1
|
Harano T, Asahara M. Evolution of tooth morphological complexity and its association with the position of tooth eruption in the jaw in non-mammalian synapsids. PeerJ 2024; 12:e17784. [PMID: 39148681 PMCID: PMC11326432 DOI: 10.7717/peerj.17784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/30/2024] [Indexed: 08/17/2024] Open
Abstract
Heterodonty and complex molar morphology are important characteristics of mammals acquired during the evolution of early mammals from non-mammalian synapsids. Some non-mammalian synapsids had only simple, unicuspid teeth, whereas others had complex, multicuspid teeth. In this study, we reconstructed the ancestral states of tooth morphological complexity across non-mammalian synapsids to show that morphologically complex teeth evolved independently multiple times within Therapsida and that secondary simplification of tooth morphology occurred in some non-mammalian Cynodontia. In some mammals, secondary evolution of simpler teeth from complex molars has been previously reported to correlate with an anterior shift of tooth eruption position in the jaw, as evaluated by the dentition position relative to the ends of component bones used as reference points in the upper jaw. Our phylogenetic comparative analyses showed a significant correlation between an increase in tooth complexity and a posterior shift in the dentition position relative to only one of the three specific ends of component bones that we used as reference points in the upper jaw of non-mammalian synapsids. The ends of component bones depend on the shape and relative area of each bone, which appear to vary considerably among the synapsid taxa. Quantification of the dentition position along the anteroposterior axis in the overall cranium showed suggestive evidence of a correlation between an increase in tooth complexity and a posterior shift in the dentition position among non-mammalian synapsids. This correlation supports the hypothesis that a posterior shift of tooth eruption position relative to the morphogenetic fields that determine tooth form have contributed to the evolution of morphologically complex teeth in non-mammalian synapsids, if the position in the cranium represents a certain point in the morphogenetic fields.
Collapse
Affiliation(s)
- Tomohiro Harano
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Masakazu Asahara
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, Japan
| |
Collapse
|
2
|
DeMers AC, Hunter JP. Dental complexity and diet in amniotes: A meta-analysis. PLoS One 2024; 19:e0292358. [PMID: 38306370 PMCID: PMC10836679 DOI: 10.1371/journal.pone.0292358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/19/2023] [Indexed: 02/04/2024] Open
Abstract
Tooth morphology is among the most well-studied indicators of ecology. For decades, researchers have examined the gross morphology and wear patterns of teeth as indicators of diet, and recent advances in scanning and computer analysis have allowed the development of new and more quantitative measures of tooth morphology. One of the most popular of these new methods is orientation patch count (OPC). OPC, a measure of surface complexity, was originally developed to distinguish the more complex tooth crowns of herbivores from the less complex tooth crowns of faunivores. OPC and a similar method derived from it, orientation patch count rotated (OPCR), have become commonplace in analyses of both modern and fossil amniote dietary ecology. The widespread use of these techniques makes it possible to now re-assess the utility of OPC and OPCR. Here, we undertake a comprehensive review of OPC(R) and diet and perform a meta-analysis to determine the overall difference in complexity between herbivores and faunivores. We find that the relationship between faunivore and herbivore OPC or OPCR values differs substantially across studies, and although some support the initial assessment of greater complexity in herbivores, others do not. Our meta-analysis does not support an overall pattern of greater complexity in herbivores than faunivores across terrestrial amniotes. It appears that the relationship of OPC or OPCR to diet is taxon-specific and dependent on the type of faunivory of the group in question, with insectivores often having values similar to herbivores. We suggest extreme caution in comparing OPC and OPCR values across studies and offer suggestions for how OPCR can constructively be used in future research.
