1
|
Bundschuh M, Mesquita-Joanes F, Rico A, Camacho A. Understanding Ecological Complexity in a Chemical Stress Context: A Reflection on Recolonization, Recovery, and Adaptation of Aquatic Populations and Communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1857-1866. [PMID: 37204216 DOI: 10.1002/etc.5677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Recovery, recolonization, and adaptation in a chemical stress context are processes that regenerate local populations and communities as well as the functions these communities perform. Recolonization, either by species previously present or by new species able to occupy the niches left empty, refers to a metacommunity process with stressed ecosystems benefiting from the dispersal of organisms from other areas. A potential consequence of recolonization is a limited capacity of local populations to adapt to potentially repeating events of chemical stress exposure when their niches have been effectively occupied by the new colonizers or by new genetic lineages of the taxa previously present. Recovery, instead, is an internal process occurring within stressed ecosystems. More specifically, the impact of a stressor on a community benefits less sensitive individuals of a local population as well as less sensitive taxa within a community. Finally, adaptation refers to phenotypic and, sometimes, genetic changes at the individual and population levels, allowing the permanence of individuals of previously existing taxa without necessarily changing the community taxonomic composition (i.e., not replacing sensitive species). Because these processes are usually operating in parallel in nature, though at different degrees, it seems relevant to try to understand their relative importance for the regeneration of community structure and ecosystem functioning after chemical exposure. In the present critical perspective, we employed case studies supporting our understanding of the underlying processes with the hope to provide a theoretical framework to disentangle the relevance of the three processes for the regeneration of a biological community after chemical exposure. Finally, we provide some recommendations to experimentally compare their relative importance so that the net effects of these processes can be used to parameterize risk-assessment models and inform ecosystem management. Environ Toxicol Chem 2023;42:1857-1866. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Francesc Mesquita-Joanes
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, València, Spain
| | - Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, València, Spain
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, València, Spain
| |
Collapse
|
2
|
Schneeweiss A, Juvigny-Khenafou NPD, Osakpolor S, Scharmüller A, Scheu S, Schreiner VC, Ashauer R, Escher BI, Leese F, Schäfer RB. Three perspectives on the prediction of chemical effects in ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:21-40. [PMID: 36131639 DOI: 10.1111/gcb.16438] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The increasing production, use and emission of synthetic chemicals into the environment represents a major driver of global change. The large number of synthetic chemicals, limited knowledge on exposure patterns and effects in organisms and their interaction with other global change drivers hamper the prediction of effects in ecosystems. However, recent advances in biomolecular and computational methods are promising to improve our capacity for prediction. We delineate three idealised perspectives for the prediction of chemical effects: the suborganismal, organismal and ecological perspective, which are currently largely separated. Each of the outlined perspectives includes essential and complementary theories and tools for prediction but captures only part of the phenomenon of chemical effects. Links between the perspectives may foster predictive modelling of chemical effects in ecosystems and extrapolation between species. A major challenge for the linkage is the lack of data sets simultaneously covering different levels of biological organisation (here referred to as biological levels) as well as varying temporal and spatial scales. Synthesising the three perspectives, some central aspects and associated types of data seem particularly necessary to improve prediction. First, suborganism- and organism-level responses to chemicals need to be recorded and tested for relationships with chemical groups and organism traits. Second, metrics that are measurable at many biological levels, such as energy, need to be scrutinised for their potential to integrate across levels. Third, experimental data on the simultaneous response over multiple biological levels and spatiotemporal scales are required. These could be collected in nested and interconnected micro- and mesocosm experiments. Lastly, prioritisation of processes involved in the prediction framework needs to find a balance between simplification and capturing the essential complexity of a system. For example, in some cases, eco-evolutionary dynamics and interactions may need stronger consideration. Prediction needs to move from a static to a real-world eco-evolutionary view.
