1
|
Deschodt PS, Cory JS. Compatibility of the fungus Beauveria bassiana and Trichoplusia ni SNPV against the cabbage looper Trichoplusia ni: crop plant matters. PEST MANAGEMENT SCIENCE 2024; 80:2851-2859. [PMID: 38339817 DOI: 10.1002/ps.7993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Microbial insecticides are an important weapon in insect pest management, but their use is still relatively limited. One approach for increasing their efficacy and use could be to combine different pathogens to increase pest mortality. However, little is known about whether increasing pathogen diversity will improve pest management. Here, we investigated the compatibility of two pathogens for the management of the cabbage looper, Trichoplusia ni, T. ni nucleopolyhedrovirus (TniSNPV) and the entomopathogenic fungus Beauveria bassiana, on two crops, tomato and broccoli. The pathogens were applied to individual plants using ultra low volume sprays, alone or in combination, either synchronously or asynchronously. Healthy third-instar T. ni larvae were introduced to the plants before application and collected by destructive sampling 24 h after the last pathogen application. RESULTS Combined applications did not result in an increase in larval mortality compared to TniSNPV alone, although mortality was generally high. B. bassiana was considerably less effective on broccoli compared to tomato. In both the combined treatments, virus-induced mortality was approximately 50% lower when applied together with the fungus, while fungus-induced mortality was not affected by the virus, even when the virus was introduced 24 h before the fungus. CONCLUSION While our results suggest that applying this combination of entomopathogens would not be beneficial for pest management, this study illustrates the need to consider the target crop as an important driver of the efficacy of both single and mixed pathogen applications in the field. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Pauline S Deschodt
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jenny S Cory
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
2
|
Dagostin F, Vanalli C, Boag B, Casagrandi R, Gatto M, Mari L, Cattadori IM. The enemy of my enemy is my friend: Immune-mediated facilitation contributes to fitness of co-infecting helminths. J Anim Ecol 2023; 92:477-491. [PMID: 36478135 DOI: 10.1111/1365-2656.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The conceptual understanding of immune-mediated interactions between parasites is rooted in the theory of community ecology. One of the limitations of this approach is that most of the theory and empirical evidence has focused on resource or immune-mediated competition between parasites and yet there is ample evidence of positive interactions that could be generated by immune-mediated facilitation. We developed an immuno-epidemiological model and applied it to long-term data of two gastrointestinal helminths in two rabbit populations to investigate, through model testing, how immune-mediated mechanisms of parasite regulation could explain the higher intensities of both helminths in rabbits with dual than single infections. The model framework was selected and calibrated on rabbit population A and then validated on the nearby rabbit population B to confirm the consistency of the findings and the generality of the mechanisms. Simulations suggested that the higher intensities in rabbits with dual infections could be explained by a weakened or low species-specific IgA response and an asymmetric IgA cross-reaction. Simulations also indicated that rabbits with dual infections shed more free-living stages that survived for longer in the environment, implying greater transmission than stages from hosts with single infections. Temperature and humidity selectively affected the free-living stages of the two helminths. These patterns were comparable in the two rabbit populations and support the hypothesis that immune-mediated facilitation can contribute to greater parasite fitness and local persistence.
Collapse
Affiliation(s)
- Francesca Dagostin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Chiara Vanalli
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brian Boag
- The James Hutton Institute, Invergowrie, UK
| | - Renato Casagrandi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Marino Gatto
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Lorenzo Mari
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Isabella M Cattadori
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
3
|
Empirical Support for the Pattern of Competitive Exclusion between Insect Parasitic Fungi. J Fungi (Basel) 2021; 7:jof7050385. [PMID: 34069271 PMCID: PMC8157078 DOI: 10.3390/jof7050385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Fungal entomopathogens are largely facultative parasites and play an important role in controlling the density of insect populations in nature. A few species of these fungi have been used for biocontrol of insect pests. The pattern of the entomopathogen competition for insect individuals is still elusive. Here, we report the empirical competition for hosts or niches between the inter- and intra-species of the entomopathogens Metarhizium robertsii and Beauveria bassiana. It was found that the synergistic effect of coinfection on virulence increase was not evident, and the insects were largely killed and mycosed by M. robertsii independent of its initial co-inoculation dosage and infection order. For example, >90% dead insects were mycosed by M. robertsii even after immersion in a spore suspension with a mixture ratio of 9:1 for B. bassiana versus M. robertsii. The results thus support the pattern of competitive exclusion between insect pathogenic fungi that occurred from outside to inside the insect hosts. Even being inferior to compete for insects, B. bassiana could outcompete M. robertsii during co-culturing in liquid medium. It was also found that the one-sided mycosis of insects occurred during coinfection with different genotypic strains of either fungi. However, parasexual recombination was evident to take place between the compatible strains after coinfection. The data of this study can help explain the phenomena of the exclusive mycosis of insect individuals, but co-occurrence of entomopathogens in the fields, and suggest that the synergistic effect is questionable regarding the mixed use of fungal parasites for insect pest control.
Collapse
|
4
|
Managed bumble bees acquire parasites from their foraging environment: A case study on parasite spillback. J Invertebr Pathol 2021; 182:107583. [PMID: 33781766 DOI: 10.1016/j.jip.2021.107583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022]
Abstract
The use of commercially reared bumble bees in agricultural environments has been recognized as a potential threat to wild pollinators due to competition, genetic contamination, and most notably, disease transmission. Higher parasite prevalence near greenhouses where managed bumble bees are used has been linked to parasite spillover from managed to wild bees. However, pathogen transmission is not unidirectional, and can also flow from wild to managed bees. These newly infected managed bees can subsequently re-infect (other) wild bees, in a process known as spillback, which is an alternative explanation for the increased parasite prevalence near greenhouses. Reducing parasite prevalence in managed bees is key to controlling host-parasite dynamics in cases of spillover; in spillback, producing managed bees that are resilient to infection is important. Here we establish that the managed bumble bee Bombus terrestris can acquire parasites from their foraging environment, which is the major infection route for Apicystis spp. and Crithidia spp., but not for Nosema spp.. Managed B. terrestris were found to have a higher prevalence of Crithdia and a higher load of Apicystis than local wild conspecifics, showing that for these parasites, spillback is a possible risk scenario.
Collapse
|
5
|
Świsłocka M, Borkowska A, Matosiuk M, Czajkowska M, Duda N, Kowalczyk R, Ratkiewicz M. Sex-biased polyparasitism in moose ( Alces alces) based on molecular analysis of faecal samples. Int J Parasitol Parasites Wildl 2020; 13:171-177. [PMID: 33134076 PMCID: PMC7591323 DOI: 10.1016/j.ijppaw.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/28/2022]
Abstract
Simultaneous infection with multiple parasite species in an individual host is often observed in wild populations. The understanding of parasite species distribution across populations of wild animals is of basic and applied importance, because parasites can have pronounced effects on the dynamics of host population. Here, we quantified prevalence and endoparasite species richness in moose and explored sex-biased polyparasitism using diagnostic PCR method coupled with DNA sequencing of moose faecal samples from the Biebrza River valley, North-Eastern Poland. This is the largest moose population in Central Europe that has not been harvested for almost 20 years. We also evaluated the appropriate quantity of faeces for detecting DNA of parasite species. Faecal samples were screened for molecular markers of 10 different species of endoparasites. Endoparasite prevalence was high in the studied population. Almost all of the samples (98%) tested positive for at least one parasite species, and we found polyparasitism in the majority of the tested individuals. The number of different parasite species found in a single individual ranged from 0 to 9. The parasite species richness was significantly higher in male than in female individuals. The most prevalent were liver fluke Parafasciolopsis fasciolaemorpha and gastrointestinal nematodes Ostertargia sp. Of the ten endoparasite species detected, only the prevalence of the tapeworm Moniezia benedeni was significantly higher in males than in females. Additionally, we identified co-occurrence associations of parasite species, which tended to be random, but we noted some evidence of both positive and negative associations. Our findings promote applications of molecular methods for parasite species identification from non-invasively collected faecal samples in management and scientific study of moose population, which should include investigation of parasite status, and in health monitoring programs for other wild cervids.