Collapse
Affiliation(s)
- Anessa C DeMers
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - John P Hunter
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Newark, Ohio, United States of America
| |
Collapse
|
3
|
Harano T, Asahara M. The anteriorization of tooth position underlies the atavism of tooth morphology: Insights into the morphogenesis of mammalian molars. Evolution 2022; 76:2986-3000. [PMID: 36200621 DOI: 10.1111/evo.14637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 01/22/2023]
Abstract
The evolution and development of complex molars as a key innovation in mammals have long been of interest yet remain poorly understood. With reference to century-old theories and modern findings, we focused on the teeth of pinnipeds (Carnivora) and cetaceans (Cetartiodactyla), which are morphologically simple compared with those of other mammals, and thus can be considered a reversal toward the ancestral state of nonmammalian synapsids. By reconstructing the evolutionary history of tooth complexity for the phylogenies of Carnivora and Cetartiodactyla, we established that a secondary evolution of simple teeth from more complex molars has occurred independently multiple times. Our phylogenetic comparative analyses showed that a simplification in tooth morphology was correlated with a more anterior dentition position relative to the component bones of the upper jaw in both Carnivora and Cetartiodactyla. These results suggest that the anterior shift of tooth position relative to the morphogenetic fields present in the jaw contributed to the evolutionary simplification in molar morphology. Our findings provide insights into the developmental basis of complex mammalian dentition.
Collapse
Affiliation(s)
- Tomohiro Harano
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, 470-0195, Japan
| | - Masakazu Asahara
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, 470-0195, Japan
| |
Collapse
|
4
|
Slater GJ. Topographically distinct adaptive landscapes for teeth, skeletons, and size explain the adaptive radiation of Carnivora (Mammalia). Evolution 2022; 76:2049-2066. [PMID: 35880607 PMCID: PMC9546082 DOI: 10.1111/evo.14577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 01/22/2023]
Abstract
Models of adaptive radiation were originally developed to explain the early, rapid appearance of distinct modes of life within diversifying clades. Phylogenetic tests of this hypothesis have yielded limited support for temporally declining rates of phenotypic evolution across diverse clades, but the concept of an adaptive landscape that links form to fitness, while also crucial to these models, has received more limited attention. Using methods that assess the temporal accumulation of morphological variation and estimate the topography of the underlying adaptive landscape, I found evidence of an early partitioning of mandibulo-dental morphological variation in Carnivora (Mammalia) that occurs on an adaptive landscape with multiple peaks, consistent with classic ideas about adaptive radiation. Although strong support for this mode of adaptive radiation is present in traits related to diet, its signal is not present in body mass data or for traits related to locomotor behavior and substrate use. These findings suggest that adaptive radiations may occur along some axes of ecomorphological variation without leaving a signal in others and that their dynamics are more complex than simple univariate tests might suggest.
Collapse
Affiliation(s)
- Graham J. Slater
- Department of the Geophysical SciencesUniversity of ChicagoChicagoIllinois60637
| |
Collapse
|
5
|
Harano T, Asahara M. Correlated evolution of craniodental morphology and feeding ecology in carnivorans: a comparative analysis of jaw lever arms at tooth positions. J Zool (1987) 2022. [DOI: 10.1111/jzo.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- T. Harano
- Division of Liberal Arts and Sciences Aichi Gakuin University Nisshin Japan
| | - M. Asahara
- Division of Liberal Arts and Sciences Aichi Gakuin University Nisshin Japan
| |
Collapse
|
6
|
Takenaka R, Clay SM, Yoo S, Hlusko LJ. Conserved and Taxon-Specific Patterns of Phenotypic Modularity in the Mammalian Dentition. Integr Org Biol 2022; 4:obac017. [PMID: 35709132 PMCID: PMC9191923 DOI: 10.1093/iob/obac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/21/2021] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
Previous genotype:phenotype mapping of the mouse and primate dentition revealed the presence of pre- and post-canine modules in mice and anthropoid primates, as well as molar and premolar submodules in anthropoid primates. We estimated phenotypic correlation matrices for species that sample broadly across Mammalia to test the hypothesis that these modules exist across a broader range of taxa and thereby represent a conserved mammalian trait. We calculated phenotypic correlation matrices from linear dental measurements of 419 individual specimens representing 5 species from 4 mammalian orders: Artiodactyla (Odocoileus hemionus), Carnivora (Canis latrans and Ursus americanus), Didelphimorphia (Didelphis virginiana), and Primates (Colobus guereza). Our results based on hierarchical clustering indicate a generally higher correlation within incisors and among post-canine teeth. However, the post-canine phenotypic correlation matrices do not consistently exhibit the premolar and molar submodularity observed in anthropoid primates. Additionally, we find evidence of sex differences in the Odocoileus phenotypic correlation matrices: Males of this species exhibit overall higher inter-trait correlations compared to females. Our overall findings support the interpretation that incisors and post-canine dentition represent different phenotypic modules, and that this architecture may be a conserved trait for mammals.
