1
|
Riyahi S, Liebermann-Lilie ND, Jacobs A, Korsten P, Mayer U, Schmoll T. Transcriptomic changes in the posterior pallium of male zebra finches associated with social niche conformance. BMC Genomics 2024; 25:694. [PMID: 39009985 PMCID: PMC11251365 DOI: 10.1186/s12864-024-10573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Animals plastically adjust their physiological and behavioural phenotypes to conform to their social environment-social niche conformance. The degree of sexual competition is a critical part of the social environment to which animals adjust their phenotypes, but the underlying genetic mechanisms are poorly understood. We conducted a study to investigate how differences in sperm competition risk affect the gene expression profiles of the testes and two brain areas (posterior pallium and optic tectum) in breeding male zebra finches (Taeniopygia castanotis). In this pre-registered study, we investigated a large sample of 59 individual transcriptomes. We compared two experimental groups: males held in single breeding pairs (low sexual competition) versus those held in two pairs (elevated sexual competition) per breeding cage. Using weighted gene co-expression network analysis (WGCNA), we observed significant effects of the social treatment in all three tissues. However, only the treatment effects found in the pallium were confirmed by an additional randomisation test for statistical robustness. Likewise, the differential gene expression analysis revealed treatment effects only in the posterior pallium (ten genes) and optic tectum (six genes). No treatment effects were found in the testis at the single gene level. Thus, our experiments do not provide strong evidence for transcriptomic adjustment specific to manipulated sperm competition risk. However, we did observe transcriptomic adjustments to the manipulated social environment in the posterior pallium. These effects were polygenic rather than based on few individual genes with strong effects. Our findings are discussed in relation to an accompanying paper using the same animals, which reports behavioural results consistent with the results presented here.
Collapse
Affiliation(s)
- Sepand Riyahi
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria.
| | - Navina D Liebermann-Lilie
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| | - Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Peter Korsten
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Uwe Mayer
- Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, Rovereto, TN, 38068, Italy.
| | - Tim Schmoll
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
2
|
Tiedemann R, Riesch R, Tomowski M, Havenstein K, Schlupp J, Berbel-Filho WM, Schlupp I. Genetic and phenotypic diversification in a widespread fish, the Sailfin Molly (Poecilia latipinna). BMC Ecol Evol 2024; 24:87. [PMID: 38951779 PMCID: PMC11218414 DOI: 10.1186/s12862-024-02270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Widespread species often experience significant environmental clines over the area they naturally occupy. We investigated a widespread livebearing fish, the Sailfin molly (Poecilia latipinna) combining genetic, life-history, and environmental data, asking how structured populations are. Sailfin mollies can be found in coastal freshwater and brackish habitats from roughly Tampico, Veracruz in Mexico to Wilmington, North Carolina, in the USA. In addition, they are found inland on the Florida peninsula. Using microsatellite DNA, we genotyped 168 individuals from 18 populations covering most of the natural range of the Sailfin molly. We further determined standard life-history parameters for both males and females for these populations. Finally, we measured biotic and abiotic parameters in the field. We found six distinct genetic clusters based on microsatellite data, with very strong indication of isolation by distance. However, we also found significant numbers of migrants between adjacent populations. Despite genetic structuring we did not find evidence of cryptic speciation. The genetic clusters and the migration patterns do not match paleodrainages. Life histories vary between populations but not in a way that is easy to interpret. We suggest a role of humans in migration in the sailfin molly, for example in the form of a ship channel that connects southern Texas with Louisiana which might be a conduit for fish migration.
Collapse
Affiliation(s)
- Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| | - Rüdiger Riesch
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
- School of Biological Sciences, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Maxi Tomowski
- Unit of Evolutionary Biology/Systematic Zoology Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Katja Havenstein
- Unit of Evolutionary Biology/Systematic Zoology Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jan Schlupp
- School of Biological Sciences, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
- Amazon, amazon.com, Arlington, VA, 22202, USA
| | - Waldir Miron Berbel-Filho
- School of Biological Sciences, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
- International Stock Center for Livebearing Fishes, University of Oklahoma, Norman, OK, 73019, USA
- Department of Biology, University of West Florida, Pensacola, FL, 32514, USA
| | - Ingo Schlupp
- Unit of Evolutionary Biology/Systematic Zoology Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
- School of Biological Sciences, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA.
- International Stock Center for Livebearing Fishes, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
3
|
Scott AM, Yan JL, Baxter CM, Dworkin I, Dukas R. The genetic basis of variation in sexual aggression: evolution versus social plasticity. Mol Ecol 2022; 31:2865-2881. [DOI: 10.1111/mec.16437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Andrew M. Scott
- Animal Behaviour Group Department of Psychology, Neuroscience & Behaviour McMaster University 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| | - Janice L. Yan
- Animal Behaviour Group Department of Psychology, Neuroscience & Behaviour McMaster University 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| | - Carling M. Baxter
- Animal Behaviour Group Department of Psychology, Neuroscience & Behaviour McMaster University 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| | - Ian Dworkin
- Department of Biology McMaster University 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| | - Reuven Dukas
- Animal Behaviour Group Department of Psychology, Neuroscience & Behaviour McMaster University 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| |
Collapse
|
4
|
Fischer EK, Hauber ME, Bell AM. Back to the basics? Transcriptomics offers integrative insights into the role of space, time and the environment for gene expression and behaviour. Biol Lett 2021; 17:20210293. [PMID: 34520681 DOI: 10.1098/rsbl.2021.0293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fuelled by the ongoing genomic revolution, broadscale RNA expression surveys are fast replacing studies targeting one or a few genes to understand the molecular basis of behaviour. Yet, the timescale of RNA-sequencing experiments and the dynamics of neural gene activation are insufficient to drive real-time switches between behavioural states. Moreover, the spatial, functional and transcriptional complexity of the brain (the most commonly targeted tissue in studies of behaviour) further complicates inference. We argue that a Central Dogma-like 'back-to-basics' assumption that gene expression changes cause behaviour leaves some of the most important aspects of gene-behaviour relationships unexplored, including the roles of environmental influences, timing and feedback from behaviour-and the environmental shifts it causes-to neural gene expression. No perfect experimental solutions exist but we advocate that explicit consideration, exploration and discussion of these factors will pave the way toward a richer understanding of the complicated relationships between genes, environments, brain gene expression and behaviour over developmental and evolutionary timescales.
Collapse
Affiliation(s)
- Eva K Fischer
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Alison M Bell
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| |
Collapse
|
5
|
Fischer EK, Song Y, Hughes KA, Zhou W, Hoke KL. Nonparallel transcriptional divergence during parallel adaptation. Mol Ecol 2021; 30:1516-1530. [PMID: 33522041 DOI: 10.1111/mec.15823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
How underlying mechanisms bias evolution toward predictable outcomes remains an area of active debate. In this study, we leveraged phenotypic plasticity and parallel adaptation across independent lineages of Trinidadian guppies (Poecilia reticulata) to assess the predictability of gene expression evolution during parallel adaptation. Trinidadian guppies have repeatedly and independently adapted to high- and low-predation environments in the wild. We combined this natural experiment with a laboratory breeding design to attribute transcriptional variation to the genetic influences of population of origin and developmental plasticity in response to rearing with or without predators. We observed substantial gene expression plasticity, as well as the evolution of expression plasticity itself, across populations. Genes exhibiting expression plasticity within populations were more likely to also differ in expression between populations, with the direction of population differences more likely to be opposite those of plasticity. While we found more overlap than expected by chance in genes differentially expressed between high- and low-predation populations from distinct evolutionary lineages, the majority of differentially expressed genes were not shared between lineages. Our data suggest alternative transcriptional configurations associated with shared phenotypes, highlighting a role for transcriptional flexibility in the parallel phenotypic evolution of a species known for rapid adaptation.
