Bristol UK
| |
Collapse
|
17
|
|
18
|
Burton T, Robertsen G, Stewart DC, McKelvey S, Armstrong JD, Metcalfe NB. Maternal age at maturation underpins contrasting behavior in offspring. Behav Ecol 2016; 27:1280-1287. [PMID: 27656083 PMCID: PMC5027624 DOI: 10.1093/beheco/arw073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 01/20/2023] Open
Abstract
In nature, vast differences in growth or size are frequently observed among young born to mothers of different age. However, it is unknown if there can be other, more subtle differences among offspring born to young versus old mothers? In Atlantic salmon, we reveal that despite being similar in size, juveniles from younger-maturing mothers are more aggressive, but poorer at competing for food than juveniles from older-maturing mothers In species where parental care occurs primarily via the provisioning of eggs, older females tend to produce larger offspring that have better fitness prospects. Remarkably however, a relationship between age of mother and fitness of offspring has also been reported independently of effects on offspring size suggesting that there may be other factors at play. Here, using experimental matings between wild Atlantic salmon that differed in their age at sexual maturation, we demonstrate distinct size-independent variation in the behavior of their offspring that was related to the maturation age of the mother (but not the father). We found that when juvenile salmon were competing for feeding territories, offspring of early-maturing mothers were more aggressive than those of late-maturing mothers, but were out-competed for food by them. This is the first demonstration of a link between natural variation in parental age at maturation and variation in offspring behavior.
Collapse
Affiliation(s)
- Tim Burton
- Institute of Biodiversity, Animal Health and Comparative Medicine, MVLS, University of Glasgow , University Avenue, Glasgow G12 8QQ, Scotland UK
| | - Grethe Robertsen
- Norwegian Institute for Nature Research , Høgskoleringen 9, NO-7034 Trondheim , Norway
| | - David C Stewart
- Marine Scotland Science, Freshwater Fisheries Laboratory , Faskally, Pitlochry, Perthshire PH16 5LB, Scotland , UK
| | - Simon McKelvey
- Cromarty Firth Fisheries Board, CKD Galbraith , Reay House, 17 Old Edinburgh Rd, Inverness IV2 3HF UK
| | - John D Armstrong
- Marine Scotland Science, Freshwater Fisheries Laboratory , Faskally, Pitlochry, Perthshire PH16 5LB, Scotland , UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, MVLS, University of Glasgow , University Avenue, Glasgow G12 8QQ, Scotland UK
| |
Collapse
|
19
|
Kardos M, Luikart G, Bunch R, Dewey S, Edwards W, McWilliam S, Stephenson J, Allendorf FW, Hogg JT, Kijas J. Whole‐genome resequencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep. Mol Ecol 2015; 24:5616-32. [DOI: 10.1111/mec.13415] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Marty Kardos
- Division of Biological Sciences University of Montana Missoula MT 59812 USA
- Evolutionary Biology Centre Uppsala University SE‐75236 Uppsala Sweden
| | - Gordon Luikart
- Division of Biological Sciences University of Montana Missoula MT 59812 USA
- Division of Biological Sciences Flathead Lake Biological Station Fish and Wildlife Genomics Group University of Montana Polson MT 59860 USA
| | - Rowan Bunch
- CSIRO Agriculture 306 Carmody Road St Lucia Brisbane Qld 4067 Australia
| | - Sarah Dewey
- Grand Teton National Park Moose WY 83012 USA
| | - William Edwards
- Wyoming Game and Fish Department Wildlife Disease Laboratory Laramie WY 82070 USA
| | - Sean McWilliam
- CSIRO Agriculture 306 Carmody Road St Lucia Brisbane Qld 4067 Australia
| | | | - Fred W. Allendorf
- Division of Biological Sciences University of Montana Missoula MT 59812 USA
| | - John T. Hogg
- Montana Conservation Science Institute Missoula MT 59803 USA
| | - James Kijas
- CSIRO Agriculture 306 Carmody Road St Lucia Brisbane Qld 4067 Australia
| |
Collapse
|
20
|
Moore MP, Landberg T, Whiteman HH. Maternal investment mediates offspring life history variation with context-dependent fitness consequences. Ecology 2015; 96:2499-509. [DOI: 10.1890/14-1602.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Jonsson B, Jonsson N. Early environment influences later performance in fishes. JOURNAL OF FISH BIOLOGY 2014; 85:151-88. [PMID: 24961386 DOI: 10.1111/jfb.12432] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/28/2014] [Indexed: 05/19/2023]
Abstract
Conditions fish encounter during embryogenesis and early life history can leave lasting effects not only on morphology, but also on growth rate, life-history and behavioural traits. The ecology of offspring can be affected by conditions experienced by their parents and mother in particular. This review summarizes such early impacts and their ecological influences for a variety of teleost species, but with special reference to salmonids. Growth and adult body size, sex ratio, egg size, lifespan and tendency to migrate can all be affected by early influences. Mechanisms behind such phenotypically plastic impacts are not well known, but epigenetic change appears to be one central mechanism. The thermal regime during development and incubation is particularly important, but also early food consumption and intraspecific density can all be responsible for later life-history variation. For behavioural traits, early experiences with effects on brain, sensory development and cognition appear essential. This may also influence boldness and other social behaviours such as mate choice. At the end of the review, several issues and questions for future studies are given.