Collapse
Affiliation(s)
| | | | - Sunwoo Yoo
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
7
|
Esquivel DA, Maestri R, Santana SE. Evolutionary implications of dental anomalies in bats. Evolution 2021; 75:1087-1096. [PMID: 33742462 DOI: 10.1111/evo.14211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/05/2021] [Accepted: 02/17/2021] [Indexed: 01/17/2023]
Abstract
The gain or loss of anatomical features is an important mechanism of morphological evolution and ecological adaptation. Dental anomalies-the loss or gain of teeth-are widespread and a potential source of craniodental specialization among mammals, yet their macroevolutionary patterns have been rarely explored. We present the first phylogenetic comparative study of dental anomalies across the second largest mammal Order, Chiroptera (bats). We conducted an extensive literature review and surveyed a large sample of museum specimens to analyze the types and prevalence of dental anomalies across bats, and performed phylogenetic comparative analyses to investigate the role of phylogenetic history and dietary specialization on incidence of dental anomalies. We found dental anomalies have a significant phylogenetic signal, suggesting they are not simply the result of idiosyncratic mutations or random developmental disorders, but may have ancestral genetic origins or result from shared developmental pathways among closely related species. The incidence of dental anomalies was not associated with diet categories, suggesting no effect of craniodental specialization on dental anomalies across bats. Our results give insight into the macroevolutionary patterns of dental anomalies in bats, and provide a foundation for investigating new hypotheses underlying the evolution of dental variation and diversity in mammals.
Collapse
Affiliation(s)
- Diego A Esquivel
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil.,Fundación Kurupira, Bogotá, DC, 110921, Colombia
| | - Renan Maestri
- Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil.,Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, 60605
| | - Sharlene E Santana
- Department of Biology, University of Washington, Seattle, Washington, 98195.,Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, 98195
| |
Collapse
|
8
|
Billet G, Bardin J. Segmental series and size: clade-wide investigation of molar proportions reveals a major evolutionary allometry in the dentition of placental mammals. Syst Biol 2021; 70:1101-1109. [PMID: 33560370 DOI: 10.1093/sysbio/syab007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 11/14/2022] Open
Abstract
Iterative segments such as teeth or limbs are a widespread characteristic of living organisms. While their proportions may be governed by similar developmental rules in vertebrates, there is no emerging pattern as regards their relation to size. Placental mammals span eight orders of magnitude in body size and show a wide spectrum of dietary habits associated with size and reflected in their dentitions, especially molars. Although variation in size constitutes an important determinant for variation in biological traits, few major allometric trends have been documented on placental molars so far. Molar proportions have been intensively explored in placentals in relation to developmental models, but often at a small phylogenetic scale. Here, we analyzed the diversity of upper molar proportions in relation to absolute size in a large sample of placental species (n = 286) encompassing most of the group's dental diversity. Our phylogenetically informed analyses revealed a twofold pattern of evolutionary integration among upper molars: while molars covary in size with each other, their proportions covary with the absolute size of the entire molar field. With increasing absolute size, posterior molars increase in size relative to anterior ones, meaning that large-sized species have relatively large rear molars while the opposite is true for small-sized species. The directionality of proportional increase in the molar row exhibits a previously unsuspected allometric patterning among placentals, showing how large-scale variations in size may have influenced variation in dental morphology. This finding provides new evidence that processes regulating the size of individual molars are integrated with overall patterns of growth and calls for further testing of allometric variation in the dentition and in other segmental series of the vertebrate body.