Collapse
Affiliation(s)
- Eva K Fischer
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana, IL, USA.,Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Youngseok Song
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Kimberly A Hughes
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wen Zhou
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Kim L Hoke
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Furness AI, Hagmayer A, Pollux BJA. Size-dependent male mating tactics and their morphological correlates in Poecilia gillii. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abstract
Male alternative reproductive strategies are found in some species of most major animal taxa but are especially widespread in fishes. Mature males of the shortfin molly, Poecilia gillii, display extensive variation in size and morphology. We devised a field test of a priori hypotheses regarding the interrelationships between male size, coloration, morphology and mating tactics. Males did not occur in discrete size classes, but instead occurred in a size and morphological continuum. Large males exhibited darker and more orange-coloured dorsal and caudal fins, whereas small males exhibited lighter and more inconspicuous fin coloration. Furthermore, larger males had proportionately deeper bodies, larger dorsal and caudal fins and shorter gonopodia than smaller males. Our field study of male mating behaviour revealed a lack of courtship in this species, and similar levels of mating attempts (gonopodial thrusts) irrespective of male size. Instead, small males were significantly more likely to chase females than were large males. In contrast, large males exhibited higher rates of gonoporal nibbling (a likely means by which males determine, through chemical factors, whether a female is carrying fertilizable ova) and higher likelihood of chasing other males away. In total, we found evidence for the predicted associations between male size, coloration, morphology and mating behaviour. These associations appear likely to maximize mating success for males of a given body size and phenotype.
Collapse
Affiliation(s)
- Andrew I Furness
- Department of Biological and Marine Sciences, University of Hull, Hull, UK
| | - Andres Hagmayer
- Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Bart J A Pollux
- Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
7
|
|
8
|
Bell AM. Individual variation and the challenge hypothesis. Horm Behav 2020; 123:104549. [PMID: 31247185 PMCID: PMC6980443 DOI: 10.1016/j.yhbeh.2019.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
Abstract
In this paper I discuss how the challenge hypothesis (Wingfield et al., 1990) influenced the development of ideas about animal personality, and describe particularly promising areas for future study at the intersection of these two topics. I argue that the challenge hypothesis influenced the study of animal personality in at least three specific ways. First, the challenge hypothesis drew attention to the ways in which the environment experienced by an organism - including the social environment - can influence biological processes internal to the organism, e.g. changes to physiology, gene expression, neuroendocrine state and epigenetic modifications. That is, the challenge hypothesis illustrated the bidirectional, dynamic relationship between hormones and (social) environments, thereby helping us to understand how behavioral variation among individuals can emerge over time. Because the paper was inspired by data collected on free living animals in natural populations, it drew behavioral ecologists' attention to this phenomenon. Second, the challenge hypothesis highlighted what became a paradigmatic example of a hormonal mechanism for a behavioral spillover, i.e. testosterone's pleiotropic effects on both territorial aggression and parental care causes aggression to "spillover" to influence parenting behavior, thereby limiting behavioral plasticity. Third, the challenge hypothesis contributed to what is now a cottage industry examining individual differences in hormone titres and their relationship with behavioral variation. I argue that one particularly promising future research direction in this area is to consider the active role of behavior and behavioral types in eliciting social interactions, including territorial challenges.
Collapse
Affiliation(s)
- Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, Carl R. Woese Institute for Genomic Biology, Program in Ecology, Evolution and Conservation, Neuroscience Program, University of Illinois, Urbana Champaign, United States of America.
| |
Collapse
|
9
|
Fuxjäger L, Wanzenböck S, Ringler E, Wegner KM, Ahnelt H, Shama LNS. Within-generation and transgenerational plasticity of mate choice in oceanic stickleback under climate change. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180183. [PMID: 30966960 DOI: 10.1098/rstb.2018.0183] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Plasticity, both within and across generations, can shape sexual traits involved in mate choice and reproductive success, and thus direct measures of fitness. Especially, transgenerational plasticity (TGP), where parental environment influences offspring plasticity in future environments, could compensate for otherwise negative effects of environmental change on offspring sexual traits. We conducted a mate choice experiment using stickleback ( Gasterosteus aculeatus) with different thermal histories (ambient 17°C or elevated 21°C) within and across generations under simulated ocean warming using outdoor mesocosms. Parentage analysis of egg clutches revealed that maternal developmental temperature and reproductive (mesocosm) environment affected egg size, with females that developed at 17°C laying smaller eggs in 21°C mesocosms, likely owing to metabolic costs at elevated temperature. Paternal developmental temperature interacted with the reproductive environment to influence mating success, particularly under simulated ocean warming, with males that developed at 21°C showing lower overall mating success compared with 17°C males, but higher mating success in 21°C mesocosms. Furthermore, mating success of males was influenced by the interaction between F1 developmental temperature and F0 parent acclimation temperature, demonstrating the potential role of both TGP and within-generation plasticity in shaping traits involved in sexual selection and mate choice, potentially facilitating rapid responses to environmental change. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Lukas Fuxjäger
- 1 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung , Coastal Ecology Section, Wadden Sea Station Sylt, Hafenstrasse 43, 25992 List , Germany.,2 Department of Theoretical Biology, University of Vienna , Althanstrasse 14, Vienna , Austria
| | - Sylvia Wanzenböck
- 1 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung , Coastal Ecology Section, Wadden Sea Station Sylt, Hafenstrasse 43, 25992 List , Germany.,2 Department of Theoretical Biology, University of Vienna , Althanstrasse 14, Vienna , Austria
| | - Eva Ringler
- 3 Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna , Veterinaerplatz 1, 1210 Vienna , Austria
| | - K Mathias Wegner
- 1 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung , Coastal Ecology Section, Wadden Sea Station Sylt, Hafenstrasse 43, 25992 List , Germany
| | - Harald Ahnelt
- 2 Department of Theoretical Biology, University of Vienna , Althanstrasse 14, Vienna , Austria.,4 First Zoological Department, Natural History Museum in Vienna , Burgring 7, 1010 Vienna , Austria
| | - Lisa N S Shama
- 1 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung , Coastal Ecology Section, Wadden Sea Station Sylt, Hafenstrasse 43, 25992 List , Germany
| |
Collapse
|
10
|
Abbott J, Rios‐Cardenas O, Morris MR. Insights from intralocus tactical conflict: adaptive states, interactions with ecology and population divergence. OIKOS 2019. [DOI: 10.1111/oik.06264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jessica Abbott
- Section for Evolutionary Ecology, Dept of Biology, Univ. Of Lund Sölvegatan 37 SE‐223 62 Lund Swede
| | | | | |
Collapse
|
11
|
Perez A, Montiglio PO, Wey TW, Sih A. Male social plasticity influences transient dynamics in the emergence of alternative mating systems in water striders. Behav Ecol 2019. [DOI: 10.1093/beheco/arz108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AbstractAnimal mating systems are often studied with the goal of understanding why species, populations, or groups vary from one another in the system they display. Although these differences are often treated as basically stable, it is also known that mating systems may shift over time (e.g., from one breeding season to the next). There has been some study of how ecological factors correlate with these changes; however, few, if any, studies have investigated how the phenotypic composition of a group governs the timing and probability of these mating system transitions. Groups of stream water striders (Aquarius remigis) can experience rapid changes in mating system dynamics, with small groups often transitioning into a system in which a single, large male monopolizes mating opportunities. We asked if variation in individual- and group-level traits associated with morphology and behavior (e.g., size of the largest individual, average activity behavioral type in the group) could partially explain the variability in how rapidly groups make this transition, if they make it at all. We show that groups with males that exhibit higher social plasticity tended to take longer to transition to a mating system dominated by a single male. Our results, therefore, suggest that groups in identical ecological conditions can diverge in their mating systems based on how much individuals in the group change their behavior in response to the behavior of other members of the group.