Collapse
Affiliation(s)
- B Jonsson
- Norwegian Institute for Nature Research, Gaustadalléen 21, N-0349 Oslo, Norway
| | | |
Collapse
|
22
|
Zizzari ZV, Ellers J. Rapid shift in thermal resistance between generations through maternal heat exposure. OIKOS 2014. [DOI: 10.1111/oik.01496] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zaira Valentina Zizzari
- Dept of Ecological Science - Animal Ecology; VU Univ. Amsterdam; De Boelelaan 1085 NL-1081 HV Amsterdam the Netherlands
| | - Jacintha Ellers
- Dept of Ecological Science - Animal Ecology; VU Univ. Amsterdam; De Boelelaan 1085 NL-1081 HV Amsterdam the Netherlands
| |
Collapse
|
23
|
Murphy AD, Goedert D, Morris MR. Maternal effects are long-lasting and influence female offspring's reproductive strategy in the swordtail fish Xiphophorus multilineatus. J Evol Biol 2014; 27:1613-22. [DOI: 10.1111/jeb.12414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 11/29/2022]
Affiliation(s)
- A. D. Murphy
- Department of Biological Sciences; Ohio University; Athens OH USA
| | - D. Goedert
- Department of Biological Sciences; Ohio University; Athens OH USA
| | - M. R. Morris
- Department of Biological Sciences; Ohio University; Athens OH USA
| |
Collapse
|
24
|
Stratmann A, Taborsky B. Antipredator defences of young are independently determined by genetic inheritance, maternal effects and own early experience in mouthbrooding cichlids. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12224] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ariane Stratmann
- Behavioural Ecology; Institute of Ecology and Evolution; University of Bern; Wohlenstrasse 50A CH-3032 Hinterkappelen Switzerland
- Division of Animal Welfare; Veterinary Public Health Institute; University of Bern; Burgerweg 22 CH-3052 Zollikofen Switzerland
| | - Barbara Taborsky
- Behavioural Ecology; Institute of Ecology and Evolution; University of Bern; Wohlenstrasse 50A CH-3032 Hinterkappelen Switzerland
| |
Collapse
|
25
|
Leung JYS, Cheung SG, Qiu JW, Ang PO, Chiu JMY, Thiyagarajan V, Shin PKS. Effect of parental hypoxic exposure on embryonic development of the offspring of two serpulid polychaetes: Implication for transgenerational epigenetic effect. MARINE POLLUTION BULLETIN 2013; 74:149-155. [PMID: 23906470 DOI: 10.1016/j.marpolbul.2013.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/30/2013] [Accepted: 07/04/2013] [Indexed: 06/02/2023]
Abstract
Sperm production and motility, fecundity, and egg size, complexity and viability of serpulid polychaetes Hydroides elegans and Hydroides diramphus after 2-week treatment to hypoxia (2 mg O2 l(-1)) was compared with those under normoxia (6 mg O2 l(-1)). Despite reduced fecundity, the effect of parental hypoxic exposure on gamete quality was not discernible for both species. However, regardless of their subsequent dissolved oxygen environment, eggs spawned by H. elegans after hypoxic exposure were found to have lower fertilization success, slower embryonic development and a significantly higher yield of malformed embryos than those with a parental normoxic treatment. In contrast, neither fertilization success nor rate of embryonic development was affected for H. diramphus. The results implied that hypoxia was a potential stress reducing the recruitment of H. elegans through non-adaptive epigenetic effect, whereas H. diramphus was a more tolerant species to survive hypoxic events.
