1
|
Sabino-Pinto J, Maan ME. The Amphibian Major Histocompatibility Complex-A Review and Future Outlook. J Mol Evol 2025:10.1007/s00239-024-10223-7. [PMID: 39774934 DOI: 10.1007/s00239-024-10223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
The major histocompatibility complex (MHC) is a cluster of functionally related genes encoding proteins which, among other functions, mediate immune system activation. While the MHC of many vertebrates has been extensively studied, less is known about the amphibian MHC. This represents an important knowledge gap because amphibians mark the evolutionary transition from an aquatic to a terrestrial lifestyle and often maintain a biphasic lifestyle. Hence, they tend to be exposed to both aquatic and terrestrial pathogen communities, providing opportunities to gain fundamental insights into how the immune system responds to different environmental challenges. Moreover, amphibians are globally threatened by invasive pathogens and the MHC may play a role in combating population decline. In this review, we summarize the current state of knowledge regarding the amphibian MHC and identify the major differences with other vertebrates. We also review how the number of MHC gene copies varies across amphibian groups and how MHC-based variation relates to amphibian ontogeny, behaviour, disease, and phylogeography. We conclude by identifying knowledge gaps and proposing priorities for future research.
Collapse
Affiliation(s)
- Joana Sabino-Pinto
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Knapp RA, Wilber MQ, Joseph MB, Smith TC, Grasso RL. Reintroduction of resistant frogs facilitates landscape-scale recovery in the presence of a lethal fungal disease. Nat Commun 2024; 15:9436. [PMID: 39543126 PMCID: PMC11564713 DOI: 10.1038/s41467-024-53608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Vast alteration of the biosphere by humans is causing a sixth mass extinction, driven in part by an increase in infectious diseases. The emergence of the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) has devastated global amphibian biodiversity. Given the lack of any broadly applicable methods to reverse these impacts, the future of many amphibians appears grim. The Sierra Nevada yellow-legged frog (Rana sierrae) is highly susceptible to Bd infection and most R. sierrae populations are extirpated following disease outbreaks. However, some populations persist and eventually recover, and frogs in these recovering populations have increased resistance against infection. Here, we conduct a 15-year reintroduction study and show that frogs collected from recovering populations and reintroduced to vacant habitats can reestablish populations despite the presence of Bd. In addition, the likelihood of establishment is influenced by site, cohort, and frog attributes. Results from viability modeling suggest that many reintroduced populations have a low probability of extinction over 50 years. These results provide a rare example of how reintroduction of resistant individuals can allow the landscape-scale recovery of disease-impacted species, and have broad implications for amphibians and other taxa that are threatened with extinction by novel pathogens.
Collapse
Affiliation(s)
- Roland A Knapp
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, 93546, USA.
- Earth Research Institute, University of California, Santa Barbara, CA, 93106-3060, USA.
| | - Mark Q Wilber
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Maxwell B Joseph
- Earth Lab, University of Colorado, Boulder, CO, 80303, USA
- Planet, San Francisco, CA, 94107, USA
| | - Thomas C Smith
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, 93546, USA
- Earth Research Institute, University of California, Santa Barbara, CA, 93106-3060, USA
| | - Robert L Grasso
- Resources Management and Science Division, Yosemite National Park, El Portal, CA, 95318, USA
| |
Collapse
|
3
|
Fu M. Evolutionary analysis of major histocompatibility complex variants in chytrid-resistant and susceptible amphibians. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105544. [PMID: 38216106 DOI: 10.1016/j.meegid.2023.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/09/2023] [Accepted: 12/17/2023] [Indexed: 01/14/2024]
Abstract
An amphibian emerging infectious disease (EID), chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), originated in Asia but primarily led to declines and extinctions in amphibian populations outside of Asia. Host major histocompatibility complex (MHC) molecules exhibit high polymorphism, and the evolution of MHC can be influenced by recombination and pathogens. Previous studies have indicated that host MHC class II is associated with Bd resistance. In this study, I conducted recombination and selection tests on functional MHC IIß1 alleles from an Asian Bd-resistant anuran species (Bufo gargarizans) and an Australasian Bd-susceptible species (Litoria caerulea). Recombination at the same site was identified in both species, supporting the hypothesis that recombination contributes to MHC IIß1 diversity in amphibians. Positive selection was observed in MHC IIß1 alleles in both species. In L. caerulea, at least four amino acid sites were identified under significant positive selection in the MHC IIß1, whereas these sites were either negatively selected or conserved in B. gargarizans. This suggests these sites might be selected for Bd resistance. Hydrophobicity was detected in certain amino acid sites relating to Bd resistance, suggesting this physicochemical property may be a factor selected to counteract Bd infection. These findings of this study provide an evolutionary basis for understanding how amphibian MHC IIß1 may undergo selection in response to chytrid infection.
Collapse
Affiliation(s)
- Minjie Fu
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Kuttiyarthu Veetil N, Henschen AE, Hawley DM, Melepat B, Dalloul RA, Beneš V, Adelman JS, Vinkler M. Varying conjunctival immune response adaptations of house finch populations to a rapidly evolving bacterial pathogen. Front Immunol 2024; 15:1250818. [PMID: 38370402 PMCID: PMC10869556 DOI: 10.3389/fimmu.2024.1250818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024] Open
Abstract
Pathogen adaptations during host-pathogen co-evolution can cause the host balance between immunity and immunopathology to rapidly shift. However, little is known in natural disease systems about the immunological pathways optimised through the trade-off between immunity and self-damage. The evolutionary interaction between the conjunctival bacterial infection Mycoplasma gallisepticum (MG) and its avian host, the house finch (Haemorhous mexicanus), can provide insights into such adaptations in immune regulation. Here we use experimental infections to reveal immune variation in conjunctival tissue for house finches captured from four distinct populations differing in the length of their co-evolutionary histories with MG and their disease tolerance (defined as disease severity per pathogen load) in controlled infection studies. To differentiate contributions of host versus pathogen evolution, we compared house finch responses to one of two MG isolates: the original VA1994 isolate and a more evolutionarily derived one, VA2013. To identify differential gene expression involved in initiation of the immune response to MG, we performed 3'-end transcriptomic sequencing (QuantSeq) of samples from the infection site, conjunctiva, collected 3-days post-infection. In response to MG, we observed an increase in general pro-inflammatory signalling, as well as T-cell activation and IL17 pathway differentiation, associated with a decrease in the IL12/IL23 pathway signalling. The immune response was stronger in response to the evolutionarily derived MG isolate compared to the original one, consistent with known increases in MG virulence over time. The host populations differed namely in pre-activation immune gene expression, suggesting population-specific adaptations. Compared to other populations, finches from Virginia, which have the longest co-evolutionary history with MG, showed significantly higher expression of anti-inflammatory genes and Th1 mediators. This may explain the evolution of disease tolerance to MG infection in VA birds. We also show a potential modulating role of BCL10, a positive B- and T-cell regulator activating the NFKB signalling. Our results illuminate potential mechanisms of house finch adaptation to MG-induced immunopathology, contributing to understanding of the host evolutionary responses to pathogen-driven shifts in immunity-immunopathology trade-offs.
Collapse
Affiliation(s)
| | - Amberleigh E. Henschen
- Department of Biological Sciences, The University of Memphis, Memphis, TN, United States
| | - Dana M. Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Balraj Melepat
- Department of Zoology, Charles University, Faculty of Science, Prague, Czechia
| | - Rami A. Dalloul
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Vladimír Beneš
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - James S. Adelman
- Department of Biological Sciences, The University of Memphis, Memphis, TN, United States
| | - Michal Vinkler
- Department of Zoology, Charles University, Faculty of Science, Prague, Czechia
| |
Collapse
|
5
|
Chondrelli N, Kuehn E, Meurling S, Cortázar-Chinarro M, Laurila A, Höglund J. Batrachochytrium dendrobatidis strain affects transcriptomic response in liver but not skin in latitudinal populations of the common toad (Bufo bufo). Sci Rep 2024; 14:2495. [PMID: 38291226 PMCID: PMC10828426 DOI: 10.1038/s41598-024-52975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Batrachochytrium dendrobatidis (Bd) is a fungal pathogen that has decimated amphibian populations worldwide for several decades. We examined the changes in gene expression in response to Bd infection in two populations of the common toad, Bufo bufo, in a laboratory experiment. We collected B. bufo eggs in southern and northern Sweden, and infected the laboratory-raised metamorphs with two strains of the global panzoonotic lineage Bd-GPL. Differential expression analysis showed significant differences between infected and control individuals in both liver and skin. The skin samples showed no discernible differences in gene expression between the two strains used, while liver samples were differentiated by strain, with one of the strains eliciting no immune response from infected toads. Immune system genes were overexpressed in skin samples from surviving infected individuals, while in liver samples the pattern was more diffuse. Splitting samples by population revealed a stronger immune response in northern individuals. Differences in transcriptional regulation between populations are particularly relevant to study in Swedish amphibians, which may have experienced varying exposure to Bd. Earlier exposure to this pathogen and subsequent adaptation or selection pressure may contribute to the survival of some populations over others, while standing genetic diversity in different populations may also affect the infection outcome.
Collapse
Affiliation(s)
- Niki Chondrelli
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| | - Emily Kuehn
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Sara Meurling
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Maria Cortázar-Chinarro
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- MEMEG/Department of Biology, Faculty of Science, Lund University, Lund, Sweden
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Jacob Höglund
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Angelakopoulos R, Tsipourlianos A, Giannoulis T, Mamuris Z, Moutou KA. MassArray Genotyping as a Selection Tool for Extending the Shelf-Life of Fresh Gilthead Sea Bream and European Seabass. Animals (Basel) 2024; 14:205. [PMID: 38254374 PMCID: PMC10812826 DOI: 10.3390/ani14020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
In modern aquaculture, genomics-driven breeding programs have emerged as powerful tools for optimizing fish quality. This study focused on two emblematic Mediterranean fish species, the European seabass (Dicentrarchus labrax) and the gilthead sea bream (Sparus aurata), with a primary aim of exploring the genetic basis of white muscle/fillet degradation in fresh fish following harvest. We identified 57 and 44 missense SNPs in gilthead sea bream and European seabass, respectively, located within genes encoding for endogenous proteases responsible for fillet quality. These SNPs were cherry-picked based on their strategic location within the catalytic/regulatory domains of endogenous proteases that are expressed in the white muscle. Using MassArray technology, we successfully associated differentiated enzymatic activity of those endogenous proteases post-harvest as a phenotypic trait with genetic polymorphism of six SNPs in gilthead sea bream and nine in European seabass. These findings can be valuable attributes in selective breeding programs toward the extension of freshness and shelf life of these species. The integration of MassArray technology into breeding programs offers a cost-effective strategy for harnessing the potential of these genetic variants to enhance the overall quality of the final product. Recognizing that fresh fish perishability is a challenge, extending shelf-life is pivotal in reducing losses and production costs.