Collapse
Affiliation(s)
- Adrian Perez
- Department of Entomology, University of California at Davis, Davis, CA, USA
| | - Pierre-Olivio Montiglio
- Department of Environmental Sciences and Policy, University of California at Davis, Davis, CA, USA
- Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Tina W Wey
- Department of Environmental Sciences and Policy, University of California at Davis, Davis, CA, USA
- Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Andrew Sih
- Department of Environmental Sciences and Policy, University of California at Davis, Davis, CA, USA
| |
Collapse
|
12
|
Ramm SA, Lengerer B, Arbore R, Pjeta R, Wunderer J, Giannakara A, Berezikov E, Ladurner P, Schärer L. Sex allocation plasticity on a transcriptome scale: Socially sensitive gene expression in a simultaneous hermaphrodite. Mol Ecol 2019; 28:2321-2341. [PMID: 30891857 DOI: 10.1111/mec.15077] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Phenotypic plasticity can enable organisms to produce optimal phenotypes in multiple environments. A crucial life history trait that is often highly plastic is sex allocation, which in simultaneous hermaphrodites describes the relative investment into the male versus female sex functions. Theory predicts-and morphological evidence supports-that greater investment into the male function is favoured with increasing group size, due to the increasing importance of sperm competition for male reproductive success. Here, we performed a genome-wide gene expression assay to test for such sex allocation plasticity in a model simultaneous hermaphrodite, the free-living flatworm Macrostomum lignano. Based on RNA-Seq data from 16 biological replicates spanning four different group size treatments, we demonstrate that at least 10% of the >75,000 investigated transcripts in M. lignano are differentially expressed according to the social environment, rising to >30% of putative gonad-specific transcripts (spermatogenesis and oogenesis candidates) and tail-specific transcripts (seminal fluid candidates). This transcriptional response closely corresponds to the expected shift away from female and towards male reproductive investment with increasing sperm competition level. Using whole-mount in situ hybridization, we then confirm that many plastic transcripts exhibit the expected organ-specific expression, and RNA interference of selected testis- and ovary-specific candidates establishes that these indeed function in gametogenesis pathways. We conclude that a large proportion of sex-specific transcripts in M. lignano are differentially expressed according to the prevailing ecological conditions and that these are functionally relevant to key reproductive phenotypes. Our study thus begins to bridge organismal and molecular perspectives on sex allocation plasticity.
Collapse
Affiliation(s)
- Steven A Ramm
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany.,Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland
| | - Birgit Lengerer
- Institute of Zoology & CMBI, University of Innsbruck, Innsbruck, Austria
| | - Roberto Arbore
- Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland
| | - Robert Pjeta
- Institute of Zoology & CMBI, University of Innsbruck, Innsbruck, Austria
| | - Julia Wunderer
- Institute of Zoology & CMBI, University of Innsbruck, Innsbruck, Austria
| | | | - Eugene Berezikov
- ERIBA, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Ladurner
- Institute of Zoology & CMBI, University of Innsbruck, Innsbruck, Austria
| | - Lukas Schärer
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
13
|
Todd EV, Liu H, Lamm MS, Thomas JT, Rutherford K, Thompson KC, Godwin JR, Gemmell NJ. Female Mimicry by Sneaker Males Has a Transcriptomic Signature in Both the Brain and the Gonad in a Sex-Changing Fish. Mol Biol Evol 2019; 35:225-241. [PMID: 29136184 DOI: 10.1093/molbev/msx293] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phenotypic plasticity represents an elegant adaptive response of individuals to a change in their environment. Bluehead wrasses (Thalassoma bifasciatum) exhibit astonishing sexual plasticity, including female-to-male sex change and discrete male morphs that differ strikingly in behavior, morphology, and gonadal investment. Using RNA-seq transcriptome profiling, we examined the genes and physiological pathways underlying flexible behavioral and gonadal differences among female, dominant (bourgeois) male, and female-mimic (sneaker) male blueheads. For the first time in any organism, we find that female mimicry by sneaker males has a transcriptional signature in both the brain and the gonad. Sneaker males shared striking similarity in neural gene expression with females, supporting the idea that males with alternative reproductive phenotypes have "female-like brains." Sneaker males also overexpressed neuroplasticity genes, suggesting that their opportunistic reproductive strategy requires a heightened capacity for neuroplasticity. Bourgeois males overexpressed genes associated with socio-sexual behaviors (e.g., isotocin), but also neuroprotective genes and biomarkers of oxidative stress and aging, indicating a hitherto unexplored cost to these males of attaining the reproductively privileged position at the top of the social hierarchy. Our novel comparison of testicular transcriptomes in a fish with male sexual polymorphism associates greater gonadal investment by sneaker males with overexpression of genes involved in cell proliferation and sperm quality control. We propose that morphological female-mimicry by sneaker male teleosts entails pervasive downregulation of androgenesis genes, consistent with low androgen production in males lacking well-developed secondary sexual characters.
Collapse
Affiliation(s)
- Erica V Todd
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Hui Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Melissa S Lamm
- Department of Biological Sciences and WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC
| | - Jodi T Thomas
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Kim Rutherford
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Kelly C Thompson
- Department of Biological Sciences and WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC
| | - John R Godwin
- Department of Biological Sciences and WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Goldberg DL, Landy JA, Travis J, Springer MS, Reznick DN. In love and war: The morphometric and phylogenetic basis of ornamentation, and the evolution of male display behavior, in the livebearer genus
Poecilia. Evolution 2019; 73:360-377. [DOI: 10.1111/evo.13671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/06/2018] [Accepted: 12/09/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel L. Goldberg
- Behavior, Ecology, Evolution, and Systematics Section, School of Biological Sciences Illinois State University Normal Illinois 61761
- Department of Biology University of California Riverside California 92521
| | - Joseph A. Landy
- Department of Biological Science Florida State University Tallahassee Florida 32306
| | - Joseph Travis
- Department of Biological Science Florida State University Tallahassee Florida 32306
| | - Mark S. Springer
- Department of Biology University of California Riverside California 92521
| | - David N. Reznick
- Department of Biology University of California Riverside California 92521
| |
Collapse
|
15
|
Tripp JA, Feng NY, Bass AH. Behavioural tactic predicts preoptic-hypothalamic gene expression more strongly than developmental morph in fish with alternative reproductive tactics. Proc Biol Sci 2019; 285:rspb.2017.2742. [PMID: 29343607 DOI: 10.1098/rspb.2017.2742] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/19/2022] Open
Abstract
Reproductive success relies on the coordination of social behaviours, such as territory defence, courtship and mating. Species with extreme variation in reproductive tactics are useful models for identifying the neural mechanisms underlying social behaviour plasticity. The plainfin midshipman (Porichthys notatus) is a teleost fish with two male reproductive morphs that follow widely divergent developmental trajectories and display alternative reproductive tactics (ARTs). Type I males defend territories, court females and provide paternal care, but will resort to cuckoldry if they cannot maintain a territory. Type II males reproduce only through cuckoldry. We sought to disentangle gene expression patterns underlying behavioural tactic, in this case ARTs, from those solely reflective of developmental morph. Using RNA-sequencing, we investigated differential transcript expression in the preoptic area-anterior hypothalamus (POA-AH) of courting type I males, cuckolding type I males and cuckolding type II males. Unexpectedly, POA-AH differential expression was more strongly coupled to behavioural tactic than morph. This included a suite of transcripts implicated in hormonal regulation of vertebrate social behaviour. Our results reveal that divergent expression patterns in a conserved neuroendocrine centre known to regulate social-reproductive behaviours across vertebrate lineages may be uncoupled from developmental history to enable plasticity in the performance of reproductive tactics.