Collapse
Affiliation(s)
- Guillaume Billet
- Centre de Recherche en Paléontologie - Paris, CR2P, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, 8 rue Buffon 75005 Paris, France
| | - Jérémie Bardin
- Centre de Recherche en Paléontologie - Paris, CR2P, Sorbonne Université, Muséum national d'Histoire naturelle, CNRS, T.46-56, E.5, case 104, 4 place Jussieu, 75252 Paris cedex 05, France
| |
Collapse
|
9
|
Development of tooth regenerative medicine strategies by controlling the number of teeth using targeted molecular therapy. Inflamm Regen 2020; 40:21. [PMID: 32922570 PMCID: PMC7461317 DOI: 10.1186/s41232-020-00130-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Analysis of various genetically modified mice, with supernumerary teeth, has revealed the following two intrinsic molecular mechanisms that increase the number of teeth. One plausible explanation for supernumerary tooth formation is the rescue of tooth rudiments. Topical application of candidate molecules could lead to whole tooth formation under suitable conditions. Congenital tooth agenesis is caused by the cessation of tooth development due to the deletion of the causative gene and suppression of its function. The arrest of tooth development in Runx2 knockout mice, a mouse model of congenital tooth agenesis, is rescued in double knockout mice of Runx2 and Usag-1. The Usag-1 knockout mouse is a supernumerary model mouse. Targeted molecular therapy could be used to generate teeth in patients with congenital tooth agenesis by stimulating arrested tooth germs. The third dentition begins to develop when the second successional lamina is formed from the developing permanent tooth in humans and usually regresses apoptotically. Targeted molecular therapy, therefore, seems to be a suitable approach in whole-tooth regeneration by the stimulation of the third dentition. A second mechanism of supernumerary teeth formation involves the contribution of odontogenic epithelial stem cells in adults. Cebpb has been shown to be involved in maintaining the stemness of odontogenic epithelial stem cells and suppressing epithelial-mesenchymal transition. Odontogenic epithelial stem cells are differentiated from one of the tissue stem cells, enamel epithelial stem cells, and odontogenic mesenchymal cells are formed from odontogenic epithelial cells by epithelial-mesenchymal transition. Both odontogenic epithelial cells and odontogenic mesenchymal cells required to form teeth from enamel epithelial stem cells were directly induced to form excess teeth in adults. An approach for the development of targeted therapeutics has been the local application of monoclonal neutralizing antibody/siRNA with cationic gelatin for USAG-1 or small molecule for Cebpb.