Collapse
Affiliation(s)
- Anke Schneeweiss
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | | | - Stephen Osakpolor
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Andreas Scharmüller
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
- Institut Terre et Environnement de Strasbourg (ITES), UMR 7063, CNRS-Université de Strasbourg-ENGEES, Strasbourg, France
| | - Sebastian Scheu
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Verena C Schreiner
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Roman Ashauer
- Syngenta Crop Protection AG, Basel, Switzerland
- Department of Environment and Geography, University of York, York, UK
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | - Ralf B Schäfer
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| |
Collapse
|
3
|
Sumudumali RGI, Jayawardana JMCK. A Review of Biological Monitoring of Aquatic Ecosystems Approaches: with Special Reference to Macroinvertebrates and Pesticide Pollution. ENVIRONMENTAL MANAGEMENT 2021; 67:263-276. [PMID: 33462679 DOI: 10.1007/s00267-020-01423-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Biological monitoring is the evaluating changes in the environment using the biological responses with the intent of using such information in quality control of the ecosystem. Biomarkers and bioindicators are two main components of the hierarchy of biomonitoring process. Bioindicators can be used to monitor changes of ecosystems and to distinguish alteration of human impact from natural variability. There is a wide range of aquatic taxa such as macroinvertebrates, fish and periphyton, planktons which are successfully used in the biomonitoring process. Among them, macroinvertebrates are an important group of aquatic organisms that involves transferring energy and material through the trophic levels of the aquatic food chain and their sensitivity to environmental changes differs among the species. The main approaches of assessing freshwater ecosystems health using macroinvertebrates include measurement of diversity indices, biotic indices, multimetric approaches, multivariate approaches, Indices of Biological Integrity (IBI), and trait-based approaches. Among these, biotic indices and multimetric approaches are commonly used to evaluate the pesticide impacts on aquatic systems. Recently developed trait-based approaches such as SPEcies At Risk of pesticides (SPEAR) index was successfully applied in temperate regions to monitor the events of pesticide pollution of aquatic ecosystems but with limited use in tropics. This paper reviews the literature on different approaches of biomonitoring of the aquatic environment giving special reference to macroinvertebrates. It also reviews the literature on how biomonitoring could be used to monitor pesticide pollution of the aquatic environment. Thus the review aims to instil the importance of current approaches of biomonitoring for the conservation and management of aquatic ecosystems especially in the regions of the world where such knowledge has not been integrated in ecosystem conservation approaches.
Collapse
Affiliation(s)
- R G I Sumudumali
- Faculty of Graduate Studies, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - J M C K Jayawardana
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka.
| |
Collapse
|
4
|
de Melo MS, Das K, Gismondi E. Inorganic mercury effects on biomarker gene expressions of a freshwater amphipod at two temperatures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111815. [PMID: 33387774 DOI: 10.1016/j.ecoenv.2020.111815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) is a global contaminant resulting of both natural processes and human activities. In aquatic environments, studies conducted on vertebrates highlighted changes of gene expression or activity of antitoxic and oxidative enzymes. However, although Hg is a highly toxic compound in aquatic environments, only a few studies have evaluated the lethal and sublethal effects of inorganic Hg on Gammarus sp. Therefore, this study aimed at evaluating the effects of inorganic Hg (HgCl2) on the expression of 17 genes involved in crucial biological functions or mechanisms for organisms, namely respiration, osmoregulation, apoptosis, immune and endocrine system, and antioxidative and antitoxic defence systems. The study was performed in males of the freshwater amphipod Gammarus pulex exposed to two environmentally relevant concentrations (50 and 500 ng/L) at two temperature regime fluctuations (16 °C and 20 °C +/-2 °C) for 7 and 21 days. Results showed that G. pulex mortality was dependent on Hg concentration and temperature; the higher the concentration and temperature, the higher the mortality rate. In addition, the Integrated Biomarker Response emphasized that HgCl2 toxicity was dependent on the concentration, time and temperature of exposure. Overall, antioxidant and antitoxic defences, as well as the endocrine and immune systems, were the biological functions most impacted by Hg exposure (based on the concentration, duration, and temperature tested). Conversely, osmoregulation was the least affected biological function. The results also demonstrated a possible adaptation of G. pulex after 21 days at 500 ng/L, regardless of the exposure temperature. This study allowed us to show that Hg deregulates many crucial biological functions after a short exposure, but that during a long exposure, an adaptation phenomenon could occur, regardless of temperature.