Collapse
Affiliation(s)
- Joel A Tripp
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853-7901, USA
| | - Ni Y Feng
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853-7901, USA
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853-7901, USA
| |
Collapse
|
16
|
Gibelli J, Aubin-Horth N, Dubois F. Are some individuals generally more behaviorally plastic than others? An experiment with sailfin mollies. PeerJ 2018; 6:e5454. [PMID: 30123722 PMCID: PMC6086093 DOI: 10.7717/peerj.5454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/26/2018] [Indexed: 11/20/2022] Open
Abstract
Individuals within the same population generally differ among each other not only in their behavioral traits but also in their level of behavioral plasticity (i.e., in their propensity to modify their behavior in response to changing conditions). If the proximate factors underlying individual differences in behavioral plasticity were the same for any measure of plasticity, as commonly assumed, one would expect plasticity to be repeatable across behaviors and contexts. However, this assumption remains largely untested. Here, we conducted an experiment with sailfin mollies (Poecilia latipinna) whose behavioral plasticity was estimated both as the change in their personality traits or mating behavior across a social gradient and using their performance on a reversal-learning task. We found that the correlations between pairwise measures of plasticity were weak and non-significant, thus indicating that the most plastic individuals were not the same in all the tests. This finding might arise because either individuals adjust the magnitude of their behavioral responses depending on the benefits of plasticity, and/or individuals expressing high behavioral plasticity in one context are limited by neural and/or physiological constraints in the amount of plasticity they can express in other contexts. Because the repeatability of behavioral plasticity may have important evolutionary consequences, additional studies are needed to assess the importance of trade-offs between conflicting selection pressures on the maintenance of intra-individual variation in behavioral plasticity.
Collapse
Affiliation(s)
- Julie Gibelli
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Nadia Aubin-Horth
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Frédérique Dubois
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
17
|
Li A, Li L, Wang W, Song K, Zhang G. Transcriptomics and Fitness Data Reveal Adaptive Plasticity of Thermal Tolerance in Oysters Inhabiting Different Tidal Zones. Front Physiol 2018; 9:825. [PMID: 30210351 PMCID: PMC6120431 DOI: 10.3389/fphys.2018.00825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/12/2018] [Indexed: 11/21/2022] Open
Abstract
Fine-scale adaptive evolution is always constrained by strong gene flow at vertical level in marine organisms. Rapid environmental fluctuations and phenotypic plasticity through optimization of fitness-related traits in organisms play important roles in shaping intraspecific divergence. The coastal systems experience strong variations in multiple abiotic environmental factors, especially the temperature. We used a typical intertidal species, Pacific oyster (Crassostrea gigas), to investigate the interaction between plasticity and adaptive evolution. We collected intertidal and subtidal oysters from two ecological niches and carried out common garden experiments for one generation. We identified fine-scale vertical adaptive divergence between intertidal and subtidal F1 progeny at both sites, based on different hierarchical phenotypes, including morphological, physiological, and molecular traits. We further quantified the global plasticity to thermal stress through transcriptomic analysis. The intertidal oysters exhibited slow growth rate. However, they showed high survival and metabolic rates under heat stress, indicating vertically fine-scale phenotypic adaptive mechanisms and evolutionary trade-offs between growth and thermal tolerance. Transcriptomic analysis confirmed that the intertidal oysters have evolved high plasticity. The genes were classified into three types: evolutionarily divergent, concordantly plastic, and adaptive plastic genes. The evolved divergence between intertidal and subtidal oysters for these gene sets showed a significant positive correlation with plastic changes of subtidal populations in response to high temperature. Furthermore, the intertidal oysters exhibited delayed large-scale increase in expressional plasticity than that in subtidal counterparts. The same direction between plasticity and selection suggests that the oysters have evolved adaptive plasticity. This implies that adaptive plasticity facilitates the oyster to adapt to severe intertidal zones. The oysters exposed to strong environmental variability are thermal tolerant and have high adaptive potential to face the current global warming. Our findings will not only provide new insights into the significant role of plasticity in adaptive evolution that can be extended to other marine invertebrates, but also provide basic information for oyster resources conservation and reef reestablishment.
Collapse
Affiliation(s)
- Ao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kai Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
18
|
Magris M, Chimetto G, Rizzi S, Pilastro A. Quick-change artists: male guppies pay no cost to repeatedly adjust their sexual strategies. Behav Ecol 2018. [DOI: 10.1093/beheco/ary087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Martina Magris
- Department of Biology, University of Padova via U. Bassi, Padua, Italy
| | - Gianluca Chimetto
- Department of Biology, University of Padova via U. Bassi, Padua, Italy
| | - Sofia Rizzi
- Department of Biology, University of Padova via U. Bassi, Padua, Italy
| | - Andrea Pilastro
- Department of Biology, University of Padova via U. Bassi, Padua, Italy
| |
Collapse
|
19
|
Ghislandi PG, Pekár S, Matzke M, Schulte-Döinghaus S, Bilde T, Tuni C. Resource availability, mating opportunity and sexual selection intensity influence the expression of male alternative reproductive tactics. J Evol Biol 2018; 31:1035-1046. [DOI: 10.1111/jeb.13284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 03/12/2018] [Accepted: 04/09/2018] [Indexed: 11/29/2022]
Affiliation(s)
| | - Stano Pekár
- Department of Botany and Zoology; Masaryk University; Brno Czech Republic
| | - Magdalena Matzke
- Department of Biology; Ludwig-Maximilians University; Munich Germany
| | | | - Trine Bilde
- Department of Bioscience; Aarhus University; Aarhus Denmark
| | - Cristina Tuni
- Department of Biology; Ludwig-Maximilians University; Munich Germany
| |
Collapse
|
20
|
Westerman EL, Letchinger R, Tenger-Trolander A, Massardo D, Palmer D, Kronforst MR. Does male preference play a role in maintaining female limited polymorphism in a Batesian mimetic butterfly? Behav Processes 2018; 150:47-58. [PMID: 29471021 DOI: 10.1016/j.beproc.2018.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/16/2018] [Accepted: 02/13/2018] [Indexed: 11/28/2022]
Abstract
Female-limited polymorphism occurs in multiple butterfly species with Batesian mimicry. While frequency-dependent selection is often argued as the driving force behind polymorphism in Batesian mimicry systems, male preference and alternative female mating strategies may also influence the maintenance of multiple female forms. Through a series of behavioural assays with the female-limited Batesian mimetic butterfly Papilio polytes, we show that males prefer stationary mimetic females over stationary non-mimetic females, but weigh female activity levels more heavily than female wing pattern when choosing between active mimetic and active non-mimetic females. Male preference for mimetic vs. non-mimetic females is independent of male genotype at the locus responsible for the female wing pattern, the autosomal gene doublesex. However male genotype does influence their response to active females. Male emphasis on female behaviour instead of appearance may reduce sexual selection pressures on female morphology, thereby facilitating frequency-dependent natural selection due to predation risk and toxic model abundance.