Collapse
Affiliation(s)
- Magdalena Świsłocka
- Department of Zoology and Genetics, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J st, 15-245, Białystok, Poland
| | - Anetta Borkowska
- Department of Zoology and Genetics, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J st, 15-245, Białystok, Poland
| | - Maciej Matosiuk
- Department of Zoology and Genetics, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J st, 15-245, Białystok, Poland
| | - Magdalena Czajkowska
- Department of Zoology and Genetics, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J st, 15-245, Białystok, Poland
| | - Norbert Duda
- Zespół Szkół Ogólnokształcących No 2 W Białymstoku, Narewska 11, 15-840, Białystok, Poland
| | - Rafał Kowalczyk
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| | - Mirosław Ratkiewicz
- Department of Zoology and Genetics, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J st, 15-245, Białystok, Poland
| |
Collapse
|
6
|
Sepahvand V, Brown BL, Gholamifard A. Host specificity and microhabitat preference of symbiotic copepods (Cyclopoida: Clausiididae) associated with ghost shrimps (Decapoda: Callichiridae, Callianideidae). Ecol Evol 2020; 10:10709-10718. [PMID: 33072291 PMCID: PMC7548166 DOI: 10.1002/ece3.6726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022] Open
Abstract
We examined the host specificity of two ectosymbiotic Clausidium Kossman, 1874 copepods (Cyclopoida: Clausiididae) on two co‐occurrence species of host ghost shrimps. Our results revealed that both species of symbiotic copepod demonstrated extremely high host specificity. Moreover, within a single host shrimp species, each symbiont species displayed strong spatial patterns in microhabitat selection on their hosts’ bodies. Clausidium persiaensis Sepahvand & Kihara, 2017, was only found on the host Callianidea typa Milne Edwards, 1837 and almost exclusively within the host shrimp gill chamber, while C. iranensis Sepahvand, Kihara, & Boxshall, 2019 was only found on the host Neocallichirus jousseaumei (Nobili, 1904) and showed extremely strong preferences for the chelae and anterior walking legs. We also found that while the number of symbionts tends to increase with the host size, the two host species differed in the degree of symbiont infestation, with large C. typa hosting approximately 7× as many symbionts as the similarly sized N. jousseaumeia. The mechanisms resulting in the observed differences in infestation levels and microhabitat preferences of clausidium copepods among their hosts, including differences in physiology, burrowing pattern, and host grooming behavior should be further investigated.
Collapse
Affiliation(s)
- Vahid Sepahvand
- Department of Marine Biological Sciences Iranian National Institute for Oceanography and Atmospheric Science (INIOAS) Tehran Iran
| | - Bryan L. Brown
- Department of Biological Sciences Virginia Tech Blacksburg VA USA
| | - Ali Gholamifard
- Department of Biology Faculty of Sciences Lorestan University Khorramabad Iran
| |
Collapse
|
7
|
Parasite species co-occurrence patterns on Peromyscus: Joint species distribution modelling. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:199-206. [PMID: 32637312 PMCID: PMC7327296 DOI: 10.1016/j.ijppaw.2020.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022]
Abstract
Hosts are often infested by multiple parasite species, but it is often unclear whether patterns of parasite co-occurrence are driven by parasite habitat requirements or parasite species interactions. Using data on infestation patterns of ectoparasitic arthropods (fleas, trombiculid mites, cuterebrid botflies) from deer mice (Peromyscus maniculatus), we analyzed species associations using joint species distribution modelling. We also experimentally removed a flea (Orchopeas leucopus) from a subset of deer mice to examine the effect on other common ectoparasite species. We found that the mite (Neotrombicula microti) and botfly (Cuterebra sp.) had a negative relationship that is likely a true biotic species interaction. The flea had a negative association with the mite and a positive association with the botfly species, both of which appeared to be influenced by host traits or parasite life-history traits. Furthermore, experimental removal of the flea did not have a significant effect on ectoparasite prevalence of another species. Overall, these findings suggest that complex parasite species associations can be present among multiple parasite taxa, and that aggregation is not always the rule for ectoparasite communities of small mammals. A negative species interaction was identified between a mite and botfly species. Additional parasite associations appear to be influenced by host traits or parasite life-history traits. Removal of the flea species did not have an effect on prevalence of another species.
Collapse
|
8
|
Karshima SN, Bata SI, Bot C, Kujul NB, Paman ND, Obalisa A, Karshima MN, Dunka HI, Oziegbe SD. Prevalence, seasonal and geographical distribution of parasitic diseases in dogs in Plateau State Nigeria: a 30-year retrospective study (1986-2015). J Parasit Dis 2020; 44:511-520. [PMID: 32801502 DOI: 10.1007/s12639-020-01219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022] Open
Abstract
Parasitic diseases of dogs are now major economic and public health issues in Nigeria due to indiscriminate reproduction of dogs, lack of appropriate policies on pet ownership and diseases control as well as inadequate veterinary care. In order to understand the prevalence, seasonal variation and distribution of parasitic diseases of dogs in this region of Nigeria, the present study conducted a 30-year retrospective analysis in the referral veterinary centre, Vom, and analysed data using the Chi square test and the factor analysis. Of the 26,844 dogs handled between January 1986 and December 2015, 17,663 (65.8%) had different parasitic diseases. Yearly distribution of parasitic diseases varied significantly (p < 0.0001) and ranged between 52.0 and 85.4%. Age, seasonal and disease specific prevalence rates ranged between 2.8 and 80.5%. Prevalence rates in females 78.2% (95% CI 77.6-78.9) and indigenous breed 70.0% (95% CI 69.2-70.7) were significantly higher (p < 0.0001) from those of the males 47.2% (95% CI 46.2-48.1) and exotic breeds of dogs 60.7% (95% CI 59.8-61.6), respectively. Ancylostomosis was the most prevalent (15.9%) disease while Barkin Ladi recorded the highest regional prevalence. It is pertinent to enact appropriate disease control policies and observe control programmes including vector control and improved hygiene to curtail the economic and public health threats associated with these diseases.
Collapse
Affiliation(s)
- Solomon N Karshima
- Department of Veterinary Public Health and Preventive Medicine, University of Jos, PMB 2084, Jos, Nigeria
| | - Shalangwa I Bata
- Department of Animal Health, Federal College of Animal Health and Production Technology, PMB 001, Vom, Nigeria
| | - Christopher Bot
- Department of Animal Health, Federal College of Animal Health and Production Technology, PMB 001, Vom, Nigeria
| | - Nanbol B Kujul
- Department of Animal Health, Federal College of Animal Health and Production Technology, PMB 001, Vom, Nigeria
| | - Nehemiah D Paman
- Department of Animal Health, Federal College of Animal Health and Production Technology, PMB 001, Vom, Nigeria
| | - Adebowale Obalisa
- Department of Animal Health, Federal College of Animal Health and Production Technology, PMB 001, Vom, Nigeria
| | - Magdalene N Karshima
- Department of Parasitology and Entomolgy, Modibbo Adama University of Technology, Yola, Adamawa State Nigeria
| | - Hassana I Dunka
- Department of Veterinary Public Health and Preventive Medicine, University of Jos, PMB 2084, Jos, Nigeria
| | - Stanley D Oziegbe
- Department of Theriogenology, University of Jos, PMB 2084, Jos, Nigeria
| |
Collapse
|
9
|
Defolie C, Merkling T, Fichtel C. Patterns and variation in the mammal parasite-glucocorticoid relationship. Biol Rev Camb Philos Soc 2020; 95:74-93. [PMID: 31608587 DOI: 10.1111/brv.12555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023]
Abstract
Parasites are ubiquitous and can strongly affect their hosts through mechanisms such as behavioural changes, increased energetic costs and/or immunomodulation. When parasites are detrimental to their hosts, they should act as physiological stressors and elicit the release of glucocorticoids. Alternatively, previously elevated glucocorticoid levels could facilitate parasite infection due to neuroimmunomodulation. However, results are equivocal, with studies showing either positive, negative or no relationship between parasite infection and glucocorticoid levels. Since factors such as parasite type, infection severity or host age and sex can influence the parasite-glucocorticoid relationship, we review the main mechanisms driving this relationship. We then perform a phylogenetic meta-analysis of 110 records from 65 studies in mammalian hosts from experimental and observational studies to quantify the general direction of this relationship and to identify ecological and methodological drivers of the observed variability. Our review produced equivocal results concerning the direction of the relationship, but there was stronger support for a positive relationship, although causality remained unclear. Mechanisms such as host manipulation for parasite survival, host response to infection, cumulative effects of multiple stressors, and neuro-immunomodulatory effects of glucocorticoids could explain the positive relationship. Our meta-analysis results revealed an overall positive relationship between glucocorticoids and parasitism among both experimental and observational studies. Because all experimental studies included were parasite manipulations, we conclude that parasites caused in general an increase in glucocorticoid levels. To obtain a better understanding of the directionality of this link, experimental manipulation of glucocorticoid levels is now required to assess the causal effects of high glucocorticoid levels on parasite infection. Neither parasite type, the method used to assess parasite infection nor phylogeny influenced the relationship, and there was no evidence for publication bias. Future studies should attempt to be as comprehensive as possible, including moderators potentially influencing the parasite-glucocorticoid relationship. We particularly emphasise the importance of testing hosts of a broad age range, concomitantly measuring sex hormone levels or at least reproductive status, and for observational studies, also considering food availability, host body condition and social stressors to obtain a better understanding of the parasite-glucocorticoid relationship.