Collapse
Affiliation(s)
- Madson Silveira de Melo
- Laboratório de Reprodução e Desenvolvimento Animal, Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Laboratory of Animal Ecology and Ecotoxicology (LEAE), Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), University of Liège B6c, 11 allée du 6 Août, 4000, Liège, Belgium
| | - Krishna Das
- Laboratory of Oceanology, Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium
| | - Eric Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE), Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), University of Liège B6c, 11 allée du 6 Août, 4000, Liège, Belgium.
| |
Collapse
|
5
|
Siddique A, Liess M, Shahid N, Becker JM. Insecticides in agricultural streams exert pressure for adaptation but impair performance in Gammarus pulex at regulatory acceptable concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137750. [PMID: 32199358 DOI: 10.1016/j.scitotenv.2020.137750] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Pesticide exposure in agricultural streams requires non-target species to adapt. However, pesticides may reduce performance in between exposure events due to long-term effects and physiological fitness costs of adaptation. Here, we investigated the long-term consequences of pesticide exposure to low concentrations in the widespread crustacean Gammarus pulex. We collected populations from six German streams covering no to moderate agricultural pesticide exposure. Peak concentrations ranged up to 1/400 of their acute median lethal concentration (Toxic Unit = -2.6), resulting in significant changes in the macroinvertebrate community composition (SPEARpesticides = up to 0.12). Acute toxicity tests revealed up to 2.5-fold increased tolerance towards the most frequently found insecticide clothianidin compared to populations from non-contaminated streams. However, populations showing increased insecticide tolerance were characterized by reduced survival, per capita growth and mating when cultured under pesticide-free conditions in the laboratory for three months. We conclude that pesticide pollution triggers adaptation both at the species and the community level even at concentrations considered to be safe according to the European pesticide legislation. In G. pulex, exposure and adaptation are associated with impaired performance which potentially affects ecosystem functions such as leaf litter degradation. These long-term impairments need to be considered in deriving safe concentrations.
Collapse
Affiliation(s)
- Ayesha Siddique
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Matthias Liess
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Naeem Shahid
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100 Vehari, Pakistan
| | - Jeremias Martin Becker
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
6
|
Bacterial adaptation is constrained in complex communities. Nat Commun 2020; 11:754. [PMID: 32029713 PMCID: PMC7005322 DOI: 10.1038/s41467-020-14570-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
A major unresolved question is how bacteria living in complex communities respond to environmental changes. In communities, biotic interactions may either facilitate or constrain evolution depending on whether the interactions expand or contract the range of ecological opportunities. A fundamental challenge is to understand how the surrounding biotic community modifies evolutionary trajectories as species adapt to novel environmental conditions. Here we show that community context can dramatically alter evolutionary dynamics using a novel approach that 'cages' individual focal strains within complex communities. We find that evolution of focal bacterial strains depends on properties both of the focal strain and of the surrounding community. In particular, there is a stronger evolutionary response in low-diversity communities, and when the focal species have a larger genome and are initially poorly adapted. We see how community context affects resource usage and detect genetic changes involved in carbon metabolism and inter-specific interaction. The findings demonstrate that adaptation to new environmental conditions should be investigated in the context of interspecific interactions.
Collapse
|
7
|
Wang C, Jiao X, Liu G. A toxic effect at molecular level can be expressed at community level: A case study on toxic hierarchy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133573. [PMID: 31374497 DOI: 10.1016/j.scitotenv.2019.07.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
This study demonstrated hierarchical toxicity and addressed the relevance and differences of toxic effects at the molecular, individual, population, and community levels. Superoxide dismutase (SOD) activity, photosynthetic oxygen production, filtration rate, life span and densities of Platymonas helgolandica var. tsingtaoensis, Isochrysis galbana, and Brachionus plicatilis in single-species tests and customized community tests were examined in response to a concentration gradient of aniline ranging from 0 to 50.0 mg L-1. The SOD activity was the most sensitive endpoint with the fastest response to aniline according to the calculated no-detection of toxic effect concentration (NDEC) and the EC50. The individual- and population-level endpoints, showing a lower response to aniline, could be constructed from the SOD activity in a stepwise manner. A multi-scale hierarchical model with endpoints at 4 levels was used to characterize toxic effects, at the scales of time and size. Linkage of SOD activity to toxic effects at a community level was established level by level to express the change in the customized community with the concentration of aniline. The calculated threshold concentration of aniline for the customized community was nearly equal to the minimum NDEC, demonstrating as great an impact on interactions by the toxic effect at subpopulation-level as that at the community level. However, we identified a trend of higher sensitivities of measured endpoints at sub-population level, decreasing sensitivity at higher levels but a great variety of sensitivities at community level. Although the characteristics of toxic effects are different at different levels, the structure and process of endpoints at adjacent levels are related to and interact with each other. The resulted indirect effects, together with direct effect, determine the toxic effect at every levels of biological complexity. The toxic effects at adjacent levels should be studied at the same time to better understand the ecological risk of contaminants.