Collapse
Affiliation(s)
- Rafael Angelakopoulos
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, School of Medical Sciences, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (R.A.); (A.T.); (Z.M.)
| | - Andreas Tsipourlianos
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, School of Medical Sciences, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (R.A.); (A.T.); (Z.M.)
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Science, University of Thessaly, Greece Gaiopolis, 41334 Larissa, Greece;
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, School of Medical Sciences, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (R.A.); (A.T.); (Z.M.)
| | - Katerina A. Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, School of Medical Sciences, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (R.A.); (A.T.); (Z.M.)
| |
Collapse
|
7
|
Meurling S, Siljestam M, Cortazar-Chinarro M, Åhlen D, Rödin-Mörch P, Ågren E, Höglund J, Laurila A. Body size mediates latitudinal population differences in the response to chytrid fungus infection in two amphibians. Oecologia 2024; 204:71-81. [PMID: 38097779 PMCID: PMC10830819 DOI: 10.1007/s00442-023-05489-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/14/2023] [Indexed: 02/02/2024]
Abstract
Factors behind intraspecific variation in sensitivity to pathogens remain poorly understood. We investigated how geographical origin in two North European amphibians affects tolerance to infection by the chytrid fungus Batrachochytrium dendrobatidis (Bd), a generalist pathogen which has caused amphibian population declines worldwide. We exposed newly metamorphosed individuals of moor frog Rana arvalis and common toad Bufo bufo from two latitudinal regions to two different BdGPL strains. We measured survival and growth as infections may cause sub-lethal effects in fitness components even in the absence of mortality. Infection loads were higher in B. bufo than in R. arvalis, and smaller individuals had generally higher infection loads. B. bufo had high mortality in response to Bd infection, whereas there was little mortality in R. arvalis. Bd-mediated mortality was size-dependent and high-latitude individuals were smaller leading to high mortality in the northern B. bufo. Bd exposure led to sub-lethal effects in terms of reduced growth suggesting that individuals surviving the infection may have reduced fitness mediated by smaller body size. In both host species, the Swedish Bd strain caused stronger sublethal effects than the British strain. We suggest that high-latitude populations can be more vulnerable to chytrids than those from lower latitudes and discuss the possible mechanisms how body size and host geographical origin contribute to the present results.
Collapse
Affiliation(s)
- Sara Meurling
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Mattias Siljestam
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Maria Cortazar-Chinarro
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- MEMEG/Department of Biology, Lund University, Lund, Sweden
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - David Åhlen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Uppsala, Sweden
| | - Patrik Rödin-Mörch
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Erik Ågren
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden
| | - Jacob Höglund
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Anssi Laurila
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Fu M, Eimes JA, Kong S, Lamichhaney S, Waldman B. Identification of major histocompatibility complex genotypes associated with resistance to an amphibian emerging infectious disease. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105470. [PMID: 37336279 DOI: 10.1016/j.meegid.2023.105470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Amphibian chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), emerged from Asia and spread globally. By comparing functional MHC IIß1 alleles from an Asian Bd-resistant anuran species (Bufo gargarizans) with those of an Australasian Bd-susceptible species (Litoria caerulea), we identified MHC genotypes associated with Bd resistance. These alleles encode a glycine deletion (G90β1) and adjacent motifs in the deepest pathogen-derived peptide-binding groove. Every Bd-resistant individual, but no susceptible individuals, possessed at least one allele encoding the variant. We detected trans-species polymorphism at the end of the MHC IIβ1 sequences. The G90β1 deletion was encoded by different alleles in the two species, suggesting it may have evolved independently in each species rather than having been derived from a common ancestor. These results are consistent with a scenario by which MHC adaptations that confer resistance to the pathogen have evolved by convergent evolution. Immunogenetic studies such as this are critical to ongoing conservation efforts.
Collapse
Affiliation(s)
- Minjie Fu
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea.
| | - John A Eimes
- University College, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Sungsik Kong
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sangeet Lamichhaney
- Department of Biological Sciences, Kent State University, Kent, OH 44243, USA
| | - Bruce Waldman
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
9
|
Atkinson MS, Savage AE. Widespread amphibian Perkinsea infections associated with Ranidae hosts, cooler months and Ranavirus co-infection. J Anim Ecol 2023; 92:1856-1868. [PMID: 37409362 DOI: 10.1111/1365-2656.13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Amphibians suffer from large-scale population declines globally, and emerging infectious diseases contribute heavily to these declines. Amphibian Perkinsea (Pr) is a worldwide anuran pathogen associated with mass mortality events, yet little is known about its epidemiological patterns, especially in comparison to the body of literature on amphibian chytridiomycosis and ranavirosis. Here, we establish Pr infection patterns in natural anuran populations and identify important covariates including climate, host attributes and co-infection with Ranavirus (Rv). We used quantitative (q)PCR to determine the presence and intensity of Pr and Rv across 1234 individuals sampled throughout central Florida in 2017-2019. We then implemented random forest ensemble learning models to predict infection with both pathogens based on physiological and environmental characteristics. Perkinsea infected 32% of all sampled anurans, and Pr prevalence was significantly elevated in Ranidae frogs, cooler months, metamorphosed individuals and frogs co-infected with Rv, while Pr intensity was significantly higher in ranid frogs and individuals collected dead. Ranavirus prevalence was 17% overall and was significantly higher in Ranidae frogs, metamorphosed individuals, locations with higher average temperatures, and individuals co-infected with Pr. Perkinsea prevalence was significantly higher than Rv prevalence across months, regions, life stages and species. Among locations, Pr prevalence was negatively associated with crayfish prevalence and positively associated with relative abundance of microhylids, but Rv prevalence did not associate with any tested co-variates. Co-infections were significantly more common than single infections for both pathogens, and we propose that Pr infections may propel Rv infections because seasonal Rv infection peaks followed Pr infection peaks and random forest models found Pr intensity was a leading factor explaining Rv infections. Our study elucidates epidemiological patterns of Pr in Florida and suggests that Pr may be under-recognized as a cause of anuran declines, especially in the context of pathogen co-infection.
Collapse
Affiliation(s)
- Matthew S Atkinson
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| | - Anna E Savage
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
10
|
Ujszegi J, Boros Z, Fodor A, Vajna B, Hettyey A. Metabolites of Xenorhabdus bacteria are potent candidates for mitigating amphibian chytridiomycosis. AMB Express 2023; 13:88. [PMID: 37615904 PMCID: PMC10449739 DOI: 10.1186/s13568-023-01585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), has caused extreme losses in amphibian biodiversity. Finding bacteria that produce metabolites with antifungal properties may turn out to be invaluable in the fight against this devastating disease. The entomopathogenic bacteria, Xenorhabdus szentirmaii and X. budapestensis produce secondary metabolites that are effective against a wide range of fungal plant pathogens. To assess whether they may also be effective against Bd, we extracted cell-free culture media (CFCM) from liquid cultures of X. szentirmaii and X. budapestensis and tested their ability to inhibit Bd growth in vitro. As a second step, using juvenile common toads (Bufo bufo) experimentally infected with Bd we also tested the in vivo antifungal efficacy of X. szentirmaii CFCM diluted to 2 and 10% (v/v), while also assessing possible malign side effects on amphibians. Results of the in vitro experiment documented highly effective growth inhibition by CFCMs of both Xenorhabdus species. The in vivo experiment showed that treatment with CFCM of X. szentirmaii applied at a dilution of 10% resulted in infection intensities reduced by ca. 73% compared to controls and to juvenile toads treated with CFCM applied at a dilution of 2%. At the same time, we detected no negative side effects of treatment with CFCM on toad survival and development. Our results clearly support the idea that metabolites of X. szentirmaii, and perhaps of several other Xenorhabdus species as well, may prove highly useful for the treatment of Bd infected amphibians.
Collapse
Affiliation(s)
- János Ujszegi
- Department of Evolutionary Ecology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary.
- Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary.
| | - Zsófia Boros
- Department of Evolutionary Ecology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
- Department of Microbiology, Eötvös Loránd University, Budapest, Hungary
| | - András Fodor
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Balázs Vajna
- Department of Microbiology, Eötvös Loránd University, Budapest, Hungary
| | - Attila Hettyey
- Department of Evolutionary Ecology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
11
|
Zhang J, Wang S, Xu C, Wang S, Du J, Niu M, Yang J, Li Y. Pathogenic selection promotes adaptive immune variations against serious bottlenecks in early invasions of bullfrogs. iScience 2023; 26:107316. [PMID: 37539025 PMCID: PMC10393753 DOI: 10.1016/j.isci.2023.107316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/22/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Adaptive genetic variations are key for understanding evolutionary processes influencing invasions. However, we have limited knowledge on how adaptive genetic diversity in invasive species responds to new pathogenic environments. Here, we compared variations in immune major histocompatibility complex (MHC) class-II β gene and neutral loci in relation to pathogenic chytrid fungus (Batrachochytrium dendrobatidis, Bd) infection across invasive and native populations of American bullfrog between China and United States (US). Chinese invasive populations show a 60% reduction in neutral cytb variations relative to US native populations, and there were similar MHC variation and functional diversity between them. One MHC allele private to China was under recent positive selection and associated with decreased Bd infection, partly explaining the lower Bd prevalence for Chinese populations than for native US populations. These results suggest that pathogen-mediated selection favors adaptive MHC variations and functional diversity maintenance against serious bottlenecks during the early invasions (within 15 generations) of bullfrogs.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
| | - Supen Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
| | - Chunxia Xu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
| | - Siqi Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
| | - Jiacong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Meiling Niu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Jiaxue Yang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Yiming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
12
|
Vinkler M, Fiddaman SR, Těšický M, O'Connor EA, Savage AE, Lenz TL, Smith AL, Kaufman J, Bolnick DI, Davies CS, Dedić N, Flies AS, Samblás MMG, Henschen AE, Novák K, Palomar G, Raven N, Samaké K, Slade J, Veetil NK, Voukali E, Höglund J, Richardson DS, Westerdahl H. Understanding the evolution of immune genes in jawed vertebrates. J Evol Biol 2023; 36:847-873. [PMID: 37255207 PMCID: PMC10247546 DOI: 10.1111/jeb.14181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Martin Těšický
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaFloridaOrlandoUSA
| | - Tobias L. Lenz
- Research Unit for Evolutionary ImmunogenomicsDepartment of BiologyUniversity of HamburgHamburgGermany
| | | | - Jim Kaufman
- Institute for Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Neira Dedić
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Andrew S. Flies
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - M. Mercedes Gómez Samblás
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Department of ParasitologyUniversity of GranadaGranadaSpain
| | | | - Karel Novák
- Department of Genetics and BreedingInstitute of Animal SciencePragueUhříněvesCzech Republic
| | - Gemma Palomar
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Nynke Raven
- Department of ScienceEngineering and Build EnvironmentDeakin UniversityVictoriaWaurn PondsAustralia
| | - Kalifa Samaké
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Joel Slade
- Department of BiologyCalifornia State UniversityFresnoCaliforniaUSA
| | | | - Eleni Voukali
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jacob Höglund
- Department of Ecology and GeneticsUppsala UniversitetUppsalaSweden
| | | | | |
Collapse
|
13
|
Fu M, Eimes JA, Waldman B. Divergent allele advantage in the MHC and amphibian emerging infectious disease. INFECTION, GENETICS AND EVOLUTION 2023; 111:105429. [PMID: 36990307 DOI: 10.1016/j.meegid.2023.105429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Genetic variation in the major histocompatibility complex (MHC) may be associated with resistance to the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). The pathogen originated in Asia, then spread worldwide, causing amphibian population declines and species extinctions. We compared the expressed MHC IIβ1 alleles of a Bd-resistant toad species, Bufo gargarizans, from South Korea with those of a Bd-susceptible Australasian frog species, Litoria caerulea. We found at least six expressed MHC IIβ1 loci in each of the two species. Amino acid diversity encoded by these MHC alleles was similar between species, but the genetic divergence of those alleles known for broader pathogen-derived peptide binding was greater in the Bd-resistant species. In addition, we found a potentially rare allele in one resistant individual from the Bd-susceptible species. Deep next-generation sequencing recovered approximately triple the genetic resolution accessible from traditional cloning-based genotyping. Targeting more than one MHC IIβ1 expressed locus enables us to better understand how host MHC may adapt to emerging infectious diseases.