Collapse
Affiliation(s)
- Charlotte Defolie
- Sociobiology/Anthropology Department, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany.,Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.,Leibniz ScienceCampus "Primate Cognition", German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Thomas Merkling
- Department of Natural Resource Sciences, McGill University, Macdonald-Stewart Building, 21111 Lakeshore Road, Ste. Anne de Bellevue, Québec, H9X 3V9, Canada
| | - Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.,Leibniz ScienceCampus "Primate Cognition", German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| |
Collapse
|
10
|
Milutinović B, Stock M, Grasse AV, Naderlinger E, Hilbe C, Cremer S. Social immunity modulates competition between coinfecting pathogens. Ecol Lett 2020; 23:565-574. [PMID: 31950595 DOI: 10.1111/ele.13458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 12/14/2019] [Indexed: 12/18/2022]
Abstract
Coinfections with multiple pathogens can result in complex within-host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants - their social immunity - influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different-species coinfections. Here, it decreased overall pathogen sporulation success while increasing co-sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast-germinating, thus less grooming-sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.
Collapse
Affiliation(s)
- Barbara Milutinović
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Miriam Stock
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Anna V Grasse
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Elisabeth Naderlinger
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Christian Hilbe
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Sylvia Cremer
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| |
Collapse
|
11
|
Park AW, Ezenwa VO. Characterising interactions between co-infecting parasites using age-intensity profiles. Int J Parasitol 2019; 50:23-26. [PMID: 31846621 DOI: 10.1016/j.ijpara.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 11/26/2022]
Abstract
Interactions between co-infecting parasite species can impact transmission. Whether co-infection is beneficial or detrimental to a target parasite, and whether the mechanism involves changes in host susceptibility or parasite clearance, can be difficult to assess. We demonstrate the potential for host age-parasite intensity curves to allow assessment of these factors. A model is developed to generate predictions and test these predictions using helminth parasites of white-tailed deer (Odocoileus virginianus). We identify three beneficial interactions involving five helminth species, including susceptibility and clearance-based mechanisms. Our results suggest that analysis of age-intensity data represents a new tool for assessing the nature and strength of co-infecting parasite interactions.
Collapse
Affiliation(s)
- Andrew W Park
- Odum School of Ecology, Dept. of Infectious Diseases, College of Veterinary Medicine, and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, United States.
| | - Vanessa O Ezenwa
- Odum School of Ecology, Dept. of Infectious Diseases, College of Veterinary Medicine, and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
12
|
Dallas TA, Laine AL, Ovaskainen O. Detecting parasite associations within multi-species host and parasite communities. Proc Biol Sci 2019; 286:20191109. [PMID: 31575371 PMCID: PMC6790755 DOI: 10.1098/rspb.2019.1109] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/11/2019] [Indexed: 01/23/2023] Open
Abstract
Understanding the role of biotic interactions in shaping natural communities is a long-standing challenge in ecology. It is particularly pertinent to parasite communities sharing the same host communities and individuals, as the interactions among parasites-both competition and facilitation-may have far-reaching implications for parasite transmission and evolution. Aggregated parasite burdens may suggest that infected host individuals are either more prone to infection, or that infection by a parasite species facilitates another, leading to a positive parasite-parasite interaction. However, parasite species may also compete for host resources, leading to the prediction that parasite-parasite associations would be generally negative, especially when parasite species infect the same host tissue, competing for both resources and space. We examine the presence and strength of parasite associations using hierarchical joint species distribution models fitted to data on resident parasite communities sampled on over 1300 small mammal individuals across 22 species and their resident parasite communities. On average, we detected more positive associations between infecting parasite species than negative, with the most negative associations occurring when two parasite species infected the same host tissue, suggesting that parasite species associations may be quantifiable from observational data. Overall, our findings suggest that parasite community prediction at the level of the individual host is possible, and that parasite species associations may be detectable in complex multi-species communities, generating many hypotheses concerning the effect of host community changes on parasite community composition, parasite competition within infected hosts, and the drivers of parasite community assembly and structure.
Collapse
Affiliation(s)
- Tad A. Dallas
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65, Helsinki 00014, Finland
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65, Helsinki 00014, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich 8057, Switzerland
| | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65, Helsinki 00014, Finland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
13
|
Scholefield JA, Shikano I, Lowenberger CA, Cory JS. The impact of baculovirus challenge on immunity: The effect of dose and time after infection. J Invertebr Pathol 2019; 167:107232. [DOI: 10.1016/j.jip.2019.107232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 11/16/2022]
|
14
|
Abstract
In this study, we sequenced and analyzed the genomes of 40 strains, in addition to the already-reported two type strains, of two Crithidia species infecting bumblebees in Alaska and Central Europe and demonstrated that different strains of Crithidia bombi and C. expoeki vary considerably in terms of single nucleotide polymorphisms and gene copy number. Based on the genomic structure, phylogenetic analyses, and the pattern of copy number variation, we confirmed the status of C. expoeki as a separate species. The Alaskan populations appear to be clearly separated from those of Central Europe. This pattern fits a scenario of rapid host-parasite coevolution, where the selective advantage of a given parasite strain is only temporary. This study provides helpful insights into possible scenarios of selection and diversification of trypanosomatid parasites.IMPORTANCE A group of trypanosomatid flagellates includes several well-studied medically and economically important parasites of vertebrates and plants. Nevertheless, the vast majority of trypanosomatids infect only insects (mostly flies and true bugs) and, because of that, has attracted little research attention in the past. Of several hundred trypanosomatid species, only four can infect bees (honeybees and bumblebees). Because of such scarcity, these parasites are severely understudied. We analyzed whole-genome information for a total of 42 representatives of bee-infecting trypanosomatids collected in Central Europe and Alaska from a population genetics point of view. Our data shed light on the evolution, selection, and diversification in this important group of trypanosomatid parasites.
Collapse
|
15
|
Lamattina D, Berrozpe PE, Casas N, Moya SL, Giuliani MG, Costa SA, Arrabal JP, Martínez MF, Rivero MR, Salas M, Humeres CA, Liotta DJ, Meichtry MB, Salomón OD. Twice upon a time: The progression of canine visceral leishmaniasis in an Argentinean city. PLoS One 2019; 14:e0219395. [PMID: 31276573 PMCID: PMC6611631 DOI: 10.1371/journal.pone.0219395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/21/2019] [Indexed: 11/18/2022] Open
Abstract
Canine Visceral Leishmaniasis (CVL) prevalence, spatial distribution and associated factors were assessed in four locations in Iguazú department in 2014 and in Puerto Iguazú city again in 2018. The city areas were divided into a grid of 400x400m cells. All cells were sampled in 2014 and a random subsampling was developed in 2018. In each cell, five dogs clustered in a 'critical scenario' (prone to have vectors) were sampled. A rapid immunochromatographic dipstick was used to detect antibodies against Leishmania infantum, confirming by lymph node smears observation and PCR. For Puerto Iguazú, Generalized Linear Models (GLMs) were constructed considering environmental, dog and clinical variables. Pearson's Chi square and Fisher's exact tests were employed to evaluate the association between CVL, dog clinical signs and infestation with other parasites. Cartographic outputs were made and Moran's I indices were calculated as spatial autocorrelation indicators. CVL prevalence rates were 26.18% in 2014 and 17.50% in 2018. No associations were established in environmental models, but dog age and repellent use were significant when running 2014 dog models. Clinical models showed significant associations between seropositive dogs and ophthalmological, dermal signs and onychogryphosis in 2014. In 2018, only adenomegaly was associated. The results of global Moran´s I were not significant but regarding local analysis, six sites in 2014 and one in 2018 presented autocorrelation with neighboring sites. The decrease in CVL prevalence may be associated to transmission stabilization, which could explain the lack of associations with dog-related variables. Further, spatial distribution of CVL is a poor evidence for design of transmission control measures but could be important in case of intensive parasite circulation or when the first autochthonous cases appear. For control success, sensitivity of diagnostic methods, political will and adequate material resources remain critical. Modeling of multiple variables will be required to identify factors that drive disease stabilization/destabilization.