Collapse
Affiliation(s)
- Changyou Wang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Research Center for Ocean Survey Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Xinming Jiao
- Jiangsu Environmental Monitoring Center, Nanjing 210036, China
| | - Gang Liu
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Research Center for Ocean Survey Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
8
|
Abstract
We present a model to identify the effects of low toxicant concentrations. Due to inadequate models, such effects have so far often been misinterpreted as random variability. Instead, a tri-phasic relationship describes the effects of a toxicant when a broad range of concentrations is assessed: i) at high concentrations where substantial mortality occurs (LC50), we confirmed the traditional sigmoidal response curve (ii) at low concentrations about 10 times below the LC50, we identified higher survival than previously modelled, and (iii) at ultra-low concentrations starting at around 100 times below the LC50, higher mortality than previously modelled. This suggests that individuals benefit from low toxicant stress. Accordingly, we postulate that in the absence of external toxicant stress individuals are affected by an internal “System Stress” (SyS) and that SyS is reduced with increasing strength of toxicant stress. We show that the observed tri-phasic concentration-effect relationship can be modelled on the basis of this approach. Here we revealed that toxicant-related effects (LC5) occurred at remarkably low concentrations, 3 to 4 orders of magnitude below those concentrations inducing strong effects (LC50). Thus, the ECx-SyS model presented allows us to attribute ultra-low toxicant concentrations to their effects on individuals. This information will contribute to performing a more realistic environmental and human risk assessment.
Collapse
|
9
|
Zhang C, Jansen M, De Meester L, Stoks R. Thermal evolution offsets the elevated toxicity of a contaminant under warming: A resurrection study in Daphnia magna. Evol Appl 2018; 11:1425-1436. [PMID: 30151050 PMCID: PMC6099814 DOI: 10.1111/eva.12637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/28/2018] [Indexed: 01/01/2023] Open
Abstract
Synergistic interactions between temperature and contaminants are a major challenge for ecological risk assessment, especially under global warming. While thermal evolution may increase the ability to deal with warming, it is unknown whether it may also affect the ability to deal with the many contaminants that are more toxic at higher temperatures. We investigated how evolution of genetic adaptation to warming affected the interactions between warming and a novel stressor: zinc oxide nanoparticles (nZnO) in a natural population of Daphnia magna using resurrection ecology. We hatched resting eggs from two D. magna subpopulations (old: 1955-1965, recent: 1995-2005) from the sediment of a lake that experienced an increase in average temperature and in recurrence of heat waves but was never exposed to industrial waste. In the old "ancestral" subpopulation, exposure to a sublethal concentration of nZnO decreased the intrinsic growth rate, metabolic activity, and energy reserves at 24°C but not at 20°C, indicating a synergism between warming and nZnO. In contrast, these synergistic effects disappeared in the recent "derived" subpopulation that evolved a lower sensitivity to nZnO at 24°C, which indicates that thermal evolution could offset the elevated toxicity of nZnO under warming. This evolution of reduced sensitivity to nZnO under warming could not be explained by changes in the total internal zinc accumulation but was partially associated with the evolution of the expression of a key metal detoxification gene under warming. Our results suggest that the increased sensitivity to the sublethal concentration of nZnO under the predicted 4°C warming by the end of this century may be counteracted by thermal evolution in this D. magna population. Our results illustrate the importance of evolution to warming in shaping the responses to another anthropogenic stressor, here a contaminant. More general, genetic adaptation to an environmental stressor may ensure that synergistic effects between contaminants and this environmental stressor will not be present anymore.