Collapse
|
14
|
Kaganer AW, Ossiboff RJ, Keith NI, Schuler KL, Comizzoli P, Hare MP, Fleischer RC, Gratwicke B, Bunting EM. Immune priming prior to pathogen exposure sheds light on the relationship between host, microbiome and pathogen in disease. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220810. [PMID: 36756057 PMCID: PMC9890126 DOI: 10.1098/rsos.220810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Dynamic interactions between host, pathogen and host-associated microbiome dictate infection outcomes. Pathogens including Batrachochytrium dendrobatidis (Bd) threaten global biodiversity, but conservation efforts are hindered by limited understanding of amphibian host, Bd and microbiome interactions. We conducted a vaccination and infection experiment using Eastern hellbender salamanders (Cryptobranchus alleganiensis alleganiensis) challenged with Bd to observe infection, skin microbial communities and gene expression of host skin, pathogen and microbiome throughout the experiment. Most animals survived high Bd loads regardless of their vaccination status and vaccination did not affect pathogen load, but host gene expression differed based on vaccination. Oral vaccination (exposure to killed Bd) stimulated immune gene upregulation while topically and sham-vaccinated animals did not significantly upregulate immune genes. In early infection, topically vaccinated animals upregulated immune genes but orally and sham-vaccinated animals downregulated immune genes. Bd increased pathogenicity-associated gene expression in late infection when Bd loads were highest. The microbiome was altered by Bd, but there was no correlation between anti-Bd microbe abundance or richness and pathogen burden. Our observations suggest that hellbenders initially generate a vigorous immune response to Bd, which is ineffective at controlling disease and is subsequently modulated. Interactions with antifungal skin microbiota did not influence disease progression.
Collapse
Affiliation(s)
- Alyssa W. Kaganer
- Department of Natural Resources and the Environment, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20008, USA
- Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, 14853, USA
| | - Robert J. Ossiboff
- Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, 14853, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Nicole I. Keith
- Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, 14853, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Biology Department, Hamilton College, Clinton, NY, 13323, USA
| | - Krysten L. Schuler
- Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, 14853, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20008, USA
| | - Matthew P. Hare
- Department of Natural Resources and the Environment, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Robert C. Fleischer
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20008, USA
| | - Brian Gratwicke
- Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, 22630, USA
| | - Elizabeth M. Bunting
- Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, 14853, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
15
|
Li X, Liu T, Li A, Xiao Y, Sun K, Feng J. Diversifying selection and climatic effects on major histocompatibility complex class
II
gene diversity in the greater horseshoe bat. Evol Appl 2023; 16:688-704. [PMID: 36969140 PMCID: PMC10033860 DOI: 10.1111/eva.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Heterogeneous pathogenic stress can shape major histocompatibility complex (MHC) diversity by influencing the functional plasticity of the immune response. Therefore, MHC diversity could reflect environmental stress, demonstrating its importance in uncovering the mechanisms of adaptive genetic variation. In this study, we combined neutral microsatellite loci, an immune-related MHC II-DRB locus, and climatic factors to unravel the mechanisms affecting the diversity and genetic differentiation of MHC genes in the greater horseshoe bat (Rhinolophus ferrumequinum), a species with a wide geographical distribution that has three distinct genetic lineages in China. First, increased genetic differentiation at the MHC locus among populations compared using microsatellites indicated diversifying selection. Second, the genetic differentiation of MHC and microsatellites were significantly correlated, suggesting that demographic processes exist. However, MHC genetic differentiation was significantly correlated with geographical distance among populations, even after controlling for the neutral markers, suggesting a major effect of selection. Third, although the MHC genetic differentiation was larger than that for microsatellites, there was no significant difference in the genetic differentiation between the two markers among genetic lineages, indicating the effect of balancing selection. Fourth, combined with climatic factors, MHC diversity and supertypes showed significant correlations with temperature and precipitation, but not with the phylogeographic structure of R. ferrumequinum, suggesting an effect of local adaptation driven by climate on MHC diversity. Moreover, the number of MHC supertypes varied between populations and lineages, suggesting regional characteristics and support for local adaptation. Taken together, the results of our study provide insights into the adaptive evolutionary driving forces at different geographic scales in R. ferrumequinum. In addition, climate factors may have played a vital role in driving adaptive evolution in this species.
Collapse
Affiliation(s)
- Xiaolin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- Key Laboratory of Vegetation Ecology, Ministry of Education Changchun China
| | - Tong Liu
- College of Life Science, Jilin Agricultural University Changchun China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- Key Laboratory of Vegetation Ecology, Ministry of Education Changchun China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- College of Life Science, Jilin Agricultural University Changchun China
| |
Collapse
|
16
|
Worsley SF, Davies CS, Mannarelli ME, Komdeur J, Dugdale HL, Richardson DS. Assessing the causes and consequences of gut mycobiome variation in a wild population of the Seychelles warbler. MICROBIOME 2022; 10:242. [PMID: 36575553 PMCID: PMC9795730 DOI: 10.1186/s40168-022-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Considerable research has focussed on the importance of bacterial communities within the vertebrate gut microbiome (GM). However, studies investigating the significance of other microbial kingdoms, such as fungi, are notably lacking, despite their potential to influence host processes. Here, we characterise the fungal GM of individuals living in a natural population of Seychelles warblers (Acrocephalus sechellensis). We evaluate the extent to which fungal GM structure is shaped by environment and host factors, including genome-wide heterozygosity and variation at key immune genes (major histocompatibility complex (MHC) and Toll-like receptor (TLR)). Importantly, we also explore the relationship between fungal GM differences and subsequent host survival. To our knowledge, this is the first time that the genetic drivers and fitness consequences of fungal GM variation have been characterised for a wild vertebrate population. RESULTS Environmental factors, including season and territory quality, explain the largest proportion of variance in the fungal GM. In contrast, neither host age, sex, genome-wide heterozygosity, nor TLR3 genotype was associated with fungal GM differences in Seychelles warblers. However, the presence of four MHC-I alleles and one MHC-II allele was associated with changes in fungal GM alpha diversity. Changes in fungal richness ranged from between 1 and 10 sequencing variants lost or gained; in some cases, this accounted for 20% of the fungal variants carried by an individual. In addition to this, overall MHC-I allelic diversity was associated with small, but potentially important, changes in fungal GM composition. This is evidenced by the fact that fungal GM composition differed between individuals that survived or died within 7 months of being sampled. CONCLUSIONS Our results suggest that environmental factors play a primary role in shaping the fungal GM, but that components of the host immune system-specifically the MHC-may also contribute to the variation in fungal communities across individuals within wild populations. Furthermore, variation in the fungal GM can be associated with differential survival in the wild. Further work is needed to establish the causality of such relationships and, thus, the extent to which components of the GM may impact host evolution. Video Abstract.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
| | - Charli S Davies
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Maria-Elena Mannarelli
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
- Nature Seychelles, Roche Caiman, Mahé, Republic of Seychelles.
| |
Collapse
|
17
|
Adams AJ, Bushell J, Grasso RL. To treat or not to treat? Experimental pathogen exposure, treatment, and release of a threatened amphibian. Ecosphere 2022. [DOI: 10.1002/ecs2.4294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Andrea J. Adams
- Resources Management and Science Division Yosemite National Park El Portal California USA
- Earth Research Institute University of California Santa Barbara California USA
| | | | - Robert L. Grasso
- Resources Management and Science Division Yosemite National Park El Portal California USA
| |
Collapse
|
18
|
Womack MC, Steigerwald E, Blackburn DC, Cannatella DC, Catenazzi A, Che J, Koo MS, McGuire JA, Ron SR, Spencer CL, Vredenburg VT, Tarvin RD. State of the Amphibia 2020: A Review of Five Years of Amphibian Research and Existing Resources. ICHTHYOLOGY & HERPETOLOGY 2022. [DOI: 10.1643/h2022005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Molly C. Womack
- Department of Biology, Utah State University, Logan, Utah 84322; . ORCID: 0000-0002-3346-021X
| | - Emma Steigerwald
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - David C. Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611; . ORCID: 0000-0002-1810-9886
| | - David C. Cannatella
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712; . ORCID: 0000-0001-8675-0520
| | | | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; . ORCID: 0000-0003-4246-6
| | - Michelle S. Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - Jimmy A. McGuire
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - Santiago R. Ron
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador; . ORCID: 0000-0001-6300-9350
| | - Carol L. Spencer
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - Vance T. Vredenburg
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - Rebecca D. Tarvin
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| |
Collapse
|
19
|
Over 25 Years of Partnering to Conserve Chiricahua Leopard Frogs (Rana chiricahuensis) in Arizona, Combining Ex Situ and In Situ Strategies. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2022. [DOI: 10.3390/jzbg3040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Phoenix Zoo has partnered with US Fish and Wildlife Service, Arizona Game and Fish Department, US Forest Service, and other organizations for more than 25 years to help recover Chiricahua leopard frogs (Rana [=Lithobates] chiricahuensis) in Arizona, USA. This federally threatened species faces declines due to habitat loss and degradation, long-term drought, disease, and invasive species. Over 26,000 larvae, froglets, and adults, as well as 26 egg masses produced by adults held at the Phoenix Zoo have been released to the wild, augmenting and/or re-establishing wild populations. Chiricahua leopard frog-occupied sites in Arizona have increased from 38 in 2007, when the species’ recovery plan was published, to a high of 155 in the last five years, as a result of ex situ and in situ conservation efforts. As one of the longest-running programs of its kind in the United States, communication among partners has been key to sustaining it. Recovery strategies and complex decisions are made as a team and we have worked through numerous management challenges together. Though Chiricahua leopard frogs still face significant threats and a long road to recovery, this program serves as a strong example of the positive effects of conservation partnerships for native wildlife.