Collapse
Affiliation(s)
- J Y S Leung
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Burton T, McKelvey S, Stewart DC, Armstrong JD, Metcalfe NB. Early maternal experience shapes offspring performance in the wild. Ecology 2013; 94:618-26. [PMID: 23687888 DOI: 10.1890/12-0462.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Both the environments experienced by a mother as a juvenile and an adult can affect her investment in offspring. However, the implications of these maternal legacies, both juvenile and adult, for offspring fitness in natural populations are unclear. We investigated whether the juvenile growth rate and adult reproductive traits (length, body condition, and reproductive investment at spawning) of female wild Atlantic salmon (Salmo salar) were related to the growth and survival of their offspring. Adult salmon captured on their upstream migration were used to create experimental full-sib clutches of eggs, which were mixed and then placed in artificial nests in a natural stream that lacked salmon due to a migration barrier. Four months later we resampled the stream to obtain family-level estimates of offspring size and survival. Mothers that had grown slowly as juveniles (as determined by scalimetry) but had invested heavily in reproduction (egg production for a given body length) and were in relatively poor body condition (somatic mass for a given body length) at spawning produced the largest eggs. Larger eggs resulted in larger juveniles and higher juvenile survival. However, after controlling for egg size, offspring growth was positively related to maternal juvenile growth rate and reproductive investment. The predictors of offspring survival (i.e., reproductive success) varied with the juvenile growth rate of the mother: If females grew slowly as juveniles, their reproductive success was negatively related to their own body condition. In contrast, the reproductive success of females that grew quickly as juveniles was instead related positively to their own body condition. Our results show that maternal influences on offspring in the wild can be complex, with reproductive success related to the early life performance of the mother, as well as her state at the time of breeding.
Collapse
Affiliation(s)
- Tim Burton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow G12 8QQ United Kingdom.
| | | | | | | | | |
Collapse
|
27
|
Buzatto BA, Tomkins JL, Simmons LW. Maternal effects on male weaponry: female dung beetles produce major sons with longer horns when they perceive higher population density. BMC Evol Biol 2012; 12:118. [PMID: 22823456 PMCID: PMC3506554 DOI: 10.1186/1471-2148-12-118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/29/2012] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Maternal effects are environmental influences on the phenotype of one individual that are due to the expression of genes in its mother, and are expected to evolve whenever females are better capable of assessing the environmental conditions that their offspring will experience than the offspring themselves. In the dung beetle Onthophagus taurus, conditional male dimorphism is associated with alternative reproductive tactics: majors fight and guard females whereas minors sneak copulations. Furthermore, variation in dung beetle population density has different fitness consequences for each male morph, and theory predicts that higher population density might select for a higher frequency of minors and/or greater expenditure on weaponry in majors. Because adult dung beetles provide offspring with all the nutritional resources for their development, maternal effects strongly influence male phenotype. RESULTS Here we tested whether female O. taurus are capable of perceiving population density, and responding by changing the phenotype of their offspring. We found that mothers who were reared with other conspecifics in their pre-mating period produced major offspring that had longer horns across a wider range of body sizes than the major offspring of females that were reared in isolation in their pre-mating period. Moreover, our results indicate that this maternal effect on male weaponry does not operate through the amount of dung provided by females to their offspring, but is rather transmitted through egg or brood mass composition. Finally, although theory predicts that females experiencing higher density might produce more minor males, we found no support for this, rather the best fitting models were equivocal as to whether fewer or the same proportions of minors were produced. CONCLUSIONS Our study describes a new type of maternal effect in dung beetles, which probably allows females to respond to population density adaptively, preparing at least their major offspring for the sexual competition they will face in the future. This new type of maternal effect in dung beetles represents a novel transgenerational response of alternative reproductive tactics to population density.