Collapse
|
10
|
Morita W, Morimoto N, Kono RT, Suwa G. Metameric variation of upper molars in hominoids and its implications for the diversification of molar morphogenesis. J Hum Evol 2019; 138:102706. [PMID: 31785453 DOI: 10.1016/j.jhevol.2019.102706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/20/2019] [Accepted: 10/20/2019] [Indexed: 11/18/2022]
Abstract
Metameric variation of molar size is in part associated with the dietary adaptations of mammals and results from slight alterations of developmental processes. Humans and great apes exhibit conspicuous variation in tooth morphology both between taxa and across tooth types. However, the manner in which metameric variation in molars emerged among apes and humans via evolutionary alterations in developmental processes remains largely unknown. In this study, we compare the enamel-dentine junction of the upper molars of humans-which closely correlates with morphology of the outer enamel surface and is less affected by wear-with that of the other extant hominoids: chimpanzees, bonobos, gorillas, orangutans, and gibbons. We used the morphometric mapping method to quantify and visualize three-dimensional morphological variation, and applied multivariate statistical analyses. Results revealed the following: 1) extant hominoids other than humans share a common pattern of metameric variation characterized by a largely linear change in morphospace; this indicates a relatively simple graded change in metameric molar shape; 2) intertaxon morphological differences become less distinct from the mesial to distal molars; and 3) humans diverge from the extant ape pattern in exhibiting a distinct metameric shape change trajectory in the morphospace. The graded shape change and lower intertaxon resolution from the mesial to distal molars are consistent with the concept of a 'key' tooth. The common metameric pattern observed among the extant nonhuman hominoids indicates that developmental patterns underlying metameric variation were largely conserved during ape evolution. Furthermore, the human-specific metameric pattern suggests considerable developmental modifications in the human lineage.
Collapse
Affiliation(s)
- Wataru Morita
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland; Department of Oral Functional Anatomy, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan.
| | - Naoki Morimoto
- Laboratory of Physical Anthropology, Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | - Reiko T Kono
- Faculty of Letters, Keio University, Kanagawa, Japan
| | - Gen Suwa
- The University Museum, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Bartolini Lucenti S. “Measure my teeth and you'll know what I ate”: The molar ratio method and an updated interpretation of the diet of Nyctereutes sinensis
(Carnivora, Canidae). ACTA ZOOL-STOCKHOLM 2019. [DOI: 10.1111/azo.12232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Saverio Bartolini Lucenti
- Dottorato di Ricerca in Scienze della Terra; Università di Pisa; Pisa Italy
- Dipartimento di Scienze della Terra; Università di Firenze; Firenze Italy
| |
Collapse
|
12
|
Asahara M, Takai M. Dietary transition in theNyctereutes sinensisandNyctereutes procyonoideslineage during the Pleistocene. ACTA ZOOL-STOCKHOLM 2019. [DOI: 10.1111/azo.12233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masakazu Asahara
- Division of Liberal Arts and Sciences; Aichi Gakuin University; Nisshin Aichi Japan
| | - Masanaru Takai
- Primate Research Institute; Kyoto University; Inuyama Aichi Japan
| |
Collapse
|
13
|
Abstract
Morphological integration and modularity are important for understanding phenotypic evolution because they constrain variation subjected to selection and enable independent evolution of functional and developmental units. We report dental integration and modularity in representative otariid (Eumetopias jubatus, Callorhinus ursinus) and phocid (Phoca largha, Histriophoca fasciata) species of Pinnipedia. This is the first study of integration and modularity in a secondarily simplified dentition with simple occlusion. Integration was stronger in both otariid species than in either phocid species and related positively to dental occlusion and negatively to both modularity and tooth-size variability across all the species. The canines and third upper incisor were most strongly integrated, comprising a module that likely serves as occlusal guides for the postcanines. There was no or weak modularity among tooth classes. The reported integration is stronger than or similar to that in mammals with complex dentition and refined occlusion. We hypothesise that this strong integration is driven by dental occlusion, and that it is enabled by reduction of modularity that constrains overall integration in complex dentitions. We propose that modularity was reduced in pinnipeds during the transition to aquatic life in association with the origin of pierce-feeding and loss of mastication caused by underwater feeding.