Collapse
|
20
|
Cook K, Pope K, Cummings A, Piovia‐Scott J. In situ treatment of juvenile frogs for disease can reverse population declines. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Kimberly Cook
- School of Biological Sciences Washington State University Vancouver WA USA
| | - Karen Pope
- Pacific Southwest Research Station United States Forest Service California USA
| | - Adam Cummings
- Pacific Southwest Research Station United States Forest Service California USA
| | - Jonah Piovia‐Scott
- School of Biological Sciences Washington State University Vancouver WA USA
| |
Collapse
|
21
|
Belasen AM, Amses KR, Clemons RA, Becker CG, Toledo LF, James TY. Habitat fragmentation in the Brazilian Atlantic Forest is associated with erosion of frog immunogenetic diversity and increased fungal infections. Immunogenetics 2022; 74:431-441. [PMID: 35080658 PMCID: PMC11344651 DOI: 10.1007/s00251-022-01252-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/12/2022] [Indexed: 11/05/2022]
Abstract
Habitat fragmentation and infectious diseases threaten wildlife globally, but the interactions of these threats are poorly understood. For instance, while habitat fragmentation can impact genetic diversity at neutral loci, the impacts on disease-relevant loci are less well-studied. We examined the effects of habitat fragmentation in Brazil's Atlantic Forest on amphibian genetic diversity at an immune locus related to antigen presentation and detection (MHC IIB Exon 2). We used a custom high-throughput assay to sequence a fragment of MHC IIB and quantified Batrachochytrium dendrobatidis (Bd) infections in six frog species in two Atlantic Forest regions. Habitat fragmentation was associated with genetic erosion at MHC IIB Exon 2. This erosion was most severe in forest specialists. Significant Bd infections were detected only in one Atlantic Forest region, potentially due to relatively higher elevation. In this region, forest specialists showed an increase in both Bd prevalence and infection loads in fragmented habitats. Reduced population-level MHC IIB diversity was associated with increased Bd infection risk. On the individual level, MHC IIB heterozygotes exhibited a trend toward reduced Bd infection risk, although this was marginally non-significant. Our results suggest that habitat fragmentation increases Bd infection susceptibility in amphibians, mediated at least in part through erosion of immunogenetic diversity. Our findings have implications for management of fragmented populations in the face of emerging infectious diseases.
Collapse
Affiliation(s)
- Anat M Belasen
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Kevin R Amses
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca A Clemons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - C Guilherme Becker
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - L Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Smith D, O'Brien D, Hall J, Sergeant C, Brookes LM, Harrison XA, Garner TWJ, Jehle R. Challenging a host-pathogen paradigm: Susceptibility to chytridiomycosis is decoupled from genetic erosion. J Evol Biol 2022; 35:589-598. [PMID: 35167143 PMCID: PMC9306973 DOI: 10.1111/jeb.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
The putatively positive association between host genetic diversity and the ability to defend against pathogens has long attracted the attention of evolutionary biologists. Chytridiomycosis, a disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), has emerged in recent decades as a cause of dramatic declines and extinctions across the amphibian clade. Bd susceptibility can vary widely across populations of the same species, but the relationship between standing genetic diversity and susceptibility has remained notably underexplored so far. Here, we focus on a putatively Bd-naive system of two mainland and two island populations of the common toad (Bufo bufo) at the edge of the species' range and use controlled infection experiments and dd-RAD sequencing of >10 000 SNPs across 95 individuals to characterize the role of host population identity, genetic variation and individual body mass in mediating host response to the pathogen. We found strong genetic differentiation between populations and marked variation in their susceptibility to Bd. This variation was not, however, governed by isolation-mediated genetic erosion, and individual heterozygosity was even found to be negatively correlated with survival. Individual survival during infection experiments was strongly positively related to body mass, which itself was unrelated to population of origin or heterozygosity. Our findings underscore the general importance of context-dependency when assessing the role of host genetic variation for the ability of defence against pathogens.
Collapse
Affiliation(s)
- Donal Smith
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
- Institute of ZoologyZoological Society of LondonLondonUK
| | | | | | - Chris Sergeant
- Institute of ZoologyZoological Society of LondonLondonUK
| | - Lola M. Brookes
- Institute of ZoologyZoological Society of LondonLondonUK
- Highland Amphibian and Reptile ProjectDingwallUK
- MRC Centre for Global Infectious Disease AnalysisImperial College School of Public HealthLondonUK
- Royal Veterinary CollegeHatfieldUK
| | - Xavier A. Harrison
- Institute of ZoologyZoological Society of LondonLondonUK
- Centre for Ecology and ConservationUniversity of ExeterExeterUK
| | | | - Robert Jehle
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
| |
Collapse
|
23
|
Martin KR, Mansfield KL, Savage AE. Adaptive evolution of major histocompatibility complex class I immune genes and disease associations in coastal juvenile sea turtles. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211190. [PMID: 35154791 PMCID: PMC8825991 DOI: 10.1098/rsos.211190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/06/2022] [Indexed: 05/12/2023]
Abstract
Characterizing polymorphism at the major histocompatibility complex (MHC) genes is key to understanding the vertebrate immune response to disease. Despite being globally afflicted by the infectious tumour disease fibropapillomatosis (FP), immunogenetic variation in sea turtles is minimally explored. We sequenced the α 1 peptide-binding region of MHC class I genes (162 bp) from 268 juvenile green (Chelonia mydas) and 88 loggerhead (Caretta caretta) sea turtles in Florida, USA. We recovered extensive variation (116 alleles) and trans-species polymorphism. Supertyping analysis uncovered three functional MHC supertypes corresponding to the three well-supported clades in the phylogeny. We found significant evidence of positive selection at seven amino acid sites in the class I exon. Random forest modelling and risk ratio analysis of Ch. mydas alleles uncovered one allele weakly associated with smooth FP tumour texture, which may be associated with disease outcome. Our study represents the first characterization of MHC class I diversity in Ch. mydas and the largest sample of sea turtles used to date in any study of adaptive genetic variation, revealing tremendous genetic variation and high adaptive potential to viral pathogen threats. The novel associations we identified between MHC diversity and FP outcomes in sea turtles further highlight the importance of evaluating genetic predictors of disease, including MHC and other functional markers.
Collapse
Affiliation(s)
- Katherine R. Martin
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA
| | - Katherine L. Mansfield
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA
| | - Anna E. Savage
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA
| |
Collapse
|
24
|
Chen MY, Kueneman JG, González A, Humphrey G, Knight R, McKenzie VJ. Predicting fungal infection rate and severity with skin-associated microbial communities on amphibians. Mol Ecol 2022; 31:2140-2156. [PMID: 35076975 DOI: 10.1111/mec.16372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
Pathogen success (risk and severity) is influenced by host-associated microbiota, but the degree to which variation in microbial community traits predict future infection presence/absence (risk) and load (severity) for the host is unknown. We conducted a time-series experiment by sampling the skin-associated bacterial communities of five amphibian species before and after exposure to the fungal pathogen, Batrachochytrium dendrobaditis (Bd). We ask whether microbial community traits are predictors of, or are affected by, Bd infection risk and intensity. Our results show that richness of putative Bd-inhibitory bacteria strongly predicts infection risk, while the proportion of putative Bd-inhibitory bacteria predicts future infection intensity. Variation in microbial community composition is high across time and individual, and bacterial prevalence is low. Our findings demonstrate how ecological community traits of host-associated microbiota may be used to predict infection risk by pathogenic microbes.
Collapse
Affiliation(s)
- Melissa Y Chen
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N-122, UCB 334, Boulder, CO, 80309, USA
| | - Jordan G Kueneman
- Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper, Balboa Ancon, Panama, Republic of Panama
| | - Antonio González
- Department of Pediatrics, Bioengineering and Computer Science and Engineering, and Center for Microbiome Innovation, University of California, Gilman Drive, La Jolla, San Diego, CA, 92093, USA
| | - Greg Humphrey
- Department of Pediatrics, Bioengineering and Computer Science and Engineering, and Center for Microbiome Innovation, University of California, Gilman Drive, La Jolla, San Diego, CA, 92093, USA
| | - Rob Knight
- Department of Pediatrics, Bioengineering and Computer Science and Engineering, and Center for Microbiome Innovation, University of California, Gilman Drive, La Jolla, San Diego, CA, 92093, USA
| | - Valerie J McKenzie
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N-122, UCB 334, Boulder, CO, 80309, USA
| |
Collapse
|
25
|
Bacterial biofilm thickness and fungal-inhibitory bacterial richness both prevent establishment of the amphibian fungal pathogen, Batrachochytrium dendrobatidis. Appl Environ Microbiol 2022; 88:e0160421. [PMID: 35044804 DOI: 10.1128/aem.01604-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Host-associated microbial biofilms can provide protection against pathogen establishment. In many host-microbe symbioses (including, but not limited to: humans, plants, insects, and amphibians), there is a correlation between host-associated microbial diversity and pathogen infection risk. Diversity may prevent infection by pathogens through sampling effects and niche complementarity- but an alternative hypothesis may be that microbial biomass is confounded with diversity, and that host-associated biofilms are deterring pathogen establishment through space pre-emption. In this study, we use the amphibian system as a model for host-microbe-pathogen interactions to ask two questions: (1) is bacterial richness confounded with biofilm thickness or cell density, and (2) to what extent does biofilm thickness, cell density, and bacterial richness each deter the establishment of the amphibian fungal pathogen, Batrachochytrium dendrobatidis (Bd)? To answer these questions, we built a custom biofilm microcosm that mimics the host-environment interface by allowing nutrients to diffuse out of a fine-pore biofilm scaffolding. This created a competitive environment in which bacteria and the fungal pathogen compete for colonization space. We then challenged bacterial biofilms ranging in community richness, biofilm thickness, bacterial cell density, and Bd-inhibitory metabolite production with live Bd zoospores to determine how Bd establishment success on membranes vary. We found that biofilm thickness and Bd-inhibitory isolate richness work in complement to reduce Bd establishment success. This work underscores that physical aspects of biofilm communities can play a large role in pathogen inhibition and in many studies, these traits are not studied. IMPORTANCE Our finding highlights the fact that diversity, as measured through 16S rDNA sequencing, may obscure the true mechanisms behind microbe-mediated pathogen defence, and that physical space occupation by biofilm-forming symbionts may significantly contribute to pathogen protection. These findings have implications across a wide range of host-microbe systems, since 16S rDNA sequencing is a standard tool used across many microbial systems. Further, our results are potentially relevant to many host-pathogen systems, since host-associated bacterial biofilms are ubiquitous.