Collapse
Affiliation(s)
- Bruno A Buzatto
- Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| | - Joseph L Tomkins
- Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| |
Collapse
|
28
|
Phumyu N, Boonanuntanasarn S, Jangprai A, Yoshizaki G, Na-Nakorn U. Pubertal effects of 17α-methyltestosterone on GH-IGF-related genes of the hypothalamic-pituitary-liver-gonadal axis and other biological parameters in male, female and sex-reversed Nile tilapia. Gen Comp Endocrinol 2012; 177:278-92. [PMID: 22481004 DOI: 10.1016/j.ygcen.2012.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/15/2012] [Accepted: 03/17/2012] [Indexed: 01/08/2023]
Abstract
The influence of 17α-methyltestosterone (MT) on growth responses, biological parameters and the expression of genes involved in the GH-IGF pathway of the hypothalamic-pituitary-liver-gonadal axis were investigated in female, male, and sex-reversed Nile tilapia to evaluate the relationship between sex and MT-induced changes in these parameters. Female fish had a lower growth rate than male and sex-reversed fish, and MT increased growth performance and duodenal villi in females. Most but not all biological parameters of sex-reversed fish were similar to those of male fish. Male fish had higher red blood cell counts and hemoglobin levels than female and sex-reversed fish, suggesting that these hematological indices reflect a higher metabolic rate in male fish. Greater blood triglyceride levels indicated the vitellogenin process in female fish. MT increased the alternative complement activity in female fish (P<0.05). Sex and MT had no significant effects on the hypothalamic mRNAs of GHRH and PACAP. Although not statistically significant, females tended to have higher GH mRNA levels than male and sex-reversed fish. Additionally, MT tended to decrease and increase GH mRNA levels in female and male fish, respectively. There were significant differences among sexes in the expression of GHR, and IGF mRNAs at the peripheral level in the liver and gonads. Females had lower hepatic GHRs and higher ovarian GHRs than male and sex-reversed fish. While the mRNA levels of IGF-1 were lower in the ovary, the levels of IGF-2 were higher compared with those in testes. A significant correlation between GHRs and IGFs was demonstrated in the liver and gonad (except for IGF-1). Multiple regression analysis showed a significant relationship between GH mRNA and both GHRs and IGFs in the liver and gonad. MT exerted androgenic and, to some extent, estrogenic effects on several physiological parameters and GH-IGF action.
Collapse
Affiliation(s)
- Nonglak Phumyu
- The Graduate Program in Aquaculture, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | | | | | | | | |
Collapse
|
29
|
Segers FHID, Taborsky B. Competition level determines compensatory growth abilities. Behav Ecol 2012. [DOI: 10.1093/beheco/ars013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Segers FHID, Taborsky B. Juvenile exposure to predator cues induces a larger egg size in fish. Proc Biol Sci 2011; 279:1241-8. [PMID: 21976689 DOI: 10.1098/rspb.2011.1290] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When females anticipate a hazardous environment for their offspring, they can increase offspring survival by producing larger young. Early environmental experience determines egg size in different animal taxa. We predicted that a higher perceived predation risk by juveniles would cause an increase in the sizes of eggs that they produce as adults. To test this, we exposed juveniles of the mouthbrooding cichlid Eretmodus cyanostictus in a split-brood experiment either to cues of a natural predator or to a control situation. After maturation, females that had been confronted with predators produced heavier eggs, whereas clutch size itself was not affected by the treatment. This effect cannot be explained by a differential female body size because the predator treatment did not influence growth trajectories. The observed increase of egg mass is likely to be adaptive, as heavier eggs gave rise to larger young and in fish, juvenile predation risk drops sharply with increasing body size. This study provides the first evidence that predator cues perceived by females early in life positively affect egg mass, suggesting that these cues allow her to predict the predation risk for her offspring.
Collapse
Affiliation(s)
- Francisca H I D Segers
- Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Hinterkappelen, Switzerland.
| | | |
Collapse
|