Collapse
Affiliation(s)
- E L Westerman
- Department of Ecology & Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL 60637, USA; Department of Biological Sciences, University of Arkansas, 850 W. Dickson St., Fayetteville, AR 72701, USA.
| | - R Letchinger
- Department of Ecology & Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL 60637, USA.
| | - A Tenger-Trolander
- Department of Ecology & Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL 60637, USA.
| | - D Massardo
- Department of Ecology & Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL 60637, USA.
| | - D Palmer
- Department of Ecology & Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL 60637, USA.
| | - M R Kronforst
- Department of Ecology & Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Genomic tools for behavioural ecologists to understand repeatable individual differences in behaviour. Nat Ecol Evol 2018; 2:944-955. [PMID: 29434349 DOI: 10.1038/s41559-017-0411-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 11/10/2017] [Indexed: 12/28/2022]
Abstract
Behaviour is a key interface between an animal's genome and its environment. Repeatable individual differences in behaviour have been extensively documented in animals, but the molecular underpinnings of behavioural variation among individuals within natural populations remain largely unknown. Here, we offer a critical review of when molecular techniques may yield new insights, and we provide specific guidance on how and whether the latest tools available are appropriate given different resources, system and organismal constraints, and experimental designs. Integrating molecular genetic techniques with other strategies to study the proximal causes of behaviour provides opportunities to expand rapidly into new avenues of exploration. Such endeavours will enable us to better understand how repeatable individual differences in behaviour have evolved, how they are expressed and how they can be maintained within natural populations of animals.
Collapse
|
22
|
Rittschof CC, Hughes KA. Advancing behavioural genomics by considering timescale. Nat Commun 2018; 9:489. [PMID: 29434301 PMCID: PMC5809431 DOI: 10.1038/s41467-018-02971-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
Animal behavioural traits often covary with gene expression, pointing towards a genomic constraint on organismal responses to environmental cues. This pattern highlights a gap in our understanding of the time course of environmentally responsive gene expression, and moreover, how these dynamics are regulated. Advances in behavioural genomics explore how gene expression dynamics are correlated with behavioural traits that range from stable to highly labile. We consider the idea that certain genomic regulatory mechanisms may predict the timescale of an environmental effect on behaviour. This temporally minded approach could inform both organismal and evolutionary questions ranging from the remediation of early life social trauma to understanding the evolution of trait plasticity.
Collapse
Affiliation(s)
- Clare C Rittschof
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA.
| | - Kimberly A Hughes
- Department of Biological Sciences, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
23
|
Cardoso SD, Gonçalves D, Goesmann A, Canário AVM, Oliveira RF. Temporal variation in brain transcriptome is associated with the expression of female mimicry as a sequential male alternative reproductive tactic in fish. Mol Ecol 2017; 27:789-803. [PMID: 29110358 DOI: 10.1111/mec.14408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/23/2017] [Accepted: 09/13/2017] [Indexed: 01/21/2023]
Abstract
Distinct patterns of gene expression often underlie intra- and intersexual differences, and the study of this set of coregulated genes is essential to understand the emergence of complex behavioural phenotypes. Here, we describe the development of a de novo transcriptome and brain gene expression profiles of wild-caught peacock blenny, Salaria pavo, an intertidal fish with sex-role reversal in courtship behaviour (i.e., females are the courting sex) and sequential alternative reproductive tactics in males (i.e., larger and older nest-holder males and smaller and younger sneaker males occur). Sneakers mimic both female's courtship behaviour and nuptial coloration to get access to nests and sneak fertilizations, and later in life transition into nest-holder males. Thus, this species offers the unique opportunity to study how the regulation of gene expression can contribute to intersex phenotypes and to the sequential expression of male and female behavioural phenotypes by the same individual. We found that at the whole brain level, expression of the sneaker tactic was paralleled by broader and divergent gene expression when compared to either females or nest-holder males, which were more similar between themselves. When looking at sex-biased transcripts, sneaker males are intersex rather than being either nest-holder or female-like, and their transcriptome is simultaneously demasculinized for nest-holder-biased transcripts and feminized for female-biased transcripts. These results indicate that evolutionary changes in reproductive plasticity can be achieved through regulation of gene expression, and in particular by varying the magnitude of expression of sex-biased genes, throughout the lifetime of the same individual.
Collapse
Affiliation(s)
- Sara D Cardoso
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,ISPA - Instituto Universitário, Lisbon, Portugal.,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - David Gonçalves
- Institute of Science and Environment, University of Saint Joseph, Macau, China
| | - Alexander Goesmann
- Center for Biotechnology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | | | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,ISPA - Instituto Universitário, Lisbon, Portugal.,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
24
|
Bukhari SA, Saul MC, Seward CH, Zhang H, Bensky M, James N, Zhao SD, Chandrasekaran S, Stubbs L, Bell AM. Temporal dynamics of neurogenomic plasticity in response to social interactions in male threespined sticklebacks. PLoS Genet 2017; 13:e1006840. [PMID: 28704398 PMCID: PMC5509087 DOI: 10.1371/journal.pgen.1006840] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/27/2017] [Indexed: 11/18/2022] Open
Abstract
Animals exhibit dramatic immediate behavioral plasticity in response to social interactions, and brief social interactions can shape the future social landscape. However, the molecular mechanisms contributing to behavioral plasticity are unclear. Here, we show that the genome dynamically responds to social interactions with multiple waves of transcription associated with distinct molecular functions in the brain of male threespined sticklebacks, a species famous for its behavioral repertoire and evolution. Some biological functions (e.g., hormone activity) peaked soon after a brief territorial challenge and then declined, while others (e.g., immune response) peaked hours afterwards. We identify transcription factors that are predicted to coordinate waves of transcription associated with different components of behavioral plasticity. Next, using H3K27Ac as a marker of chromatin accessibility, we show that a brief territorial intrusion was sufficient to cause rapid and dramatic changes in the epigenome. Finally, we integrate the time course brain gene expression data with a transcriptional regulatory network, and link gene expression to changes in chromatin accessibility. This study reveals rapid and dramatic epigenomic plasticity in response to a brief, highly consequential social interaction. Social interactions provoke changes in the brain and behavior but their underlying molecular mechanisms remain obscure. Male sticklebacks are small fish whose fitness depends on their ability to defend a territory. Here, by measuring the time course of gene expression in response to a territorial challenge in two brain regions, we show that a single brief territorial intrusion provoked waves of gene expression that persisted for hours afterwards, with waves of transcription associated with distinct biological processes. Moreover, a single territorial challenge caused dramatic changes to the epigenome. Changes in chromatin accessibility corresponded to changes in gene expression, and to the activity of transcription factors operating within gene regulatory networks. This study reveals rapid and dramatic epigenomic plasticity in response to a brief, highly consequential social interaction. These results suggest that meaningful social interactions (even brief ones) can provoke waves of transcription and changes to the epigenome which lead to changes in neural functioning, and those changes are a mechanism by which animals update their assessment of their social world.