Collapse
Affiliation(s)
- Daniela Lamattina
- Instituto Nacional de Medicina Tropical (INMeT), Ministerio de Salud y Desarrollo Social de la Nación, Puerto Iguazú, Misiones, Argentina
| | - Pablo Eduardo Berrozpe
- Instituto Nacional de Medicina Tropical (INMeT), Ministerio de Salud y Desarrollo Social de la Nación, Puerto Iguazú, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Natalia Casas
- Dirección Nacional de Epidemiología y Análisis de la Situación de Salud, Ministerio de Salud y Desarrollo Social de la Nación, Buenos Aires, Argentina
| | - Sofía Lorian Moya
- Instituto Nacional de Medicina Tropical (INMeT), Ministerio de Salud y Desarrollo Social de la Nación, Puerto Iguazú, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Magalí Gabriela Giuliani
- Instituto Nacional de Medicina Tropical (INMeT), Ministerio de Salud y Desarrollo Social de la Nación, Puerto Iguazú, Misiones, Argentina
| | - Sebastián Andrés Costa
- Instituto de Biología Subtropical, Facultad de Ciencias Forestales, Universidad Nacional de Misiones, Puerto Iguazú, Misiones, Argentina
| | - Juan Pablo Arrabal
- Instituto Nacional de Medicina Tropical (INMeT), Ministerio de Salud y Desarrollo Social de la Nación, Puerto Iguazú, Misiones, Argentina
| | - Mariela Florencia Martínez
- Instituto Nacional de Medicina Tropical (INMeT), Ministerio de Salud y Desarrollo Social de la Nación, Puerto Iguazú, Misiones, Argentina
| | - María Romina Rivero
- Instituto Nacional de Medicina Tropical (INMeT), Ministerio de Salud y Desarrollo Social de la Nación, Puerto Iguazú, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Martín Salas
- Instituto Nacional de Medicina Tropical (INMeT), Ministerio de Salud y Desarrollo Social de la Nación, Puerto Iguazú, Misiones, Argentina
| | - Cristian Alejandro Humeres
- Instituto Nacional de Medicina Tropical (INMeT), Ministerio de Salud y Desarrollo Social de la Nación, Puerto Iguazú, Misiones, Argentina
| | - Domingo Javier Liotta
- Instituto Nacional de Medicina Tropical (INMeT), Ministerio de Salud y Desarrollo Social de la Nación, Puerto Iguazú, Misiones, Argentina
| | - María Belén Meichtry
- Instituto Nacional de Medicina Tropical (INMeT), Ministerio de Salud y Desarrollo Social de la Nación, Puerto Iguazú, Misiones, Argentina
| | - Oscar Daniel Salomón
- Instituto Nacional de Medicina Tropical (INMeT), Ministerio de Salud y Desarrollo Social de la Nación, Puerto Iguazú, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
16
|
Shen SS, Qu XY, Zhang WZ, Li J, Lv ZY. Infection against infection: parasite antagonism against parasites, viruses and bacteria. Infect Dis Poverty 2019; 8:49. [PMID: 31200765 PMCID: PMC6570864 DOI: 10.1186/s40249-019-0560-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Background Infectious diseases encompass a large spectrum of diseases that threaten human health, and coinfection is of particular importance because pathogen species can interact within the host. Currently, the antagonistic relationship between different pathogens during concurrent coinfections is defined as one in which one pathogen either manages to inhibit the invasion, development and reproduction of the other pathogen or biologically modulates the vector density. In this review, we provide an overview of the phenomenon and mechanisms of antagonism of coinfecting pathogens involving parasites. Main body This review summarizes the antagonistic interaction between parasites and parasites, parasites and viruses, and parasites and bacteria. At present, relatively clear mechanisms explaining polyparasitism include apparent competition, exploitation competition, interference competition, biological control of intermediate hosts or vectors and suppressive effect on transmission. In particular, immunomodulation, including the suppression of dendritic cell (DC) responses, activation of basophils and mononuclear macrophages and adjuvant effects of the complement system, is described in detail. Conclusions In this review, we summarize antagonistic concurrent infections involving parasites and provide a functional framework for in-depth studies of the underlying mechanisms of coinfection with different microorganisms, which will hasten the development of promising antimicrobial alternatives, such as novel antibacterial vaccines or biological methods of controlling infectious diseases, thus relieving the overwhelming burden of ever-increasing antimicrobial resistance. Electronic supplementary material The online version of this article (10.1186/s40249-019-0560-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shi-Shi Shen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xiao-Yan Qu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Wei-Zhe Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jian Li
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, ZhuHai, Guangdong, China
| | - Zhi-Yue Lv
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, ZhuHai, Guangdong, China. .,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China.
| |
Collapse
|
17
|
Ghoshal S, Gajendra P, Datta Kanjilal S, Mitra M, Sengupta S. Diversity analysis of MSP1 identifies conserved epitope organization in block 2 amidst high sequence variability in Indian Plasmodium falciparum isolates. Malar J 2018; 17:447. [PMID: 30509263 PMCID: PMC6276175 DOI: 10.1186/s12936-018-2592-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/23/2018] [Indexed: 02/02/2023] Open
Abstract
Background Despite its immunogenicity, the polymorphic nature of merozoite surface protein 1, an important vaccine candidate for Plasmodium falciparum malaria, remains a concern. This study analyses the impact of genetic variability and parasite population structure on epitope organization of different MSP1 segments. Methods Altogether 98 blood samples collected from P. falciparum infected mild and severe malaria patients of Chhattisgarh and West Bengal were used to sequence regions encoding block 2 and MSP1-19 of msp1. Sequences were analysed using MEGA7, DnaSPv5, Arlequin3.5 and BepiPred. Results All three major MSP1 block 2 allele families namely K1, MAD20 and RO33 were detected in the samples and they together resulted in 41 indel variants. Chhattisgarh samples displayed an average MOI of 2.07 ± 1.59 which was higher in mild malaria and in age group < 18 years. Ultra-structure of block 2 alleles revealed that mutation and repeat expansion were two major mechanisms responsible for allelic variability of K1 and MAD20. Regions flanking block 2 were highly variable in Chhattisgarh with average mismatch differences (k) ranging from 1.198 to 5.156 for three families. In contrast, region encompassing MSP1-19 exhibited limited heterogeneity (kChhattisgarh = 1.45, kWest Bengal = 1.363). Of the 50 possible B cell linear epitopes predicted from block 2 variants, 94.9% (131 of 138) of the parasites could be represented by three conserved antigens. Conclusions Present data indicates that natural selection and transmission intensity jointly play a role in controlling allelic diversity of MSP1 in Indian parasite isolates. Despite remarkable genetic variability, a limited number of predominant and conserved epitopes are present in Indian parasite isolates reinstating the importance of MSP1 as a promising malaria vaccine candidate. Electronic supplementary material The online version of this article (10.1186/s12936-018-2592-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sharmistha Ghoshal
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700 019, India
| | - Pragya Gajendra
- School of Studies in Anthropology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Sumana Datta Kanjilal
- Department of Pediatric Medicine, Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - Mitashree Mitra
- School of Studies in Anthropology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700 019, India.
| |
Collapse
|
18
|
Parmentier T, De Laender F, Wenseleers T, Bonte D. Contrasting indirect effects of an ant host on prey-predator interactions of symbiotic arthropods. Oecologia 2018; 188:1145-1153. [PMID: 30357527 DOI: 10.1007/s00442-018-4280-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/15/2018] [Indexed: 11/28/2022]
Abstract
Indirect interactions occur when a species affects another species by altering the density (density-mediated interactions) or influencing traits (trait-mediated interactions) of a third species. We studied variation in these two types of indirect interactions in a network of red wood ants and symbiotic arthropods living in their nests. We tested whether the ant workers indirectly affected survival of a symbiotic prey species (Cyphoderus albinus) by changing the density and/or traits of three symbiotic predators, i.e., Mastigusa arietina, Thyreosthenius biovatus and Stenus aterrimus, provoking, respectively, low, medium and high ant aggression. An ant nest is highly heterogeneous in ant worker density and the number of aggressive interactions towards symbionts increases with worker density. We, therefore, hypothesized that varying ant density could indirectly impact prey-predator interactions of the associated symbiont community. Ants caused trait-mediated indirect effects in all three prey-predator interactions, by affecting the prey capture rate of the symbiotic predators at different worker densities. Prey capture rate of the highly and moderately aggressed spider predators M. arietina and T. biovatus decreased with ant density, whereas the prey capture rate of the weakly aggressed beetle predator S. aterrimus increased. Ants also induced density-mediated indirect interactions as high worker densities decreased the survival rate of the two predatory spider species. These results demonstrate for the first time that a host can indirectly mediate the trophic interactions between associated symbionts. In addition, we show that a single host can induce opposing indirect effects depending on its degree of aggression towards the symbionts.