Collapse
|
26
|
Overwinter behavior, movement, and survival in a recently reintroduced, endangered amphibian, Rana muscosa. J Nat Conserv 2021. [DOI: 10.1016/j.jnc.2021.126086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Low neutral and immunogenetic diversity in northern fringe populations of the green toad Bufotes viridis: implications for conservation. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractGenetic variation is often lower at high latitudes, which may compromise the adaptability and hence survival of organisms. Here we show that genetic variability is negatively correlated with northern latitude in European green toads (Bufotes viridis). The result holds true for both putatively neutral microsatellite variation and supposedly adaptive MHC Class IIB variation. In particular, our findings have bearing on the conservation status of this species in Sweden, on the northern limit of its distribution where local populations are small and fragmented. These genetically impoverished populations are closely related to other populations found around the Baltic Sea basin. The low neutral and adaptive variation in these fringe populations compared to population at central ranges confirms a pattern shared across all other amphibians so far studied. In Sweden, the situation of green toads is of concern as the remaining populations may not have the evolutionary potential to cope with present and future environmental challenges.
Collapse
|
28
|
Scheele BC, Hollanders M, Hoffmann EP, Newell DA, Lindenmayer DB, McFadden M, Gilbert DJ, Grogan LF. Conservation translocations for amphibian species threatened by chytrid fungus: A review, conceptual framework, and recommendations. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ben C. Scheele
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
| | - Matthijs Hollanders
- Faculty of Science and Engineering Southern Cross University Lismore New South Wales Australia
| | - Emily P. Hoffmann
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
- School of Biological Sciences The University of Western Australia Crawley Western Australia Australia
| | - David A. Newell
- Faculty of Science and Engineering Southern Cross University Lismore New South Wales Australia
| | - David B. Lindenmayer
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
| | - Michael McFadden
- Taronga Conservation Society Australia Mosman New South Wales Australia
| | - Deon J. Gilbert
- Wildlife Conservation and Science Zoos Victoria Parkville Victoria Australia
| | - Laura F. Grogan
- Centre for Planetary Health and Food Security, School of Environment and Science Griffith University Southport Queensland Australia
| |
Collapse
|
29
|
Fisher MC, Pasmans F, Martel A. Virulence and Pathogenicity of Chytrid Fungi Causing Amphibian Extinctions. Annu Rev Microbiol 2021; 75:673-693. [PMID: 34351790 DOI: 10.1146/annurev-micro-052621-124212] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ancient enzootic associations between wildlife and their infections allow evolution to innovate mechanisms of pathogenicity that are counterbalanced by host responses. However, erosion of barriers to pathogen dispersal by globalization leads to the infection of hosts that have not evolved effective resistance and the emergence of highly virulent infections. Global amphibian declines driven by the rise of chytrid fungi and chytridiomycosis are emblematic of emerging infections. Here, we review how modern biological methods have been used to understand the adaptations and counteradaptations that these fungi and their amphibian hosts have evolved. We explore the interplay of biotic and abiotic factors that modify the virulence of these infections and dissect the complexity of this disease system. We highlight progress that has led to insights into how we might in the future lessen the impact of these emerging infections. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial School of Public Health, Imperial College London, London W2 1PG, United Kingdom;
| | - Frank Pasmans
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - An Martel
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| |
Collapse
|
30
|
Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2021. [PMID: 33622992 PMCID: PMC7371965 DOI: 10.1007/s12041-020-01225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease-mediated extinctions and wildlife epidemics. We then focus on elucidating how host–parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
|
31
|
Mayer M, Schlippe Justicia L, Shine R, Brown GP. Host defense or parasite cue: Skin secretions mediate interactions between amphibians and their parasites. Ecol Lett 2021; 24:1955-1965. [PMID: 34176205 DOI: 10.1111/ele.13832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/21/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Amphibian skin secretions (substances produced by the amphibian plus microbiota) plausibly act as a first line of defense against parasite/pathogen attack, but may also provide chemical cues for pathogens. To clarify the role of skin secretions in host-parasite interactions, we conducted experiments using cane toads (Rhinella marina) and their lungworms (Rhabdias pseudosphaerocephala) from the range-core and invasion-front of the introduced anurans' range in Australia. Depending on the geographical area, toad skin secretions can reduce the longevity and infection success of parasite larvae, or attract lungworm larvae and enhance their infection success. These striking differences between the two regions were due both to differential responses of the larvae, and differential effects of the skin secretions. Our data suggest that skin secretions play an important role in host-parasite interactions in anurans, and that the arms race between a host and parasite can rapidly generate spatial variation in critical features of that interaction.
Collapse
Affiliation(s)
- Martin Mayer
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Lia Schlippe Justicia
- Department of Animal Biology, University of La Laguna, Tenerife, Canary Islands, Spain
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gregory P Brown
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
32
|
Herczeg D, Ujszegi J, Kásler A, Holly D, Hettyey A. Host-multiparasite interactions in amphibians: a review. Parasit Vectors 2021; 14:296. [PMID: 34082796 PMCID: PMC8173923 DOI: 10.1186/s13071-021-04796-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023] Open
Abstract
Parasites, including viruses, bacteria, fungi, protists, helminths, and arthropods, are ubiquitous in the animal kingdom. Consequently, hosts are frequently infected with more than one parasite species simultaneously. The assessment of such co-infections is of fundamental importance for disease ecology, but relevant studies involving non-domesticated animals have remained scarce. Many amphibians are in decline, and they generally have a highly diverse parasitic fauna. Here we review the literature reporting on field surveys, veterinary case studies, and laboratory experiments on co-infections in amphibians, and we summarize what is known about within-host interactions among parasites, which environmental and intrinsic factors influence the outcomes of these interactions, and what effects co-infections have on hosts. The available literature is piecemeal, and patterns are highly diverse, so that identifying general trends that would fit most host–multiparasite systems in amphibians is difficult. Several examples of additive, antagonistic, neutral, and synergistic effects among different parasites are known, but whether members of some higher taxa usually outcompete and override the effects of others remains unclear. The arrival order of different parasites and the time lag between exposures appear in many cases to fundamentally shape competition and disease progression. The first parasite to arrive can gain a marked reproductive advantage or induce cross-reaction immunity, but by disrupting the skin and associated defences (i.e., skin secretions, skin microbiome) and by immunosuppression, it can also pave the way for subsequent infections. Although there are exceptions, detrimental effects to the host are generally aggravated with increasing numbers of co-infecting parasite species. Finally, because amphibians are ectothermic animals, temperature appears to be the most critical environmental factor that affects co-infections, partly via its influence on amphibian immune function, partly due to its direct effect on the survival and growth of parasites. Besides their importance for our understanding of ecological patterns and processes, detailed knowledge about co-infections is also crucial for the design and implementation of effective wildlife disease management, so that studies concentrating on the identified gaps in our understanding represent rewarding research avenues. ![]()
Collapse
Affiliation(s)
- Dávid Herczeg
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary
| | - Andrea Kásler
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.,Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Dóra Holly
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.,Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.,Department of Ecology, Institute for Biology, University of Veterinary Medicine, Rottenbiller utca 50, Budapest, 1077, Hungary
| |
Collapse
|
33
|
Chytridiomycosis in Asian Amphibians, a Global Resource for Batrachochytrium dendrobatidis (Bd) Research. J Indian Inst Sci 2021; 101:227-241. [PMID: 34092943 PMCID: PMC8171229 DOI: 10.1007/s41745-021-00227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/25/2021] [Indexed: 12/01/2022]
Abstract
Chytridiomycosis is an emerging infectious disease affecting amphibians globally and it is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Chytridiomycosis has caused dramatic declines and even extinctions in wild amphibian populations in Europe, Australia, Central and North America. Spanning over two and a half decades, extensive research has led to discovery of epizootic and enzootic lineages of this pathogen. However, the Bd–amphibian system had garnered less attention in Asia until recently when an ancestral Bd lineage was identified in the Korean peninsula. Amphibians co-exist with the pathogen in Asia, only sub-lethal effects have been documented on hosts. Such regions are ‘coldspots’ of infection and are an important resource to understand the dynamics between the enzootic pathogen—Bd and its obligate host—amphibians. Insights into the biology of infection have provided new knowledge on the multi-faceted interaction of Bd in a hyperdiverse Asian amphibian community. We present the findings and highlight the knowledge gap that exists, and propose the ways to bridge them. We emphasize that chytridiomycosis in Asia is an important wildlife disease and it needs focussed research, as it is a dynamic front of pathogen diversity and virulence.