Collapse
Affiliation(s)
- Syed Abbas Bukhari
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Illinois Informatics Institute, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Michael C. Saul
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Christopher H. Seward
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Huimin Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Miles Bensky
- Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Noelle James
- Neuroscience Program, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Sihai Dave Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Department of Statistics, University of Illinois, Urbana Champaign, Urbana, IL United States of America
| | - Sriram Chandrasekaran
- Harvard Society of Fellows, Harvard University, Cambridge, MA, United States of America
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, United States of America
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Lisa Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Department of Cell and Developmental Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Alison M. Bell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Neuroscience Program, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
25
|
Benowitz KM, McKinney EC, Cunningham CB, Moore AJ. Relating quantitative variation within a behavior to variation in transcription. Evolution 2017; 71:1999-2009. [PMID: 28542920 DOI: 10.1111/evo.13273] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/27/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022]
Abstract
Many studies have shown that variation in transcription is associated with changes in behavioral state, or with variation within a state, but little has been done to address if the same genes are involved in both. Here, we investigate the transcriptional basis of variation in parental provisioning using two species of burying beetle, Nicrophorus orbicollis and Nicrophorus vespilloides. We used RNA-seq to compare transcription in parents that provided high amounts of provisioning behavior versus low amounts in males and females of each species. We found no overarching transcriptional patterns distinguishing high from low caring parents, and no informative transcripts that displayed particularly large expression differences in either sex. However, we did find subtler gene expression differences between high and low provisioning parents that are consistent across both sexes and species. Furthermore, we show that transcripts previously implicated in transitioning into parental care in N. vespilloides had high variance in the levels of transcription and were unusually likely to display differential expression between high and low provisioning parents. Thus, quantitative behavioral variation appears to reflect many transcriptional differences of small effect. Furthermore, the same transcripts required for the transition between behavioral states are also related to variation within a behavioral state.
Collapse
Affiliation(s)
- Kyle M Benowitz
- Department of Genetics, University of Georgia, Athens, Georgia, 30602
| | | | - Christopher B Cunningham
- Department of Genetics, University of Georgia, Athens, Georgia, 30602.,Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK
| | - Allen J Moore
- Department of Genetics, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
26
|
Friesen CN, Ramsey ME, Cummings ME. Differential sensitivity to estrogen-induced opsin expression in two poeciliid freshwater fish species. Gen Comp Endocrinol 2017; 246:200-210. [PMID: 28013033 DOI: 10.1016/j.ygcen.2016.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
The sensory system shapes an individual's perception of the world, including social interactions with conspecifics, habitat selection, predator detection, and foraging behavior. Sensory signaling can be modulated by steroid hormones, making these processes particularly vulnerable to environmental perturbations. Here we examine the influence of exogenous estrogen manipulation on the visual physiology of female western mosquitofish (Gambusia affinis) and sailfin mollies (Poecilia latipinna), two poeciliid species that inhabit freshwater environments across the southern United States. We conducted two experiments to address this aim. First, we exposed females from both species to a one-week dose response experiment with three treatments of waterborne β-estradiol. Next, we conducted a one-week estrogen manipulation experiment with a waterborne estrogen (β-Estradiol), a selective estrogen receptor modulator (tamoxifen), or combination estrogen and tamoxifen treatment. We used quantitative PCR (qPCR) to examine the expression of cone opsins (SWS1, SWS2b, SWS2a, Rh2, LWS), rhodopsin (Rh1), and steroid receptor genes (ARα, ARβ, ERα, ERβ2, GPER) in the eyes of individual females from each species. Results from the dose response experiment revealed estradiol-sensitivity in opsin (SWS2a, Rh2, Rh1) and androgen receptor (ARα, ARβ) gene expression in mosquitofish females, but not sailfins. Meanwhile, our estrogen receptor modulation experiments revealed estrogen sensitivity in LWS opsin expression in both species, along with sensitivity in SWS1, SWS2b, and Rh2 opsins in mosquitofish. Comparisons of control females across experiments reveal species-level differences in opsin expression, with mosquitofish retinas dominated by short-wavelength sensitive opsins (SWS2b) and sailfins retinas dominated by medium- and long-wavelength sensitive opsins (Rh2 and LWS). Our research suggests that variation in exogenous levels of sex hormones within freshwater environments can modify the visual physiology of fishes in a species-specific manner.
Collapse
Affiliation(s)
- Caitlin N Friesen
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA. https://www.researchgate.net/profile/Caitlin_Friesen
| | - Mary E Ramsey
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Molly E Cummings
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
27
|
Gierszewski S, Müller K, Smielik I, Hütwohl JM, Kuhnert KD, Witte K. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-II. Validation. Curr Zool 2017; 63:65-74. [PMID: 29491964 PMCID: PMC5804156 DOI: 10.1093/cz/zow108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/24/2016] [Indexed: 01/30/2023] Open
Abstract
The use of computer animation in behavioral research is a state-of-the-art method for designing and presenting animated animals to live test animals. The major advantages of computer animations are: (1) the creation of animated animal stimuli with high variability of morphology and even behavior; (2) animated stimuli provide highly standardized, controlled and repeatable testing procedures; and (3) they allow a reduction in the number of live test animals regarding the 3Rs principle. But the use of animated animals should be attended by a thorough validation for each test species to verify that behavior measured with live animals toward virtual animals can also be expected with natural stimuli. Here we present results on the validation of a custom-made simulation for animated 3D sailfin mollies Poecilia latipinna and show that responses of live test females were as strong to an animated fish as to a video or a live male fish. Movement of an animated stimulus was important but female response was stronger toward a swimming 3D fish stimulus than to a "swimming" box. Moreover, male test fish were able to discriminate between animated male and female stimuli; hence, rendering the animated 3D fish a useful tool in mate-choice experiments with sailfin mollies.
Collapse
Affiliation(s)
- Stefanie Gierszewski
- Research Group of Ecology and Behavioral Biology, Institute of Biology, University of Siegen, Adolf-Reichwein-Straße 2, Siegen, 57068, Germany
| | - Klaus Müller
- Institute of Real-Time Learning Systems, Department of Electrical Engineering & Computer Science, University of Siegen, Hölderlinstraße 3, Siegen, 57076, Germany
| | - Ievgen Smielik
- Institute of Real-Time Learning Systems, Department of Electrical Engineering & Computer Science, University of Siegen, Hölderlinstraße 3, Siegen, 57076, Germany
| | - Jan-Marco Hütwohl
- Institute of Real-Time Learning Systems, Department of Electrical Engineering & Computer Science, University of Siegen, Hölderlinstraße 3, Siegen, 57076, Germany
| | - Klaus-Dieter Kuhnert
- Institute of Real-Time Learning Systems, Department of Electrical Engineering & Computer Science, University of Siegen, Hölderlinstraße 3, Siegen, 57076, Germany
| | - Klaudia Witte
- Research Group of Ecology and Behavioral Biology, Institute of Biology, University of Siegen, Adolf-Reichwein-Straße 2, Siegen, 57068, Germany
| |
Collapse
|
28
|
Brain Transcriptional Profiles of Male Alternative Reproductive Tactics and Females in Bluegill Sunfish. PLoS One 2016; 11:e0167509. [PMID: 27907106 PMCID: PMC5132329 DOI: 10.1371/journal.pone.0167509] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/15/2016] [Indexed: 11/19/2022] Open
Abstract
Bluegill sunfish (Lepomis macrochirus) are one of the classic systems for studying male alternative reproductive tactics (ARTs) in teleost fishes. In this species, there are two distinct life histories: parental and cuckolder, encompassing three reproductive tactics, parental, satellite, and sneaker. The parental life history is fixed, whereas individuals who enter the cuckolder life history transition from sneaker to satellite tactic as they grow. For this study, we used RNAseq to characterize the brain transcriptome of the three male tactics and females during spawning to identify gene ontology (GO) categories and potential candidate genes associated with each tactic. We found that sneaker males had higher levels of gene expression differentiation compared to the other two male tactics. Sneaker males also had higher expression in ionotropic glutamate receptor genes, specifically AMPA receptors, compared to other males, which may be important for increased spatial working memory while attempting to cuckold parental males at their nests. Larger differences in gene expression also occurred among male tactics than between males and females. We found significant expression differences in several candidate genes that were previously identified in other species with ARTs and suggest a previously undescribed role for cAMP-responsive element modulator (crem) in influencing parental male behaviors during spawning.