Collapse
Affiliation(s)
- T Parmentier
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium. .,Laboratory of Socioecology and Socioevolution, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium. .,Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| | - F De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - T Wenseleers
- Laboratory of Socioecology and Socioevolution, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium
| | - D Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| |
Collapse
|
19
|
Duncan AB, Dusi E, Schrallhammer M, Berendonk T, Kaltz O. Population-level dynamics in experimental mixed infections: evidence for competitive exclusion among bacterial parasites ofParamecium caudatum. OIKOS 2018. [DOI: 10.1111/oik.05280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alison B. Duncan
- Inst. of Evolutionary Sciences; Univ. of Montpellier; Montpellier France
| | - Eike Dusi
- Inst. of Hydrobiology; Technische Univ. Dresden; Germany
| | - Martina Schrallhammer
- Inst. of Hydrobiology; Technische Univ. Dresden; Germany
- Microbiology; Inst. of Biology II, Albert-Ludwigs Univ. Freiburg; Freiburg Germany
| | | | - Oliver Kaltz
- Inst. of Evolutionary Sciences; Univ. of Montpellier; Montpellier France
| |
Collapse
|
20
|
Guler Y, Short S, Green Etxabe A, Kille P, Ford AT. Population screening and transmission experiments indicate paramyxid-microsporidian co-infection in Echinogammarus marinus represents a non-hyperparasitic relationship between specific parasite strains. Sci Rep 2018; 8:4691. [PMID: 29549322 PMCID: PMC5856734 DOI: 10.1038/s41598-018-22276-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/20/2018] [Indexed: 11/22/2022] Open
Abstract
Phylogenetically distant parasites often infect the same host. Indeed, co-infections can occur at levels greater than expected by chance and are sometimes hyperparasitic. The amphipod Echinogammarus marinus presents high levels of co-infection by two intracellular and vertically transmitted parasites, a paramyxid (Paramarteilia sp. Em) and a microsporidian strain (Dictyocoela duebenum Em). This co-infection may be hyperparasitic and result from an exploitative ‘hitchhiking’ or a symbiotic relationship between the parasites. However, the best-studied amphipod species are often collected from contaminated environments and may be immune-compromised. Immune-challenged animals frequently present co-infections and contaminant-exposed amphipods present significantly higher levels of microsporidian infection. This suggests the co-infections in E. marinus may result from contaminant-associated compromised immunity. Inconsistent with hyperparasitism, we find that artificial infections transmit Paramarteilia without microsporidian. Our population surveys reveal the co-infection relationship is geographically widespread but find only chance co-infection between the Paramarteilia and another species of microsporidian, Dictyocoela berillonum. Furthermore, we identify a haplotype of the Paramarteilia that presents no co-infection, even in populations with otherwise high co-infection levels. Overall, our results do not support the compromised-immunity hypothesis but rather that the co-infection of E. marinus, although non-hyperparasitic, results from a relationship between specific Paramarteilia and Dictyocoela duebenum strains.
Collapse
Affiliation(s)
- Yasmin Guler
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire, PO4 9LY, UK
| | - Stephen Short
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire, PO4 9LY, UK.,Cardiff School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Amaia Green Etxabe
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Peter Kille
- Cardiff School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire, PO4 9LY, UK.
| |
Collapse
|
21
|
Konrad M, Pull CD, Metzler S, Seif K, Naderlinger E, Grasse AV, Cremer S. Ants avoid superinfections by performing risk-adjusted sanitary care. Proc Natl Acad Sci U S A 2018; 115:2782-2787. [PMID: 29463746 PMCID: PMC5856517 DOI: 10.1073/pnas.1713501115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Being cared for when sick is a benefit of sociality that can reduce disease and improve survival of group members. However, individuals providing care risk contracting infectious diseases themselves. If they contract a low pathogen dose, they may develop low-level infections that do not cause disease but still affect host immunity by either decreasing or increasing the host's vulnerability to subsequent infections. Caring for contagious individuals can thus significantly alter the future disease susceptibility of caregivers. Using ants and their fungal pathogens as a model system, we tested if the altered disease susceptibility of experienced caregivers, in turn, affects their expression of sanitary care behavior. We found that low-level infections contracted during sanitary care had protective or neutral effects on secondary exposure to the same (homologous) pathogen but consistently caused high mortality on superinfection with a different (heterologous) pathogen. In response to this risk, the ants selectively adjusted the expression of their sanitary care. Specifically, the ants performed less grooming and more antimicrobial disinfection when caring for nestmates contaminated with heterologous pathogens compared with homologous ones. By modulating the components of sanitary care in this way the ants acquired less infectious particles of the heterologous pathogens, resulting in reduced superinfection. The performance of risk-adjusted sanitary care reveals the remarkable capacity of ants to react to changes in their disease susceptibility, according to their own infection history and to flexibly adjust collective care to individual risk.
Collapse
Affiliation(s)
- Matthias Konrad
- Institute of Science and Technology Austria (IST Austria), A-3400 Klosterneuburg, Austria
| | - Christopher D Pull
- Institute of Science and Technology Austria (IST Austria), A-3400 Klosterneuburg, Austria
| | - Sina Metzler
- Institute of Science and Technology Austria (IST Austria), A-3400 Klosterneuburg, Austria
| | - Katharina Seif
- Institute of Science and Technology Austria (IST Austria), A-3400 Klosterneuburg, Austria
| | - Elisabeth Naderlinger
- Institute of Science and Technology Austria (IST Austria), A-3400 Klosterneuburg, Austria
| | - Anna V Grasse
- Institute of Science and Technology Austria (IST Austria), A-3400 Klosterneuburg, Austria
| | - Sylvia Cremer
- Institute of Science and Technology Austria (IST Austria), A-3400 Klosterneuburg, Austria
| |
Collapse
|
22
|
Trible W, Olivos-Cisneros L, McKenzie SK, Saragosti J, Chang NC, Matthews BJ, Oxley PR, Kronauer DJC. orco Mutagenesis Causes Loss of Antennal Lobe Glomeruli and Impaired Social Behavior in Ants. Cell 2017; 170:727-735.e10. [PMID: 28802042 DOI: 10.1016/j.cell.2017.07.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/24/2017] [Accepted: 06/29/2017] [Indexed: 11/25/2022]
Abstract
Life inside ant colonies is orchestrated with diverse pheromones, but it is not clear how ants perceive these social signals. It has been proposed that pheromone perception in ants evolved via expansions in the numbers of odorant receptors (ORs) and antennal lobe glomeruli. Here, we generate the first mutant lines in the clonal raider ant, Ooceraea biroi, by disrupting orco, a gene required for the function of all ORs. We find that orco mutants exhibit severe deficiencies in social behavior and fitness, suggesting they are unable to perceive pheromones. Surprisingly, unlike in Drosophila melanogaster, orco mutant ants also lack most of the ∼500 antennal lobe glomeruli found in wild-type ants. These results illustrate that ORs are essential for ant social organization and raise the possibility that, similar to mammals, receptor function is required for the development and/or maintenance of the highly complex olfactory processing areas in the ant brain. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Waring Trible
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA.