Collapse
|
34
|
Trujillo AL, Hoffman EA, Becker CG, Savage AE. Spatiotemporal adaptive evolution of an MHC immune gene in a frog-fungus disease system. Heredity (Edinb) 2021; 126:640-655. [PMID: 33510466 PMCID: PMC8115231 DOI: 10.1038/s41437-020-00402-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/30/2023] Open
Abstract
Genetic diversity of major histocompatibility complex (MHC) genes is linked to reduced pathogen susceptibility in amphibians, but few studies also examine broad spatial and temporal patterns of MHC and neutral genetic diversity. Here, we characterized range-wide MHC diversity in the Northern leopard frog, Rana pipiens, a species found throughout North America that is experiencing disease-related declines. We used previously sequenced neutral markers (mitochondrial DNA and microsatellites), sequenced an expressed MHC class IIß gene fragment, and measured infection prevalence and intensity of the global fungal pathogen Batrachochytrium dendrobatidis (Bd) across 14 populations. Four populations were sampled across two decades, enabling temporal comparisons of selection and demography. We recovered 37 unique MHC alleles, including 17 that were shared across populations. Phylogenetic and population genetic patterns between MHC and neutral markers were incongruent, and five MHC codon positions associated with peptide binding were under positive selection. MHC heterozygosity, but not neutral marker heterozygosity, was a significant factor explaining spatial patterns of Bd prevalence, whereas only environmental variables predicted Bd intensity. MHC allelic richness (AR) decreased significantly over time but microsatellite-based AR did not, highlighting a loss of functional immunogenetic diversity that may be associated with Bd selective pressures. MHC supertype 4 was significantly associated with an elevated risk of Bd infection, whereas one supertype 2 allele was associated with a nearly significant reduced risk of Bd. Taken together, these results provide evidence that positive selection contributes to MHC class IIß evolution in R. pipiens and suggest that functional MHC differences across populations may contribute to disease adaptation.
Collapse
Affiliation(s)
- Alexa L. Trujillo
- grid.170430.10000 0001 2159 2859Department of Biology, University of Central Florida, Orlando, FL USA
| | - Eric A. Hoffman
- grid.170430.10000 0001 2159 2859Department of Biology, University of Central Florida, Orlando, FL USA
| | - C. Guilherme Becker
- grid.411015.00000 0001 0727 7545Department of Biological Sciences, University of Alabama, Tuscaloosa, AL USA
| | - Anna E. Savage
- grid.170430.10000 0001 2159 2859Department of Biology, University of Central Florida, Orlando, FL USA
| |
Collapse
|
35
|
Teixeira JC, Huber CD. The inflated significance of neutral genetic diversity in conservation genetics. Proc Natl Acad Sci U S A 2021; 118:e2015096118. [PMID: 33608481 PMCID: PMC7958437 DOI: 10.1073/pnas.2015096118] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The current rate of species extinction is rapidly approaching unprecedented highs, and life on Earth presently faces a sixth mass extinction event driven by anthropogenic activity, climate change, and ecological collapse. The field of conservation genetics aims at preserving species by using their levels of genetic diversity, usually measured as neutral genome-wide diversity, as a barometer for evaluating population health and extinction risk. A fundamental assumption is that higher levels of genetic diversity lead to an increase in fitness and long-term survival of a species. Here, we argue against the perceived importance of neutral genetic diversity for the conservation of wild populations and species. We demonstrate that no simple general relationship exists between neutral genetic diversity and the risk of species extinction. Instead, a better understanding of the properties of functional genetic diversity, demographic history, and ecological relationships is necessary for developing and implementing effective conservation genetic strategies.
Collapse
Affiliation(s)
- João C Teixeira
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005 SA, Australia;
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, 5005 SA, Australia
| | - Christian D Huber
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005 SA, Australia;
| |
Collapse
|
36
|
Abarca JG, Whitfield SM, Zuniga-Chaves I, Alvarado G, Kerby J, Murillo-Cruz C, Pinto-Tomás AA. Genotyping and differential bacterial inhibition of Batrachochytrium dendrobatidis in threatened amphibians in Costa Rica. MICROBIOLOGY-SGM 2021; 167. [PMID: 33529150 DOI: 10.1099/mic.0.001017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Amphibians have declined around the world in recent years, in parallel with the emergence of an epidermal disease called chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). This disease has been associated with mass mortality in amphibians worldwide, including in Costa Rica, and Bd is considered an important contributor to the disappearance of this group of vertebrates. While many species are susceptible to the disease, others show tolerance and manage to survive infection with the pathogen. We evaluated the pathogen Bd circulating in Costa Rica and the capacity of amphibian skin bacteria to inhibit the growth of the pathogen in vitro. We isolated and characterized - genetically and morphologically - several Bd isolates from areas with declining populations of amphibians. We determined that the circulating chytrid fungus in Costa Rica belongs to the virulent strain Bd-GPL-2, which has been related to massive amphibian deaths worldwide; however, the isolates obtained showed genetic and morphological variation. Furthermore, we isolated epidermal bacteria from 12 amphibian species of surviving populations, some in danger of extinction, and evaluated their inhibitory activity against the collection of chytrid isolates. Through bioassays we confirmed the presence of chytrid-inhibitory bacterial genera in Costa Rican amphibians. However, we observed that the inhibition varied between different isolates of the same bacterial genus, and each bacterial isolation inhibited fungal isolation differently. In total, 14 bacterial isolates belonging to the genera Stenotrophomonas, Streptomyces, Enterobacter, Pseudomonas and Klebsiella showed inhibitory activity against all Bd isolates. Given the observed variation both in the pathogen and in the bacterial inhibition capacity, it is highly relevant to include local isolates and to consider the origin of the microorganisms when performing in vivo infection tests aimed at developing and implementing mitigation strategies for chytridiomycosis.
Collapse
Affiliation(s)
- Juan G Abarca
- Laboratorio de Recursos Naturales y Vida Silvestre (LARNAVISI), Escuela de Ciencias Biológicas, Universidad Nacional, Heredia, Costa Rica
| | - Steven M Whitfield
- Conservation and Research Department, Zoo Miami, St, Miami, FL 33177, USA
| | - Ibrahim Zuniga-Chaves
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San Pedro, Costa Rica.,Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Gilbert Alvarado
- Laboratorio de Patología Experimental y Comparada (LAPECOM), Escuela de Biología, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Jacob Kerby
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Catalina Murillo-Cruz
- Centro de Investigación en Estructuras Microscópicas (CIEMic), Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San Pedro, Costa Rica
| | - Adrián A Pinto-Tomás
- Centro de Investigación en Estructuras Microscópicas (CIEMic), Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San Pedro, Costa Rica.,Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
37
|
DeCandia AL, Schrom EC, Brandell EE, Stahler DR, vonHoldt BM. Sarcoptic mange severity is associated with reduced genomic variation and evidence of selection in Yellowstone National Park wolves ( Canis lupus). Evol Appl 2021; 14:429-445. [PMID: 33664786 PMCID: PMC7896714 DOI: 10.1111/eva.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 01/25/2023] Open
Abstract
Population genetic theory posits that molecular variation buffers against disease risk. Although this "monoculture effect" is well supported in agricultural settings, its applicability to wildlife populations remains in question. In the present study, we examined the genomics underlying individual-level disease severity and population-level consequences of sarcoptic mange infection in a wild population of canids. Using gray wolves (Canis lupus) reintroduced to Yellowstone National Park (YNP) as our focal system, we leveraged 25 years of observational data and biobanked blood and tissue to genotype 76,859 loci in over 400 wolves. At the individual level, we reported an inverse relationship between host genomic variation and infection severity. We additionally identified 410 loci significantly associated with mange severity, with annotations related to inflammation, immunity, and skin barrier integrity and disorders. We contextualized results within environmental, demographic, and behavioral variables, and confirmed that genetic variation was predictive of infection severity. At the population level, we reported decreased genome-wide variation since the initial gray wolf reintroduction event and identified evidence of selection acting against alleles associated with mange infection severity. We concluded that genomic variation plays an important role in disease severity in YNP wolves. This role scales from individual to population levels, and includes patterns of genome-wide variation in support of the monoculture effect and specific loci associated with the complex mange phenotype. Results yielded system-specific insights, while also highlighting the relevance of genomic analyses to wildlife disease ecology, evolution, and conservation.
Collapse
Affiliation(s)
| | - Edward C. Schrom
- Ecology & Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | | | | | | |
Collapse
|
38
|
Valenzuela-Sánchez A, Wilber MQ, Canessa S, Bacigalupe LD, Muths E, Schmidt BR, Cunningham AA, Ozgul A, Johnson PTJ, Cayuela H. Why disease ecology needs life-history theory: a host perspective. Ecol Lett 2021; 24:876-890. [PMID: 33492776 DOI: 10.1111/ele.13681] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
When facing an emerging infectious disease of conservation concern, we often have little information on the nature of the host-parasite interaction to inform management decisions. However, it is becoming increasingly clear that the life-history strategies of host species can be predictive of individual- and population-level responses to infectious disease, even without detailed knowledge on the specifics of the host-parasite interaction. Here, we argue that a deeper integration of life-history theory into disease ecology is timely and necessary to improve our capacity to understand, predict and mitigate the impact of endemic and emerging infectious diseases in wild populations. Using wild vertebrates as an example, we show that host life-history characteristics influence host responses to parasitism at different levels of organisation, from individuals to communities. We also highlight knowledge gaps and future directions for the study of life-history and host responses to parasitism. We conclude by illustrating how this theoretical insight can inform the monitoring and control of infectious diseases in wildlife.
Collapse
Affiliation(s)
- Andrés Valenzuela-Sánchez
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile.,ONG Ranita de Darwin, Valdivia and Santiago, Chile.,Centro de Investigación para la Sustentabilidad, Universidad Andrés Bello, Santiago, Chile
| | - Mark Q Wilber
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.,Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Stefano Canessa
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Leonardo D Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Erin Muths
- U.S. Geological Survey, 2150 Centre Avenue Bldg C, Fort Collins, Colorado, 80526, USA
| | - Benedikt R Schmidt
- Institut für Evolutionsbiologie und Umweltwissenschaften, Universität Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,Info Fauna Karch, UniMail, Bâtiment G, Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Arpat Ozgul
- Institut für Evolutionsbiologie und Umweltwissenschaften, Universität Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Pieter T J Johnson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Hugo Cayuela
- IBIS, Department of Biology, University Laval, Pavillon Charles-Eugène-Marchand, Avenue de la Médecine, Quebec City, Canada.,Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Adams AJ, Pessier A, Cranston P, Grasso RL. Chytridiomycosis-induced mortality in a threatened anuran. PLoS One 2020; 15:e0241119. [PMID: 33156870 PMCID: PMC7647137 DOI: 10.1371/journal.pone.0241119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/26/2020] [Indexed: 11/20/2022] Open
Abstract
Effectively planning conservation introductions involves assessing the
suitability of both donor and recipient populations, including the landscape of
disease risk. Chytridiomycosis, caused by the fungal pathogen
Batrachochytrium dendrobatidis (Bd), has caused extensive
amphibian declines globally and may hamper reintroduction attempts. To determine
Bd dynamics in potential source populations for conservation translocations of
the threatened California red-legged frog (Rana draytonii) to
Yosemite National Park, we conducted Bd sampling in two populations in the
foothills of the Sierra Nevada Mountains, California, U.S.A. At one of two
sites, we observed lethally high Bd loads in early post-metamorphic life stages
and confirmed one chytridiomycosis-induced mortality, the first such report for
this species. These results informed source population site selection for
subsequent R. draytonii conservation
translocations. Conservation efforts aimed at establishing new populations of
R. draytonii in a landscape where Bd is
ubiquitous can benefit from an improved understanding of risk through disease
monitoring and ex situ infection studies.