Collapse
Affiliation(s)
- Chao Zhang
- Evolutionary Stress Ecology and EcotoxicologyKU LeuvenLeuvenBelgium
- Laboratory of Aquatic Ecology, Evolution and ConservationKU LeuvenLeuvenBelgium
| | - Mieke Jansen
- Laboratory of Aquatic Ecology, Evolution and ConservationKU LeuvenLeuvenBelgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and ConservationKU LeuvenLeuvenBelgium
| | - Robby Stoks
- Evolutionary Stress Ecology and EcotoxicologyKU LeuvenLeuvenBelgium
| |
Collapse
|
10
|
Weigand H, Weiss M, Cai H, Li Y, Yu L, Zhang C, Leese F. Fishing in troubled waters: Revealing genomic signatures of local adaptation in response to freshwater pollutants in two macroinvertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:875-891. [PMID: 29602123 DOI: 10.1016/j.scitotenv.2018.03.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/02/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Local adaptation is of fundamental importance for populations to cope with fast, human-mediated environmental changes. In the past, analyses of local adaptation were restricted to few model species. Nowadays, due to the increased affordability of high-throughput sequencing, local adaptation can be studied much easier by searching for patterns of positive selection using genomic data. In the present study, we analysed effects of wastewater treatment plant and ore mining effluents on stream invertebrate populations. The two different anthropogenic stressors have impacted on stream ecosystems over different time scales and with different potencies. As target organisms we selected two macroinvertebrate species with different life histories and dispersal capacities: the caddisfly Glossosoma conformis and the flatworm Dugesia gonocephala. We applied a genome-wide genetic marker technique, termed ddRAD (double digest restriction site associated DNA) sequencing, to identify local adaptation. Ten and 18% of all loci were identified as candidate loci for local adaptation in D. gonocephala and G. conformis, respectively. However, after stringent re-evaluation of the genomic data, strong evidence for local adaptation remained only for one population of the flatworm D. gonocephala affected by high copper concentration from ore mining. One of the corresponding candidate loci is arnt, a gene associated with the response to xenobiotics and potentially involved in metal detoxification. Our results support the hypotheses that local adaptation is more likely to play a central role in environments impacted by a stronger stressor for a longer time and that it is more likely to occur in species with lower migration rates. However, these findings have to be interpreted cautiously, as several confounding factors may have limited the possibility to detect local adaptation. Our study highlights how genomic tools can be used to study the adaptability and thus resistance of natural populations to changing environments and we discuss prospects and limitations of the methods.
Collapse
Affiliation(s)
- Hannah Weigand
- Aquatic Ecosystem Research, University of Duisburg-Essen, 45141 Essen, Germany.
| | - Martina Weiss
- Aquatic Ecosystem Research, University of Duisburg-Essen, 45141 Essen, Germany
| | - Huimin Cai
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | | | - Lili Yu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Florian Leese
- Aquatic Ecosystem Research, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
11
|
Shahid N, Becker JM, Krauss M, Brack W, Liess M. Adaptation of Gammarus pulex to agricultural insecticide contamination in streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:479-485. [PMID: 29195196 DOI: 10.1016/j.scitotenv.2017.11.220] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/19/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Exposure to pesticides affects non-target aquatic communities, with substantial consequences on ecosystem services. Adaptation of exposed populations may reduce the effects of pesticides. However, it is not known under which conditions adaptation occurs when only a low toxic pressure from pesticides is present. Here, we show that Gammarus pulex, a dominant macroinvertebrate species in many agricultural streams, acquires increased tolerance to pesticides when recolonization from non-contaminated refuge areas is low. Populations in the field that were exposed to pesticides at concentrations several orders of magnitude below considerable acute effects showed almost 3-fold higher tolerance to the neonicotinoid insecticide clothianidin (mean EC50 218μgL-1) compared with non-exposed populations (mean EC50 81μgL-1). This tolerance of exposed populations increased from 2- to 4-fold with increasing distance to the next refuge area (0 to 10km). We conclude that the development of tolerance for non-target species may occur at very low concentrations, much below those affecting sensitive test organisms and also lower than those predicted to be safe by governmental risk assessment frameworks.