| | - Leonora Olivos-Cisneros
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Sean K McKenzie
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan Saragosti
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Ni-Chen Chang
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Benjamin J Matthews
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 23930, USA
| | - Peter R Oxley
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
23
|
Erkenswick GA, Watsa M, Gozalo AS, Dmytryk N, Parker PG. Temporal and demographic blood parasite dynamics in two free-ranging neotropical primates. Int J Parasitol Parasites Wildl 2017; 6:59-68. [PMID: 28393014 PMCID: PMC5377436 DOI: 10.1016/j.ijppaw.2017.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 11/11/2022]
Abstract
Parasite-host relationships are influenced by several factors intrinsic to hosts, such as social standing, group membership, sex, and age. However, in wild populations, temporal variation in parasite distributions and concomitant infections can alter these patterns. We used microscropy and molecular methods to screen for naturally occurring haemoparasitic infections in two Neotropical primate host populations, the saddleback (Leontocebus weddelli) and emperor (Saguinus imperator) tamarin, in the lowland tropical rainforests of southeastern Peru. Repeat sampling was conducted from known individuals over a three-year period to test for parasite-host and parasite-parasite associations. Three parasites were detected in L. weddelli including Trypanosoma minasense, Mansonella mariae, and Dipetalonema spp., while S. imperator only hosted the latter two. Temporal variation in prevalence was observed in T. minasense and Dipetalonema spp., confirming the necessity of a multi-year study to evaluate parasite-host relationships in this system. Although callitrichids display a distinct reproductive dominance hierarchy, characterized by single breeding females that typically mate polyandrously and can suppress the reproduction of subdominant females, logistic models did not identify sex or breeding status as determining factors in the presence of these parasites. However, age class had a positive effect on infection with M. mariae and T. minasense, and adults demonstrated higher parasite species richness than juveniles or sub-adults across both species. Body weight had a positive effect on the presence of Dipetalonema spp. The inclusion of co-infection variables in statistical models of parasite presence/absence data improved model fit for two of three parasites. This study verifies the importance and need for broad spectrum and long-term screening of parasite assemblages of natural host populations.
Collapse
Affiliation(s)
- Gideon A. Erkenswick
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., Saint Louis, MO 63121, USA
- Field Projects International, 7331 Murdoch Ave, Saint Louis, MO 63119, USA
| | - Mrinalini Watsa
- Field Projects International, 7331 Murdoch Ave, Saint Louis, MO 63119, USA
- Department of Anthropology, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO 63130, USA
| | - Alfonso S. Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Dmytryk
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., Saint Louis, MO 63121, USA
| | - Patricia G. Parker
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., Saint Louis, MO 63121, USA
- WildCare Institute, Saint Louis Zoo, One Government Dr., Saint Louis, MO 63110, USA
| |
Collapse
|
24
|
Spickett A, Junker K, Krasnov BR, Haukisalmi V, Matthee S. Community structure of helminth parasites in two closely related South African rodents differing in sociality and spatial behaviour. Parasitol Res 2017; 116:2299-2312. [DOI: 10.1007/s00436-017-5538-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/16/2017] [Indexed: 10/19/2022]
|
25
|
Wuerthner VP, Hua J, Hoverman JT. The benefits of coinfection: trematodes alter disease outcomes associated with virus infection. J Anim Ecol 2017; 86:921-931. [PMID: 28317105 DOI: 10.1111/1365-2656.12665] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 02/18/2017] [Indexed: 11/30/2022]
Abstract
Coinfections are increasingly recognized as important drivers of disease dynamics. Consequently, greater emphasis has been placed on integrating principles from community ecology with disease ecology to understand within-host interactions among parasites. Using larval amphibians and two amphibian parasites (ranaviruses and the trematode Echinoparyphium sp.), we examined the influence of coinfection on disease outcomes. Our first objective was to examine how priority effects (the timing and sequence of parasite exposure) influence infection and disease outcomes in the laboratory. We found that interactions between the parasites were asymmetric; prior infection with Echinoparyphium reduced ranaviral loads by 9% but there was no reciprocal effect of prior ranavirus infection on Echinoparyphium load. Additionally, survival rates of hosts (larval gray treefrogs; Hyla versicolor) infected with Echinoparyphium 10 days prior to virus exposure were 25% greater compared to hosts only exposed to virus. Our second objective was to determine whether these patterns were generalizable to multiple amphibian species under more natural conditions. We conducted a semi-natural mesocosm experiment consisting of four larval amphibian hosts [gray treefrogs, American toads (Anaxyrus americanus), leopard frogs (Lithobates pipiens) and spring peepers (Pseudacris crucifer)] to examine how prior Echinoparyphium infection influenced ranavirus transmission within the community, using ranavirus-infected larval wood frogs (Lithobates sylvaticus) as source of ranavirus. Consistent with the laboratory experiment, we found that prior Echinoparyphium infection reduced ranaviral loads by 19 to 28% in three of the four species. Collectively, these results suggest that macroparasite infection can reduce microparasite replication rates across multiple amphibian species, possibly through cross-reactive immunity. Although the immunological mechanisms driving this outcome are in need of further study, trematode infections appear to benefit hosts that are exposed to ranaviruses. Additionally, these results suggest that consideration of priority effects and timing of exposure are vital for understanding parasite interactions within hosts and disease outcomes.
Collapse
Affiliation(s)
- Vanessa P Wuerthner
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA
| | - Jessica Hua
- Biological Sciences Department, Binghamton University, Binghamton, NY, 13902, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
26
|
Palmer-Young EC, Sadd BM, Irwin RE, Adler LS. Synergistic effects of floral phytochemicals against a bumble bee parasite. Ecol Evol 2017; 7:1836-1849. [PMID: 28331591 PMCID: PMC5355193 DOI: 10.1002/ece3.2794] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/02/2017] [Accepted: 01/14/2017] [Indexed: 12/24/2022] Open
Abstract
Floral landscapes comprise diverse phytochemical combinations. Individual phytochemicals in floral nectar and pollen can reduce infection in bees and directly inhibit trypanosome parasites. However, gut parasites of generalist pollinators, which consume nectar and pollen from many plant species, are exposed to phytochemical combinations. Interactions between phytochemicals could augment or decrease effects of single compounds on parasites. Using a matrix of 36 phytochemical treatment combinations, we assessed the combined effects of two floral phytochemicals, eugenol and thymol, against four strains of the bumblebee gut trypanosome Crithidia bombi. Eugenol and thymol had synergistic effects against C. bombi growth across seven independent experiments, showing that the phytochemical combination can disproportionately inhibit parasites. The strength of synergistic effects varied across strains and experiments. Thus, the antiparasitic effects of individual compounds will depend on both the presence of other phytochemicals and parasite strain identity. The presence of synergistic phytochemical combinations could augment the antiparasitic activity of individual compounds for pollinators in diverse floral landscapes.
Collapse
Affiliation(s)
| | - Ben M Sadd
- School of Biological Sciences Illinois State University Normal IL USA
| | - Rebecca E Irwin
- Department of Applied Ecology North Carolina State University Raleigh NC USA
| | - Lynn S Adler
- Department of Biology University of Massachusetts at Amherst Amherst MA USA
| |
Collapse
|
27
|
Mijele D, Iwaki T, Chiyo PI, Otiende M, Obanda V, Rossi L, Soriguer R, Angelone-Alasaad S. Influence of Massive and Long Distance Migration on Parasite Epidemiology: Lessons from the Great Wildebeest Migration. ECOHEALTH 2016; 13:708-719. [PMID: 27554373 DOI: 10.1007/s10393-016-1156-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
Very little is known about the influence of massive and long distance migration on parasite epidemiology. Migration can simultaneously minimize exposure to common parasites in their habitats and increase exposure to novel pathogens from new environments and habitats encountered during migration, while physiological stress during long distance movement can lead to immune suppression, which makes migrants vulnerable to parasites. In this paper, we investigated the diversity, prevalence, parasite load, co-infection patterns and predilection sites of adult gastrointestinal helminths in 130 migrating wildebeests and tested for their relation with animal age, sex and migration time (which also could indicate different migration routes), and compared them with the non-migratory wildebeest. Surprisingly, only four parasite species were found, Oesophagostomum columbianum, Haemonchus placei, Calicophoron raja and Moniezia expansa, which were lower than in non-migratory wildebeest reported in the literature. These parasites were generalists, infecting livestock, and suggests that wildebeest and livestock, because of their interaction during migration, have a cross-infection risk. There was a negative relation between parasites diversity, prevalence and intensity of infection, and host age, which suggests that wildebeests acquire protective immunity against these parasites as they get older. Prevalence and intensity of infection were higher among wildebeest crossing the Mara Bridge (early migrants) compared to those crossing the Serena (late migrants), which suggests that early migrants (or migrants originating from different areas) have varying infection intensities. The prevalence and intensity of infection were higher in males compared to females and may be due to ecological, behavioural, or physiological differences between males and females. Our findings compared to those of previous studies suggest that migration may provide a mechanism to minimize exposure of hosts to common parasites through migratory escape, but this result awaits examination of helminths epidemiology of non-migratory wildebeests from areas of migrant origins. The potential parasitic cross-infection between wildebeests and livestock is a real risk to be taken into account in the management of wildebeest migration corridors.