Collapse
Affiliation(s)
- Andrea J. Adams
- Yosemite National Park, El Portal, California, United States of
America
- Earth Research Institute, University of California Santa Barbara, Santa
Barbara, California, United States of America
- * E-mail:
| | - Allan Pessier
- Department of Veterinary Microbiology and Pathology, College of
Veterinary Medicine, Washington State University, Pullman, Washington, United
States of America
| | - Peggy Cranston
- Mother Lode Field Office, U.S. Bureau of Land Management, Fair Oaks,
California, United States of America
| | - Robert L. Grasso
- Yosemite National Park, El Portal, California, United States of
America
| |
Collapse
|
40
|
Grogan LF, Humphries JE, Robert J, Lanctôt CM, Nock CJ, Newell DA, McCallum HI. Immunological Aspects of Chytridiomycosis. J Fungi (Basel) 2020; 6:jof6040234. [PMID: 33086692 PMCID: PMC7712659 DOI: 10.3390/jof6040234] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Amphibians are currently the most threatened vertebrate class, with the disease chytridiomycosis being a major contributor to their global declines. Chytridiomycosis is a frequently fatal skin disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). The severity and extent of the impact of the infection caused by these pathogens across modern Amphibia are unprecedented in the history of vertebrate infectious diseases. The immune system of amphibians is thought to be largely similar to that of other jawed vertebrates, such as mammals. However, amphibian hosts are both ectothermic and water-dependent, which are characteristics favouring fungal proliferation. Although amphibians possess robust constitutive host defences, Bd/Bsal replicate within host cells once these defences have been breached. Intracellular fungal localisation may contribute to evasion of the induced innate immune response. Increasing evidence suggests that once the innate defences are surpassed, fungal virulence factors suppress the targeted adaptive immune responses whilst promoting an ineffectual inflammatory cascade, resulting in immunopathology and systemic metabolic disruption. Thus, although infections are contained within the integument, crucial homeostatic processes become compromised, leading to mortality. In this paper, we present an integrated synthesis of amphibian post-metamorphic immunological responses and the corresponding outcomes of infection with Bd, focusing on recent developments within the field and highlighting future directions.
Collapse
Affiliation(s)
- Laura F. Grogan
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Southport, QLD 4222, Australia;
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
- Correspondence:
| | - Josephine E. Humphries
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
| | - Jacques Robert
- University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Chantal M. Lanctôt
- Australian Rivers Institute, Griffith University, Southport, QLD 4222, Australia;
| | - Catherine J. Nock
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia;
| | - David A. Newell
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
| | - Hamish I. McCallum
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Southport, QLD 4222, Australia;
| |
Collapse
|
41
|
Brannelly LA, McCallum HI, Grogan LF, Briggs CJ, Ribas MP, Hollanders M, Sasso T, Familiar López M, Newell DA, Kilpatrick AM. Mechanisms underlying host persistence following amphibian disease emergence determine appropriate management strategies. Ecol Lett 2020; 24:130-148. [PMID: 33067922 DOI: 10.1111/ele.13621] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Emerging infectious diseases have caused many species declines, changes in communities and even extinctions. There are also many species that persist following devastating declines due to disease. The broad mechanisms that enable host persistence following declines include evolution of resistance or tolerance, changes in immunity and behaviour, compensatory recruitment, pathogen attenuation, environmental refugia, density-dependent transmission and changes in community composition. Here we examine the case of chytridiomycosis, the most important wildlife disease of the past century. We review the full breadth of mechanisms allowing host persistence, and synthesise research on host, pathogen, environmental and community factors driving persistence following chytridiomycosis-related declines and overview the current evidence and the information required to support each mechanism. We found that for most species the mechanisms facilitating persistence have not been identified. We illustrate how the mechanisms that drive long-term host population dynamics determine the most effective conservation management strategies. Therefore, understanding mechanisms of host persistence is important because many species continue to be threatened by disease, some of which will require intervention. The conceptual framework we describe is broadly applicable to other novel disease systems.
Collapse
Affiliation(s)
- Laura A Brannelly
- Veterinary BioSciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Vic, 3030, Australia
| | - Hamish I McCallum
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia
| | - Laura F Grogan
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia.,Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Cheryl J Briggs
- Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Maria P Ribas
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia.,Wildlife Conservation Medicine Research Group, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Matthijs Hollanders
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Thais Sasso
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia
| | - Mariel Familiar López
- School of Environment and Sciences, Griffith University, Gold Coast, Qld., 4215, Australia
| | - David A Newell
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Auston M Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
42
|
Gong M, Shafer ABA, Hu X, Huang Y, Zhang L, Li H, Wu Y, Wen W, Liu G. Population demographic history and adaptability of the vulnerable Lolokou Sucker Frog. Genetica 2020; 148:207-213. [PMID: 33052504 DOI: 10.1007/s10709-020-00105-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/26/2020] [Indexed: 11/30/2022]
Abstract
Amphibians are experiencing worldwide declines due to increasing anthropogenetic disturbances. However, the genetic variability and hence adaptability are still unknown for most frogs. We integrated the mitochondrial (ND2 gene), nuclear (TYR gene) and major histocompatibility complex (MHC) loci, to clarify the demographic patterns and immune-gene diversity of the Lolokou Sucker Frog (Amolops loloensis). Demographic analysis of the ND2 and TYR genes suggested that the Lolokou Sucker Frog experienced a population expansion within the last 10,000 years. High MHC diversity was detected, which has likely resulted from positive selection, indicating the current diversity bodes well for the species' adaptive potential to pathogenic challenges. These findings broaden our knowledge on the population history and evolution adaptation of the reclusive torrent frog, and conservation implications are provided.
Collapse
Affiliation(s)
- Minghao Gong
- Institute of Wetland Research, Beijing Key Laboratory of Wetland Services and Restoration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Aaron B A Shafer
- Forensics & Environmental and Life Sciences, Trent University, Peterborough, 7K9J 7B8, Canada
| | - Xiaolong Hu
- College of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yaohua Huang
- Mabian Dafengding National Nature Reserve, Sichuan, 614600, China
| | - Ling Zhang
- China Wildlife Conservation Association, Beijing, 100714, China
| | - Huixin Li
- Institute of Wetland Research, Beijing Key Laboratory of Wetland Services and Restoration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ye Wu
- Mabian Dafengding National Nature Reserve, Sichuan, 614600, China
| | - Wanyu Wen
- Institute of Wetland Research, Beijing Key Laboratory of Wetland Services and Restoration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Gang Liu
- Institute of Wetland Research, Beijing Key Laboratory of Wetland Services and Restoration, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
43
|
Yi X, Donner DM, Marquardt PE, Palmer JM, Jusino MA, Frair J, Lindner DL, Latch EK. Major histocompatibility complex variation is similar in little brown bats before and after white-nose syndrome outbreak. Ecol Evol 2020; 10:10031-10043. [PMID: 33005361 PMCID: PMC7520216 DOI: 10.1002/ece3.6662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/28/2022] Open
Abstract
White-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans (Pd), has driven alarming declines in North American hibernating bats, such as little brown bat (Myotis lucifugus). During hibernation, infected little brown bats are able to initiate anti-Pd immune responses, indicating pathogen-mediated selection on the major histocompatibility complex (MHC) genes. However, such immune responses may not be protective as they interrupt torpor, elevate energy costs, and potentially lead to higher mortality rates. To assess whether WNS drives selection on MHC genes, we compared the MHC DRB gene in little brown bats pre- (Wisconsin) and post- (Michigan, New York, Vermont, and Pennsylvania) WNS (detection spanning 2014-2015). We genotyped 131 individuals and found 45 nucleotide alleles (27 amino acid alleles) indicating a maximum of 3 loci (1-5 alleles per individual). We observed high allelic admixture and a lack of genetic differentiation both among sampling sites and between pre- and post-WNS populations, indicating no signal of selection on MHC genes. However, post-WNS populations exhibited decreased allelic richness, reflecting effects from bottleneck and drift following rapid population declines. We propose that mechanisms other than adaptive immunity are more likely driving current persistence of little brown bats in affected regions.
Collapse
Affiliation(s)
- Xueling Yi
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWIUSA
| | - Deahn M. Donner
- Northern Research StationUSDA Forest ServiceRhinelanderWIUSA
| | | | | | - Michelle A. Jusino
- Northern Research StationUSDA Forest ServiceMadisonWIUSA
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA
| | - Jacqueline Frair
- Roosevelt Wild Life StationSUNY College of Environmental Science and ForestrySyracuseNYUSA
| | | | - Emily K. Latch
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWIUSA
| |
Collapse
|
44
|
Castro Monzon F, Rödel MO, Jeschke JM. Tracking Batrachochytrium dendrobatidis Infection Across the Globe. ECOHEALTH 2020; 17:270-279. [PMID: 33201333 PMCID: PMC7719156 DOI: 10.1007/s10393-020-01504-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 05/17/2023]
Abstract
Infection records of Batrachochytrium dendrobatidis (Bd), a pathogen that has devastated amphibian populations worldwide, have rapidly increased since the pathogen's discovery. Dealing with so many records makes it difficult to (a) know where, when and in which species infections have been detected, (b) understand how widespread and pervasive Bd is and (c) prioritize study and management areas. We conducted a systematic review of papers and compiled a database with Bd infection records. Our dataset covers 71 amphibian families and 119 countries. The data revealed how widespread and adaptable Bd is, being able to infect over 50% of all tested amphibian species, with over 1000 confirmed host species and being present in 86 countries. The distribution of infected species is uneven among and within countries. Areas where the distributions of many infected species overlap are readily visible; these are regions where Bd likely develops well. Conversely, areas where the distributions of species that tested negative overlap, such as the Atlantic Coast in the USA, suggest the presence of Bd refuges. Finally, we report how the number of tested and infected species has changed through time, and provide a list of oldest detection records per country.
Collapse
Affiliation(s)
- Federico Castro Monzon
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany.