Collapse
Affiliation(s)
- Naeem Shahid
- UFZ, Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany; Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan.
| | - Jeremias Martin Becker
- UFZ, Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany
| | - Martin Krauss
- UFZ, Helmholtz Centre for Environmental Research, Department Effect-Directed Analysis, Permoserstraße 15, 04318 Leipzig, Germany
| | - Werner Brack
- RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany; UFZ, Helmholtz Centre for Environmental Research, Department Effect-Directed Analysis, Permoserstraße 15, 04318 Leipzig, Germany
| | - Matthias Liess
- UFZ, Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany.
| |
Collapse
|
12
|
Becker JM, Liess M. Species Diversity Hinders Adaptation to Toxicants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10195-10202. [PMID: 28753286 DOI: 10.1021/acs.est.7b02440] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Environmental toxicants such as pesticides exert strong selection pressure on many species. While the resulting development of pesticide resistance in agricultural pest species is well-known, reports on the extent of adaptation in exposed nontarget species are contradictory. These contradictory reports highlight a continuing challenge in understanding the relevant ecological mechanisms that facilitate or hinder adaptation to toxicants in the field. Here we show that species diversity hinders the adaptation to toxicants. In agricultural streams with low diversity, we observed an up to 8-fold increase in insecticide tolerance in a total of 17 macroinvertebrate species that was not observed in more diverse communities under similar contamination. High species diversity occurred independently from adjacent nonpolluted refuge areas. Therefore, the low level of adaptation in diverse streams cannot be explained by an increased recolonization of sensitive individuals from refuge areas. Instead, high intraspecific competition may facilitate the selection for increased tolerance in low-diverse communities. In diverse communities, by contrast, species interactions may reduce intraspecific competition and, thus, the potential for developing toxicant resistance. We suggest that this mechanism may be the general case in adaptation to environmental stressors. Additionally, we conclude that the current framework for risk assessment of pesticides is not protective against selection for tolerant organisms and the associated risk of genetic erosion.
Collapse
Affiliation(s)
- Jeremias Martin Becker
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
- Department of Ecosystem Analysis, RWTH Aachen University, Institute for Environmental Research , Worringerweg 1, 52074 Aachen, Germany
| | - Matthias Liess
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
- Department of Ecosystem Analysis, RWTH Aachen University, Institute for Environmental Research , Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
13
|
Kefford BJ, Buchwalter D, Cañedo-Argüelles M, Davis J, Duncan RP, Hoffmann A, Thompson R. Salinized rivers: degraded systems or new habitats for salt-tolerant faunas? Biol Lett 2016; 12:20151072. [PMID: 26932680 DOI: 10.1098/rsbl.2015.1072] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Anthropogenic salinization of rivers is an emerging issue of global concern, with significant adverse effects on biodiversity and ecosystem functioning. Impacts of freshwater salinization on biota are strongly mediated by evolutionary history, as this is a major factor determining species physiological salinity tolerance. Freshwater insects dominate most flowing waters, and the common lotic insect orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) are particularly salt-sensitive. Tolerances of existing taxa, rapid adaption, colonization by novel taxa (from naturally saline environments) and interactions between species will be key drivers of assemblages in saline lotic systems. Here we outline a conceptual framework predicting how communities may change in salinizing rivers. We envision that a relatively small number of taxa will be saline-tolerant and able to colonize salinized rivers (e.g. most naturally saline habitats are lentic; thus potential colonizers would need to adapt to lotic environments), leading to depauperate communities in these environments.