Collapse
|
29
|
Nugent BM, Stiver KA, Alonzo SH, Hofmann HA. Neuroendocrine profiles associated with discrete behavioural variation in
Symphodus ocellatus
, a species with male alternative reproductive tactics. Mol Ecol 2016; 25:5212-5227. [DOI: 10.1111/mec.13828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022]
Affiliation(s)
- B. M. Nugent
- Department of Ecology and Evolutionary Biology Yale University 165 Prospect St. New Haven CT 06520 USA
- Department of Integrative Biology Center for Computational Biology and Bioinformatics The University of Texas at Austin 2415 Speedway Austin TX 78712 USA
| | - K. A. Stiver
- Department of Ecology and Evolutionary Biology Yale University 165 Prospect St. New Haven CT 06520 USA
- Department of Psychology Southern Connecticut State University 501 Crescent St. New Haven CT 06515 USA
| | - S. H. Alonzo
- Department of Ecology and Evolutionary Biology Yale University 165 Prospect St. New Haven CT 06520 USA
- Department of Ecology and Evolutionary Biology University of California Santa Cruz 1156 High St. Santa Cruz CA 95064 USA
| | - H. A. Hofmann
- Department of Integrative Biology Center for Computational Biology and Bioinformatics The University of Texas at Austin 2415 Speedway Austin TX 78712 USA
| |
Collapse
|
30
|
Setoguchi S, Kudo A, Takanashi T, Ishikawa Y, Matsuo T. Social context-dependent modification of courtship behaviour in Drosophila prolongata. Proc Biol Sci 2016; 282:20151377. [PMID: 26538591 DOI: 10.1098/rspb.2015.1377] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Induction of alternative mating tactics by surrounding conditions, such as the presence of conspecific males, is observed in many animal species. Satellite behaviour is a remarkable example in which parasitic males exploit the reproductive investment by other males. Despite the abundance of parasitic mating tactics, however, few examples are known in which males alter courtship behaviour as a counter tactic against parasitic rivals. The fruit fly Drosophila prolongata shows prominent sexual dimorphism in the forelegs. When courting females, males of D. prolongata perform 'leg vibration', in which a male vibrates the female's body with his enlarged forelegs. In this study, we found that leg vibration increased female receptivity, but it also raised a risk of interception of the female by rival males. Consequently, in the presence of rivals, males of D. prolongata shifted their courtship behaviour from leg vibration to 'rubbing', which was less vulnerable to interference by rival males. These results demonstrated that the males of D. prolongata adjust their courtship behaviour to circumvent the social context-dependent risk of leg vibration.
Collapse
Affiliation(s)
- Shiori Setoguchi
- Department of Agricultural and Environmental Biology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ayumi Kudo
- Department of Agricultural and Environmental Biology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuma Takanashi
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Matsuno-sato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Yukio Ishikawa
- Department of Agricultural and Environmental Biology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Matsuo
- Department of Agricultural and Environmental Biology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
31
|
Fischer EK, Ghalambor CK, Hoke KL. Can a Network Approach Resolve How Adaptive vs Nonadaptive Plasticity Impacts Evolutionary Trajectories? Integr Comp Biol 2016; 56:877-888. [DOI: 10.1093/icb/icw087] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
Todd EV, Black MA, Gemmell NJ. The power and promise of RNA-seq in ecology and evolution. Mol Ecol 2016; 25:1224-41. [DOI: 10.1111/mec.13526] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/05/2015] [Accepted: 12/27/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Erica V. Todd
- Department of Anatomy; University of Otago; PO Box 913 Dunedin 9054 New Zealand
| | - Michael A. Black
- Department of Biochemistry; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Neil J. Gemmell
- Department of Anatomy; University of Otago; PO Box 913 Dunedin 9054 New Zealand
| |
Collapse
|
33
|
Bell AM, Bukhari SA, Sanogo YO. Natural variation in brain gene expression profiles of aggressive and nonaggressive individual sticklebacks. BEHAVIOUR 2016; 153:1723-1743. [PMID: 29046592 DOI: 10.1163/1568539x-00003393] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within many species, some individuals are consistently more aggressive than others. We examine whether there are differences in brain gene expression between aggressive versus nonaggressive behavioural types of individuals within a natural population of male three-spined sticklebacks (Gasterosteus aculeatus). We compared gene expression profiles of aggressive male sticklebacks to nonaggressive males in four regions of the brain (brainstem, cerebellum, diencephalon and telencephalon). Relatively few genes were differentially expressed between behavioural types in telencephalon, cerebellum and diencephalon, but hundreds of genes were differentially expressed in brainstem, a brain area involved in detecting threats. Six genes that were differentially expressed in response to a territorial intrusion in a previous study were also differentially expressed between behavioural types in this study, implying primarily non-shared but some shared molecular mechanisms. Our findings offer new insights into the molecular causes and correlates of behavioural plasticity and individual variation in behaviour.
Collapse
Affiliation(s)
- Alison M Bell
- School of Integrative Biology, Program in Ecology, Evolution and Conservation, Program in Neuroscience, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, IL, USA
| | - Syed Abbas Bukhari
- Illinois Informatics Program, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, IL, USA
| | - Yibayiri Osee Sanogo
- Genomics Core, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
34
|
Aubin‐Horth N. Using an integrative approach to investigate the evolution of behaviour. Evol Appl 2016; 9:166-80. [PMID: 27087846 PMCID: PMC4780388 DOI: 10.1111/eva.12300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/24/2015] [Indexed: 12/26/2022] Open
Abstract
Behaviour is a central focus of interest in biology because it has an impact on several aspects of an organism's life. Evolutionary biologists have realised the advantage of an integrative approach that jointly studies the molecular, cellular and physiological levels of an individual to link them with the organismal behavioural phenotype. First, this mechanistic information helps in understanding physiological and evolutionary constraints acting on the behavioural response to the environment and its evolution. Second, it furthers our understanding of the process of molecular convergent evolution. Finally, we learn about natural variation in molecular, cellular and physiological traits present in wild populations and their underlying genetic basis, which can be a substrate for selection to act on. I illustrate these points using our work on behaviour variation in fishes. The information on the mechanistic bases of behaviour variation in various species and behaviours will contribute to an ecological annotation of genes and to uncover new mechanisms implicated in how this astonishing behavioural diversity arose, is maintained and will evolve.