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, 14195, Berlin, Germany.
| | - Mark-Oliver Rödel
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, 14195, Berlin, Germany
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115, Berlin, Germany
| | - Jonathan M Jeschke
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, 14195, Berlin, Germany
| |
Collapse
|
45
|
Savage AE, Gratwicke B, Hope K, Bronikowski E, Fleischer RC. Sustained immune activation is associated with susceptibility to the amphibian chytrid fungus. Mol Ecol 2020; 29:2889-2903. [PMID: 32700351 DOI: 10.1111/mec.15533] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/06/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
The disease chytridiomycosis caused by the fungus Bd has devastated amphibian populations worldwide. Functional genomic contributions to host susceptibility remain enigmatic and vary between species and populations. We conducted experimental Bd infections in Rana yavapaiensis, a species with intraspecific variation in chytridiomycosis susceptibility, to assess the skin and spleen transcriptomic response to infection over time. We predicted that increased immune gene expression would be associated with a positive disease outcome, but we instead found that surviving frogs had significantly reduced immune gene expression compared to susceptible frogs and to uninfected controls. MHC class IIβ gene expression was also significantly higher in susceptible frogs compared to surviving frogs. Furthermore, susceptible frogs expressed a significantly larger number of distinct class IIβ alleles, demonstrating a negative correlation between class IIβ expression, functional diversity, and survival. Expression of the MHC class IIβ locus previously associated with Bd disease outcomes was a significant predictor of Bd infection intensity at early infection stages but not at late infection stages, suggesting initial MHC-linked immune processes are important for ultimate disease outcomes. We infer through disease association and phylogenetic analysis that certain MHC variants are linked to the immune expression that was negatively associated with survival, and we hypothesize that frogs that did not express these alleles could better survive infections. Our study finds that MHC expression at early and late infection stages predicts Bd infection intensity, and suggests that generating a sustained immune response against Bd may be counterproductive for surviving chytridiomycosis in this partially susceptible species.
Collapse
Affiliation(s)
- Anna E Savage
- Department of Biology, University of Central Florida, Orlando, FL, USA.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Brian Gratwicke
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Katharine Hope
- Center for Animal Care Sciences, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Edward Bronikowski
- Center for Animal Care Sciences, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| |
Collapse
|
46
|
Rollins-Smith LA. Global Amphibian Declines, Disease, and the Ongoing Battle between Batrachochytrium Fungi and the Immune System. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.178] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Louise A. Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
47
|
Zamudio KR, McDonald CA, Belasen AM. High Variability in Infection Mechanisms and Host Responses: A Review of Functional Genomic Studies of Amphibian Chytridiomycosis. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kelly R. Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853-2701, USA
| | - Cait A. McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853-2701, USA
| | - Anat M. Belasen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853-2701, USA
| |
Collapse
|
48
|
Pabijan M, Palomar G, Antunes B, Antoł W, Zieliński P, Babik W. Evolutionary principles guiding amphibian conservation. Evol Appl 2020; 13:857-878. [PMID: 32431739 PMCID: PMC7232768 DOI: 10.1111/eva.12940] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
The Anthropocene has witnessed catastrophic amphibian declines across the globe. A multitude of new, primarily human-induced drivers of decline may lead to extinction, but can also push species onto novel evolutionary trajectories. If these are recognized by amphibian biologists, they can be engaged in conservation actions. Here, we summarize how principles stemming from evolutionary concepts have been applied for conservation purposes, and address emerging ideas at the vanguard of amphibian conservation science. In particular, we examine the consequences of increased drift and inbreeding in small populations and their implications for practical conservation. We then review studies of connectivity between populations at the landscape level, which have emphasized the limiting influence of anthropogenic structures and degraded habitat on genetic cohesion. The rapid pace of environmental changes leads to the central question of whether amphibian populations can cope either by adapting to new conditions or by shifting their ranges. We gloomily conclude that extinction seems far more likely than adaptation or range shifts for most species. That said, conservation strategies employing evolutionary principles, such as selective breeding, introduction of adaptive variants through translocations, ecosystem interventions aimed at decreasing phenotype-environment mismatch, or genetic engineering, may effectively counter amphibian decline in some areas or for some species. The spread of invasive species and infectious diseases has often had disastrous consequences, but has also provided some premier examples of rapid evolution with conservation implications. Much can be done in terms of setting aside valuable amphibian habitat that should encompass both natural and agricultural areas, as well as designing protected areas to maximize the phylogenetic and functional diversity of the amphibian community. We conclude that an explicit consideration and application of evolutionary principles, although certainly not a silver bullet, should increase effectiveness of amphibian conservation in both the short and long term.
Collapse
Affiliation(s)
- Maciej Pabijan
- Institute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Gemma Palomar
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Bernardo Antunes
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Weronika Antoł
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Piotr Zieliński
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Wiesław Babik
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
49
|
DiRenzo GV, Chen R, Ibsen K, Toothman M, Miller AJ, Gershman A, Mitragotri S, Briggs CJ. Investigating the potential use of an ionic liquid (1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide) as an anti-fungal treatment against the amphibian chytrid fungus, Batrachochytrium dendrobatidis. PLoS One 2020; 15:e0231811. [PMID: 32302369 PMCID: PMC7164615 DOI: 10.1371/journal.pone.0231811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/01/2020] [Indexed: 11/19/2022] Open
Abstract
The disease chytridiomycosis, caused by the pathogenic chytrid fungus, Batrachochytrium dendrobatidis (Bd), has contributed to global amphibian declines. Bd infects the keratinized epidermal tissue in amphibians and causes hyperkeratosis and excessive skin shedding. In individuals of susceptible species, the regulatory function of the amphibian’s skin is disrupted resulting in an electrolyte depletion, osmotic imbalance, and eventually death. Safe and effective treatments for chytridiomycosis are urgently needed to control chytrid fungal infections and stabilize populations of endangered amphibian species in captivity and in the wild. Currently, the most widely used anti-Bd treatment is itraconazole. Preparations of itraconazole formulated for amphibian use has proved effective, but treatment involves short baths over seven to ten days, a process which is logistically challenging, stressful, and causes long-term health effects. Here, we explore a novel anti-fungal therapeutic using a single application of the ionic liquid, 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP-NTf2), for the treatment of chytridiomycosis. BMP-NTf2 was found be effective at killing Bd in vitro at low concentrations (1:1000 dilution). We tested BMP-NTf2 in vivo on two amphibian species, one that is relatively tolerant of chytridiomycosis (Pseudacris regilla) and one that is highly susceptible (Dendrobates tinctorius). A toxicity trial revealed a surprising interaction between Bd infection status and the impact of BMP-NTf2 on D. tinctorius survival. Uninfected D. tinctorius tolerated BMP-NTf2 (mean ± SE; 96.01 ± 9.00 μl/g), such that only 1 out of 30 frogs died following treatment (at a dose of 156.95 μL/g), whereas, a lower dose (mean ± SE; 97.45 ± 3.52 μL/g) was not tolerated by Bd-infected D. tinctorius, where 15 of 23 frogs died shortly upon BMP-NTf2 application. Those that tolerated the BMP-NTf2 application did not exhibit Bd clearance. Thus, BMP-NTf2 application, under the conditions tested here, is not a suitable option for clearing Bd infection in D. tinctorius. However, different results were obtained for P. regilla. Two topical applications of BMP-NTf2 on Bd-infected P. regilla (using a lower BMP-NTf2 dose than on D. tinctorius, mean ± SE; 9.42 ± 1.43 μL/g) reduced Bd growth, although the effect was lower than that obtained by daily doses of itracanozole (50% frogs exhibited complete clearance on day 16 vs. 100% for itracanozole). Our findings suggest that BMP-NTf2 has the potential to treat Bd infection, however the effect depends on several parameters. Further optimization of dose and schedule are needed before BMP-NTf2 can be considered as a safe and effective alternative to more conventional antifungal agents, such as itraconazole.
Collapse
Affiliation(s)
- Graziella V. DiRenzo
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, CA, United States of America
- * E-mail:
| | - Renwei Chen
- Center for Bioengineering, University of California, Santa Barbara, CA, United States of America
| | - Kelly Ibsen
- Center for Bioengineering, University of California, Santa Barbara, CA, United States of America
- Department of Chemical Engineering, University of California, Santa Barbara, CA, United States of America
- School of Engineering and Applied Sciences, Harvard University Cambridge, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Mary Toothman
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, CA, United States of America
| | - Abigail J. Miller
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, CA, United States of America
| | - Ariel Gershman
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, CA, United States of America
| | - Samir Mitragotri
- Center for Bioengineering, University of California, Santa Barbara, CA, United States of America
- Department of Chemical Engineering, University of California, Santa Barbara, CA, United States of America
- School of Engineering and Applied Sciences, Harvard University Cambridge, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Cheryl J. Briggs
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, CA, United States of America
| |
Collapse
|
50
|
Williams ST, Haas CA, Roberts JH, Taylor SS. Depauperate major histocompatibility complex variation in the endangered reticulated flatwoods salamander (Ambystoma bishopi). Immunogenetics 2020; 72:263-274. [PMID: 32300829 DOI: 10.1007/s00251-020-01160-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/09/2020] [Indexed: 11/28/2022]
Abstract
Reticulated flatwoods salamander (Ambystoma bishopi) populations began decreasing dramatically in the 1900s. Contemporary populations are small, isolated, and may be susceptible to inbreeding and reduced adaptive potential because of low genetic variation. Genetic variation at immune genes is especially important as it influences disease susceptibility and adaptation to emerging infectious pathogens, a central conservation concern for declining amphibians. We collected samples from across the extant range of this salamander to examine genetic variation at major histocompatibility complex (MHC) class Iα and IIβ exons as well as the mitochondrial control region. We screened tail or toe tissue for ranavirus, a pathogen associated with amphibian declines worldwide. Overall, we found low MHC variation when compared to other amphibian species and did not detect ranavirus at any site. MHC class Iα sequencing revealed only three alleles with a nucleotide diversity of 0.001, while MHC class IIβ had five alleles with a with nucleotide diversity of 0.004. However, unique variation still exists across this species' range with private alleles at three sites. Unlike MHC diversity, mitochondrial variation was comparable to levels estimated for other amphibians with nine haplotypes observed, including one haplotype shared across all sites. We hypothesize that a combination of a historic disease outbreak and a population bottleneck may have contributed to low MHC diversity while maintaining higher levels of mitochondrial DNA variation. Ultimately, MHC data indicated that the reticulated flatwoods salamander may be at an elevated risk from infectious diseases due to low levels of immunogenetic variation necessary to combat novel pathogens.
Collapse
Affiliation(s)
- Steven Tyler Williams
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70806, USA.
| | - Carola A Haas
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - James H Roberts
- Department of Biology, Georgia Southern University, Statesboro, GA, 30458, USA
| | - Sabrina S Taylor
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70806, USA
| |
Collapse
|