Collapse
Affiliation(s)
- Domnic Mijele
- Forensic and Genetics Laboratory, Kenya Wildlife Service, P.O Box 40241-00100, Nairobi, Kenya.
| | - Takashi Iwaki
- Meguro Parasitological Museum, 4-1-1 Shimomeguro, Meguro-ku, Tokyo, 153-0064, Japan
| | - Patrick I Chiyo
- Forensic and Genetics Laboratory, Kenya Wildlife Service, P.O Box 40241-00100, Nairobi, Kenya
| | - Moses Otiende
- Forensic and Genetics Laboratory, Kenya Wildlife Service, P.O Box 40241-00100, Nairobi, Kenya
| | - Vincent Obanda
- Forensic and Genetics Laboratory, Kenya Wildlife Service, P.O Box 40241-00100, Nairobi, Kenya
| | - Luca Rossi
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, L.go Braccini 1, I-10095, Grugliasco, Italy
| | - Ramon Soriguer
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio s/n 41092, Seville, Spain
| | - Samer Angelone-Alasaad
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio s/n 41092, Seville, Spain.
- Institute of Evolutionary Biology and Environmental Studies (IEU), University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
28
|
Skelton J, Creed RP, Brown BL. A symbiont's dispersal strategy: condition-dependent dispersal underlies predictable variation in direct transmission among hosts. Proc Biol Sci 2016; 282:rspb.2015.2081. [PMID: 26559953 DOI: 10.1098/rspb.2015.2081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Direct horizontal transmission of pathogenic and mutualistic symbionts has profound consequences for host and symbiont fitness alike. While the importance of contact rates for transmission is widely recognized, the processes that underlie variation in transmission during contact are rarely considered. Here, we took a symbiont's perspective of transmission as a form of dispersal and adopted the concept of condition-dependent dispersal strategies from the study of free-living organisms to understand and predict variation in transmission in the cleaning symbiosis between crayfish and ectosymbiotic branchiobdellidan worms. Field study showed that symbiont reproductive success was correlated with host size and competition among worms for microhabitats. Laboratory experiments demonstrated high variability in transmission among host contacts. Moreover, symbionts were more likely to disperse when host size and competition for microhabitat created a fitness environment below a discrete minimum threshold. A predictive model based on a condition-dependent symbiont dispersal strategy correctly predicted transmission in 95% of experimental host encounters and the exact magnitude of transmission in 67%, both significantly better than predictions that assumed a fixed transmission rate. Our work provides a dispersal-based understanding of symbiont transmission and suggests adaptive symbiont dispersal strategies can explain variation in transmission dynamics and complex patterns of host infection.
Collapse
Affiliation(s)
- James Skelton
- Department of Biological Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Robert P Creed
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
| | - Bryan L Brown
- Department of Biological Science, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
29
|
Betts A, Gifford DR, MacLean RC, King KC. Parasite diversity drives rapid host dynamics and evolution of resistance in a bacteria-phage system. Evolution 2016; 70:969-78. [PMID: 27005577 PMCID: PMC4982092 DOI: 10.1111/evo.12909] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 12/01/2022]
Abstract
Host–parasite evolutionary interactions are typically considered in a pairwise species framework. However, natural infections frequently involve multiple parasites. Altering parasite diversity alters ecological and evolutionary dynamics as parasites compete and hosts resist multiple infection. We investigated the effects of parasite diversity on host–parasite population dynamics and evolution using the pathogen Pseudomonas aeruginosa and five lytic bacteriophage parasites. To manipulate parasite diversity, bacterial populations were exposed for 24 hours to either phage monocultures or diverse communities containing up to five phages. Phage communities suppressed host populations more rapidly but also showed reduced phage density, likely due to interphage competition. The evolution of resistance allowed rapid bacterial recovery that was greater in magnitude with increases in phage diversity. We observed no difference in the extent of resistance with increased parasite diversity, but there was a profound impact on the specificity of resistance; specialized resistance evolved to monocultures through mutations in a diverse set of genes. In summary, we demonstrate that parasite diversity has rapid effects on host–parasite population dynamics and evolution by selecting for different resistance mutations and affecting the magnitude of bacterial suppression and recovery. Finally, we discuss the implications of phage diversity for their use as biological control agents.
Collapse
Affiliation(s)
- Alex Betts
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom.
| | - Danna R Gifford
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom
| | - R Craig MacLean
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom
| | - Kayla C King
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom
| |
Collapse
|
30
|
Skelton J, Doak S, Leonard M, Creed RP, Brown BL. The rules for symbiont community assembly change along a mutualism-parasitism continuum. J Anim Ecol 2016; 85:843-53. [PMID: 27111444 DOI: 10.1111/1365-2656.12498] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/15/2016] [Indexed: 11/30/2022]
Abstract
Symbiont community assembly is driven by host-symbiont and symbiont-symbiont interactions. The effects that symbionts exert on their hosts are often context-dependent, and existing theoretical frameworks of symbiont community assembly do not consider the implications of variable outcomes to assembly processes. We hypothesized that symbiont-symbiont interactions become increasingly important along a parasitism/mutualism continuum because; (i) negative outcomes favour host resistance which in turn reduces symbiont colonization and subsequently reduce symbiont-symbiont interactions, whereas (ii) positive host outcomes favour tolerance and consequently higher symbiont colonization rates, leading to stronger interactions among symbionts. We found support for this hypothesis in the cleaning symbiosis between crayfish and ectosymbiotic branchiobdellidan worms. The symbiosis between crayfish and their worms can shift from parasitism/commensalism to mutualism as crayfish age. Here, field surveys identified changes in worm density, diversity and composition that were concomitant to changing symbiosis outcomes. We conducted several laboratory experiments and behavioural assays to relate patterns from the field to their likely causal processes. Young crayfish typically hosted only two relatively small worm species. Older crayfish hosted two additional larger species. In laboratory experiments, young crayfish exhibited a directed grooming response to all worm species, but were unable to remove small species. Conversely, adult crayfish did not exhibit grooming responses to any worm species. Relaxed grooming allowed the colonization of large worm species and initiated symbiont-symbiont intraguild predation that reduced the abundance and altered the behaviour of small worm species. Thus, the dominant processes of symbiont community assembly shifted from host resistance to symbiont-symbiont interactions through host ontogeny and a concomitant transition towards mutualism. This work shows that host resistance can have a prevailing influence over symbiont community assembly when symbiosis is disadvantageous to the host. However, when symbiosis is advantageous and resistance is relaxed, symbiont colonization rate and consequently abundance and diversity increases and interactions among symbionts become increasingly important to symbiont community assembly.
Collapse
Affiliation(s)
- James Skelton
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32603, USA
| | - Sam Doak
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 2125 Derring Hall, Blacksburg, VA, 24061, USA
| | - Meredith Leonard
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 2125 Derring Hall, Blacksburg, VA, 24061, USA
| | - Robert P Creed
- Department of Biology, Appalachian State University, 575 Rivers Street, Boone, NC, 28608, USA
| | - Bryan L Brown
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 2125 Derring Hall, Blacksburg, VA, 24061, USA
| |
Collapse
|
31
|
Experimental Evolution of a Trypanosome Parasite of Bumblebees and its Implications for Infection Success and Host Immune Response. Evol Biol 2016. [DOI: 10.1007/s11692-015-9366-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Colombo VC, Nava S, Antoniazzi LR, Monje LD, Racca AL, Guglielmone AA, Beldomenico PM. Ecology of the interaction between Ixodes loricatus (Acari: Ixodidae) and Akodon azarae (Rodentia: Criceridae). Parasitol Res 2015; 114:3683-91. [PMID: 26122994 DOI: 10.1007/s00436-015-4596-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/17/2015] [Indexed: 11/29/2022]
Abstract
The present study explores associations of different factors (i.e. host parameters, presence of other ectoparasites and [mainly biotic] environmental factors) with burdens of Ixodes loricatus immature stages in one of its main hosts in Argentina, the rodent Akodon azarae. For 2 years, rodents were trapped and sampled monthly at 16 points located in four different sites in the Parana River Delta region. Data were analysed with generalized linear mixed models with a negative binomial response (counts of larvae or nymphs). The independent variables assessed were (a) environmental: trapping year, presence of cattle, type of vegetation, rodent abundance; (b) host parameters: body length, sex, body condition, blood cell counts, natural antibody titers and (c) co-infestation with other ectoparasites. Two-way interaction terms deemed a priori as relevant were also included in the analysis. Most of the associations investigated were found significant, but in general, the direction and magnitude of the associations were context-dependent. An exception was the presence of cattle, which was consistently negatively associated with both larvae and nymphs independently of all other variables considered and had the strongest effect on tick burdens. Mites, fleas and Amblyomma triste were also significantly associated (mostly positively) with larval and nymph burdens, and in many cases, they influenced associations with environmental or host factors. Our findings strongly support that raising cattle may have a substantial impact on the dynamics of I. loricatus and that interactions within the ectoparasite community may be an important-but generally ignored-driver of tick dynamics.