Collapse
Affiliation(s)
- Nadia Aubin‐Horth
- Département de biologie & Institut de Biologie Intégrative et des SystèmesUniversité LavalQuébecQCCanada
| |
Collapse
|
35
|
Cummings ME, Ramsey ME. Mate choice as social cognition: predicting female behavioral and neural plasticity as a function of alternative male reproductive tactics. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Bell AM, Dochtermann NA. Integrating molecular mechanisms into quantitative genetics to understand consistent individual differences in behavior. Curr Opin Behav Sci 2015; 6:111-114. [PMID: 26858967 DOI: 10.1016/j.cobeha.2015.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It is now well appreciated that individual animals behave differently from one another and that individual differences in behaviors-personality differences-are maintained through time and across situations. Quantitative genetics has emerged as a conceptual basis for understanding the key ingredients of personality: (co)variation and plasticity. However, the results from quantitative genetic analyses are often divorced from underlying molecular or other proximate mechanisms. This disconnect has the potential to impede an integrated understanding of behavior and is a disconnect present throughout evolutionary ecology. Here we discuss some of the main conceptual connections between personality and quantitative genetics, the relationship of both with genomic tools, and areas that require integration. With its consideration of both trait variation and plasticity, the study of animal personality offers new opportunities to incorporate molecular mechanisms into both the trait partitioning and reaction norm frameworks provided by quantitative genetics.
Collapse
Affiliation(s)
- Alison M Bell
- School of Integrative Biology, Carl R. Woese Institute for Genomic Biology, Neuroscience Program and Program in Ecology, Evolution and Conservation
| | - Ned A Dochtermann
- Department of Biological Sciences, Dept. 2715, North Dakota State University, PO Box 6050, Fargo, ND 58108-6050
| |
Collapse
|
37
|
Hill DL, Pillay N, Schradin C. Alternative reproductive tactics in female striped mice: heavier females are more likely to breed solitarily than communally. J Anim Ecol 2015; 84:1497-508. [DOI: 10.1111/1365-2656.12431] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 07/22/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Davina L. Hill
- School of Animal, Plant and Environmental Sciences; University of the Witwatersrand; Private Bag 3 Wits 2050 Johannesburg South Africa
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences; University of the Witwatersrand; Private Bag 3 Wits 2050 Johannesburg South Africa
| | - Carsten Schradin
- School of Animal, Plant and Environmental Sciences; University of the Witwatersrand; Private Bag 3 Wits 2050 Johannesburg South Africa
- IPHC-DEPE; Université de Strasbourg; 23 rue Becquerel 67087 Strasbourg France
- CNRS; UMR7178; 67087 Strasbourg France
| |
Collapse
|
38
|
Mäkinen H, Papakostas S, Vøllestad LA, Leder EH, Primmer CR. Plastic and Evolutionary Gene Expression Responses Are Correlated in European Grayling (Thymallus thymallus) Subpopulations Adapted to Different Thermal Environments. J Hered 2015; 107:82-9. [DOI: 10.1093/jhered/esv069] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/17/2015] [Indexed: 02/06/2023] Open
|
39
|
Feng NY, Fergus DJ, Bass AH. Neural transcriptome reveals molecular mechanisms for temporal control of vocalization across multiple timescales. BMC Genomics 2015; 16:408. [PMID: 26014649 PMCID: PMC4446069 DOI: 10.1186/s12864-015-1577-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/24/2015] [Indexed: 12/13/2022] Open
Abstract
Background Vocalization is a prominent social behavior among vertebrates, including in the midshipman fish, an established model for elucidating the neural basis of acoustic communication. Courtship vocalizations produced by territorial males are essential for reproductive success, vary over daily and seasonal cycles, and last up to hours per call. Vocalizations rely upon extreme synchrony and millisecond precision in the firing of a homogeneous population of motoneurons, the vocal motor nucleus (VMN). Although studies have identified neural mechanisms driving rapid, precise, and stable neuronal firing over long periods of calling, little is known about underlying genetic/molecular mechanisms. Results We used RNA sequencing-based transcriptome analyses to compare patterns of gene expression in VMN to the surrounding hindbrain across three daily and seasonal time points of high and low sound production to identify candidate genes that underlie VMN’s intrinsic and network neuronal properties. Results from gene ontology enrichment, enzyme pathway mapping, and gene category-wide expression levels highlighted the importance of cellular respiration in VMN function, consistent with the high energetic demands of sustained vocal behavior. Functionally important candidate genes upregulated in the VMN, including at time points corresponding to high natural vocal activity, encode ion channels and neurotransmitter receptors, hormone receptors and biosynthetic enzymes, neuromodulators, aerobic respiration enzymes, and antioxidants. Quantitative PCR and RNA-seq expression levels for 28 genes were significantly correlated. Many candidate gene products regulate mechanisms of neuronal excitability, including those previously identified in VMN motoneurons, as well as novel ones that remain to be investigated. Supporting evidence from previous studies in midshipman strongly validate the value of transcriptomic analyses for linking genes to neural characters that drive behavior. Conclusions Transcriptome analyses highlighted a suite of molecular mechanisms that regulate vocalization over behaviorally relevant timescales, spanning milliseconds to hours and seasons. To our knowledge, this is the first comprehensive characterization of gene expression in a dedicated vocal motor nucleus. Candidate genes identified here may belong to a conserved genetic toolkit for vocal motoneurons facing similar energetic and neurophysiological demands. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1577-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ni Y Feng
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA.
| | - Daniel J Fergus
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA. .,Current Address: North Carolina Museum of Natural Sciences, Genomics and Microbiology, 27601, Raleigh, NC, USA.
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
40
|
Abstract
The evolution of placentas in poeciliid fishes is associated with conception of overlapping litters and male mating strategies becoming more coercive. Sperm competition in ovaries of multiply-inseminated females may favor fertilization of immature eggs during ongoing pregnancies.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
41
|
Stiver KA, Harris RM, Townsend JP, Hofmann HA, Alonzo SH. Neural Gene Expression Profiles and Androgen Levels Underlie Alternative Reproductive Tactics in the Ocellated Wrasse,Symphodus ocellatus. Ethology 2014. [DOI: 10.1111/eth.12324] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kelly A. Stiver
- Psychology Department; Southern Connecticut State University; New Haven CT USA
- Ecology and Evolutionary Biology; Yale University; New Haven CT USA
| | - Rayna M. Harris
- Department of Integrative Biology; Institute for Cellular and Molecular Biology; Center for Computational Biology and Bioinformatics; The University of Texas at Austin; Austin TX USA
| | | | - Hans A. Hofmann
- Department of Integrative Biology; Institute for Cellular and Molecular Biology; Center for Computational Biology and Bioinformatics; The University of Texas at Austin; Austin TX USA
| | - Suzanne H. Alonzo
- Ecology and Evolutionary Biology; Yale University; New Haven CT USA
- Department of Ecology and Evolutionary Biology, Earth and Marine Sciences Building; University of California Santa Cruz; Santa Cruz CA USA
| |
Collapse
|
42
|
Zuk M, Balenger SL. Behavioral ecology and genomics: new directions, or just a more detailed map? Behav Ecol 2014. [DOI: 10.1093/beheco/aru172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|