Collapse
Affiliation(s)
- Ben J Kefford
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia
| | - David Buchwalter
- Environmental and Molecular Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Miguel Cañedo-Argüelles
- BETA Technology Centre, Aquatic Ecology Group, University of Vic-Central University of Catalonia, Spain Freshwater Ecology and Management (F.E.M.) Research Group, Universitat de Barcelona, Barcelona 08028, Spain
| | - Jenny Davis
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia
| | - Richard P Duncan
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia
| | - Ary Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross Thompson
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
14
|
Hackett SC, Bonsall MB. Type of fitness cost influences the rate of evolution of resistance to transgenic Bt crops. J Appl Ecol 2016; 53:1391-1401. [PMID: 27708457 PMCID: PMC5026168 DOI: 10.1111/1365-2664.12680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/15/2016] [Indexed: 01/06/2023]
Abstract
The evolution of resistance to pesticides by insect pests is a significant challenge for sustainable agriculture. For transgenic crops expressing Bacillus thuringiensis (Bt), crystalline (Cry) toxins resistance evolution may be delayed by the high‐dose/refuge strategy in which a non‐toxic refuge is planted to promote the survival of susceptible insects. The high‐dose/refuge strategy may interact with fitness costs associated with resistance alleles to further delay resistance. However, while a diverse range of fitness costs are reported in the field, they are typically represented as a fixed reduction in survival or viability which is insensitive to ecological conditions such as competition. Furthermore, the potential dynamic consequences of restricting susceptible insects to a refuge which represents only a fraction of the available space have rarely been considered. We present a generalized discrete time model which utilizes dynamic programming methods to derive the optimal management decisions for the control of a theoretical insect pest population exposed to Bt crops. We consider three genotypes (susceptible homozygotes, resistant homozygotes and heterozygotes) and implement fitness costs of resistance to Bt toxins as either a decrease in the relative competitive ability of resistant insects or as a penalty on fecundity. Model analysis is repeated and contrasted for two types of density dependence: uniform density dependence which operates equally across the landscape and heterogeneous density dependence where the intensity of competition scales inversely with patch size and is determined separately for the refuge and Bt crop. When the planting of Bt is decided optimally, fitness costs to fecundity allow for the planting of larger areas of Bt crops than equivalent fitness costs that reduce the competitive ability of resistant insects. Heterogeneous competition only influenced model predictions when the proportional area of Bt planted in each season was decided optimally and resistance was not recessive. Synthesis and applications. The high‐dose/refuge strategy alone is insufficient to preserve susceptibility to transgenic Bacillus thuringiensis (Bt) crops in the long term when constraints upon the evolution of resistance are not insurmountable. Fitness costs may enhance the delaying effect of the refuge, but the extent to which they do so depends upon how the cost is realized biologically. Fitness costs which apply independently of other variables may be more beneficial to resistance management than costs which are only visible to selection under a limited range of ecological conditions.
The high‐dose/refuge strategy alone is insufficient to preserve susceptibility to transgenic Bacillus thuringiensis (Bt) crops in the long term when constraints upon the evolution of resistance are not insurmountable. Fitness costs may enhance the delaying effect of the refuge, but the extent to which they do so depends upon how the cost is realized biologically. Fitness costs which apply independently of other variables may be more beneficial to resistance management than costs which are only visible to selection under a limited range of ecological conditions.
Collapse
Affiliation(s)
- Sean C Hackett
- Department of Zoology Mathematical Ecology Research Group University of Oxford South Parks Road Oxford OX1 3PS UK
| | - Michael B Bonsall
- Department of Zoology Mathematical Ecology Research Group University of Oxford South Parks Road Oxford OX1 3PS UK; St. Peter's College New Inn Hall Street Oxford OX1 2DL UK
| |
Collapse
|
15
|
|
16
|
Stone C, Chitnis N, Gross K. Environmental influences on mosquito foraging and integrated vector management can delay the evolution of behavioral resistance. Evol Appl 2016; 9:502-17. [PMID: 26989441 PMCID: PMC4778105 DOI: 10.1111/eva.12354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/21/2015] [Indexed: 11/29/2022] Open
Abstract
Along with the scaled‐up distribution of long‐lasting insecticidal nets for malaria control has become concern about insecticide resistance. A related concern regards the evolution of host‐seeking periodicity from the nocturnal to the crepuscular periods of the day. Why we observe such shifts in some areas but not others and which methods could prove useful in managing such behavioral resistance remain open questions. We developed a foraging model to explore whether environmental conditions affect the evolution of behavioral resistance. We looked at the role of the abundance of blood hosts and nectar sources and investigated the potential of attractive toxic sugar baits for integrated control. Higher encounter rates with hosts and nectar sources allowed behaviorally resistant populations to persist at higher levels of bed net coverage. Whereas higher encounter rates with nectar increased the threshold where resistance emerged, higher encounter rates of hosts lowered this threshold. Adding sugar baits lowered the coverage level of bed nets required to eliminate the vector population. In certain environments, using lower bed net coverage levels together with toxic sugar baits may delay or prevent the evolution of behavioral resistance. Designing sustainable control strategies will depend on an understanding of vector behavior expressed in local environmental conditions.
Collapse
Affiliation(s)
- Chris Stone
- Department of Statistics North Carolina State University Raleigh NC USA
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute Basel Switzerland; University of Basel Basel Switzerland
| | - Kevin Gross
- Department of Statistics North Carolina State University Raleigh NC USA
| |
Collapse
|