Collapse
Affiliation(s)
- Valeria C Colombo
- Laboratorio de Ecología de Enfermedades (LEcEn), ICiVet, UNL-CONICET, RP Kreder 2805, CP 3080, Esperanza, Santa Fe, Argentina
| | | | | | | | | | | | | |
Collapse
|
33
|
Factors affecting patterns of Amblyomma triste (Acari: Ixodidae) parasitism in a rodent host. Vet Parasitol 2015; 211:251-8. [DOI: 10.1016/j.vetpar.2015.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/14/2015] [Accepted: 06/08/2015] [Indexed: 11/24/2022]
|
34
|
Cézilly F, Perrot-Minnot MJ, Rigaud T. Cooperation and conflict in host manipulation: interactions among macro-parasites and micro-organisms. Front Microbiol 2014; 5:248. [PMID: 24966851 PMCID: PMC4052506 DOI: 10.3389/fmicb.2014.00248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/06/2014] [Indexed: 11/30/2022] Open
Abstract
Several parasite species are known to manipulate the phenotype of their hosts in ways that enhance their own transmission. Co-occurrence of manipulative parasites, belonging to the same species or to more than one species, in a single host has been regularly observed. Little is known, however, on interactions between co-occurring manipulative parasites with same or different transmission routes. Several models addressing this problem have provided predictions on how cooperation and conflict between parasites could emerge from multiple infections. Here, we review the empirical evidence in favor of the existence of synergistic or antagonistic interactions between co-occurring parasites, and highlight the neglected role of micro-organisms. We particularly discuss the actual importance of selective forces shaping the evolution of interactions between manipulative parasites in relation to parasite prevalence in natural populations, efficiency in manipulation, and type of transmission (i.e., horizontal versus vertical), and we emphasize the potential for future research.
Collapse
Affiliation(s)
- Frank Cézilly
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de BourgogneDijon, France
- Institut Universitaire de FranceStrasbourg, France
| | | | - Thierry Rigaud
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de BourgogneDijon, France
| |
Collapse
|
35
|
Cisarovsky G, Schmid-Hempel P. Few colonies of the host Bombus terrestris disproportionately affect the genetic diversity of its parasite, Crithidia bombi. INFECTION GENETICS AND EVOLUTION 2014; 21:192-7. [DOI: 10.1016/j.meegid.2013.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 11/28/2022]
|
36
|
Clark KB. Biotic activity of Ca(2+)-modulating non-traditional antimicrobial and -viral agents. Front Microbiol 2013; 4:381. [PMID: 24376441 PMCID: PMC3859912 DOI: 10.3389/fmicb.2013.00381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 11/24/2013] [Indexed: 01/23/2023] Open
Affiliation(s)
- Kevin B Clark
- Research and Development Service, Veterans Affairs Greater Los Angeles Healthcare System Los Angeles, CA, USA
| |
Collapse
|
37
|
Superinfection reconciles host-parasite association and cross-species transmission. Theor Popul Biol 2013; 90:129-34. [PMID: 24161558 PMCID: PMC7126234 DOI: 10.1016/j.tpb.2013.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/19/2013] [Accepted: 09/26/2013] [Indexed: 11/23/2022]
Abstract
Parasites are either dedicated to a narrow host range, or capable of exploiting a wide host range. Understanding how host ranges are determined is very important for public health, as well as wildlife, plant, livestock and agricultural diseases. Our current understanding of host–parasite associations hinges on co-evolution, which assumes evolved host preferences (host specialization) of the parasite. Despite the explanatory power of this framework, we have only a vague understanding of why many parasites routinely cross the host species’ barrier. Here we introduce a simple model demonstrating how superinfection (in a heterogeneous community) can promote host–parasite association. Strikingly, the model illustrates that strong host–parasite association occurs in the absence of host specialization, while still permitting cross-species transmission. For decades, host specialization has been foundational in explaining the maintenance of distinct parasites/strains in host species. We argue that host specializations may be exaggerated, and can occur as a byproduct (not necessarily the cause) of host–parasite associations. Many parasites appear to exhibit host specificity. Many parasites are also efficient in cross-species transmissions. The above two phenomenon are largely incompatible without adaptive mutations. Superinfection facilitates apparent host specificity and cross-species transmission.
Collapse
|
38
|
Intra-phylum and inter-phyla associations among gastrointestinal parasites in two wild mammal species. Parasitol Res 2013; 112:3295-304. [DOI: 10.1007/s00436-013-3509-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/14/2013] [Indexed: 11/25/2022]
|
39
|
Hoverman JT, Hoye BJ, Johnson PTJ. Does timing matter? How priority effects influence the outcome of parasite interactions within hosts. Oecologia 2013; 173:1471-80. [DOI: 10.1007/s00442-013-2692-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/16/2013] [Indexed: 11/29/2022]
|
40
|
Salathé R, Tognazzo M, Schmid-Hempel R, Schmid-Hempel P. Probing mixed-genotype infections I: extraction and cloning of infections from hosts of the trypanosomatid Crithidia bombi. PLoS One 2012; 7:e49046. [PMID: 23155449 PMCID: PMC3498296 DOI: 10.1371/journal.pone.0049046] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/03/2012] [Indexed: 11/25/2022] Open
Abstract
We here present an efficient, precise and reliable method to isolate and cultivate healthy and viable single Crithidia bombi cells from bumblebee faeces using flow cytometry. We report a precision of >99% in obtaining single trypanosomatid cells for further culture and analysis (“cloning”). In the study, we have investigated the use of different liquid media to cultivate C. bombi and present an optimal medium for obtaining viable clones from all tested, infected host donors. We show that this method can be applied to genotype a collection of clones from natural infections. Furthermore, we show how to cryo-preserve C. bombi cells to be revived to become infective clones after at least 4 years of storage. Considering the high prevalence of infections in natural populations, our method provides a powerful tool in studying the level and diversity of these infections, and thus enriches the current methodology for the studies of complex host-parasite interactions.
Collapse
Affiliation(s)
- Rahel Salathé
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
- * E-mail: (RS); (PSH)
| | | | | | - Paul Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
- * E-mail: (RS); (PSH)
| |
Collapse
|
41
|
Probing mixed-genotype infections II: high multiplicity in natural infections of the trypanosomatid, Crithidia bombi, in its host, Bombus spp. PLoS One 2012; 7:e49137. [PMID: 23145099 PMCID: PMC3493493 DOI: 10.1371/journal.pone.0049137] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022] Open
Abstract
Mixed-genotype infections have major consequences for many essential elements of host-parasite interactions. With genetic exchange between co-infecting parasite genotypes increased diversity among parasite offspring and the emergence of novel genotypes from infected hosts is possible. We here investigated mixed- genotype infections using the host, Bombus spp. and its trypanosome parasite Crithidia bombi as our study case. The natural infections of C. bombi were genotyped with a novel method for a representative sample of workers and spring queens in Switzerland. We found that around 60% of all infected hosts showed mixed-genotype infections with an average of 2.47±0.22 (S.E.) and 3.65±1.02 genotypes per worker or queen, respectively. Queens, however, harboured up to 29 different genotypes. Based on the genotypes of co-infecting strains, these could be putatively assigned to either ‘primary’ and ‘derived’ genotypes - the latter resulting from genetic exchange among the primary genotypes. High genetic relatedness among co-infecting derived but not primary genotypes supported this scenario. Co-infection in queens seems to be a major driver for the diversity of genotypes circulating in host populations.
Collapse
|