Collapse
|
14
|
Tarquini SD, Chemisquy MA, Prevosti FJ. Evolution of the Carnassial in Living Mammalian Carnivores (Carnivora, Didelphimorphia, Dasyuromorphia): Diet, Phylogeny, and Allometry. J MAMM EVOL 2018. [DOI: 10.1007/s10914-018-9448-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Zurowski C, Jamniczky H, Graf D, Theodor J. Deletion/loss of bone morphogenetic protein 7 changes tooth morphology and function in Mus musculus: implications for dental evolution in mammals. ROYAL SOCIETY OPEN SCIENCE 2018; 5:170761. [PMID: 29410800 PMCID: PMC5792877 DOI: 10.1098/rsos.170761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Quantifying regulatory gene effects on dental morphology and function has implications for the underlying mechanisms that generated dental diversity in mammals. We tested the hypothesis that regulatory gene expression changes lead to differences in molars using a neural crest knockout of bone morphogenetic protein 7 (BMP7) in Mus musculus. Three-dimensional geometric morphometric methods were used to quantify the shape of the molar toothrow. BMP7 mutants have extra cusps on the first upper and lower molars, and alterations in cusp orientation and morphology. Furthermore, significant shape differences between control and mutant were found for upper and lower toothrows. Mutant mice also exhibited differences in attrition facets, indicating functional changes that could lead to advantages in chewing new food resources and eventually niche diversification. The size ratio of the molars in the toothrow remained unchanged, implying that BMP7-induced changes in molar size ratio are a result of knocking out epithelial, rather than neural crest, expression of BMP7. Our results indicate that changes in BMP7 expression are sufficient to alter the morphology and function of the toothrow, suggesting that BMP7 or genes affecting its function could have played a role in structuring the dental diversity of extinct and extant mammals.
Collapse
Affiliation(s)
- Chelsey Zurowski
- Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, CanadaT2N 1N4
| | - Heather Jamniczky
- Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, CanadaT2N 4Z6
| | - Daniel Graf
- Dentistry and Medical Genetics, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, CanadaT6G 2R3
| | - Jessica Theodor
- Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, CanadaT2N 1N4
| |
Collapse
|
16
|
Gomes Rodrigues H, Lefebvre R, Fernández-Monescillo M, Mamani Quispe B, Billet G. Ontogenetic variations and structural adjustments in mammals evolving prolonged to continuous dental growth. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170494. [PMID: 28791172 PMCID: PMC5541567 DOI: 10.1098/rsos.170494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Studying dental ontogeny in mammals can provide valuable insight on the evolution of their masticatory apparatus and their related adaptations. The multiple acquisitions of a prolonged to continuous growth of teeth in herbivorous mammals in response to high abrasion represent an intensively investigated issue. However, the ontogenetic and architectural patterns associated with these repeated dental innovations remain poorly known. Here, we focused on two case studies corresponding to distant mammalian clades, the extinct Mesotheriidae (Notoungulata), which shared some striking dental features with the extant Ctenodactylidae (Rodentia). We studied the impact of prolonged to continuous growth of molars on their occlusal complexity, their relative size and their dynamics in the jaw. We found that variations of occlusal complexity patterns are the result of paedomorphic or peramorphic heterochronic processes impacting dental crown. We showed that variations in both upper and lower molar proportions generally follow the inhibitory developmental cascade model. In that context, prolonged dental growth implies transitory adjustments due to wear, and also involves dental migration and loss when combined with molar lengthening. Interestingly, these features may be present in many mammals having prolonged dental growth, and emphasize the crucial need of considering these aspects in future evolutionary and developmental studies.
Collapse
Affiliation(s)
- Helder Gomes Rodrigues
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P), UMR CNRS 7207, CP38, Muséum national d'Histoire naturelle, Univ Paris 6, 8 rue Buffon, 75005 Paris, France
- Mécanismes adaptatifs et évolution (MECADEV), UMR 7179, CNRS, Funevol team, Muséum National d'Histoire Naturelle, 55 rue Buffon, Bat. Anatomie Comparée, CP 55, 75005, Paris Cedex 5, France
| | - Rémi Lefebvre
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P), UMR CNRS 7207, CP38, Muséum national d'Histoire naturelle, Univ Paris 6, 8 rue Buffon, 75005 Paris, France
| | - Marcos Fernández-Monescillo
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT–CONICET–Mendoza, Avda. Ruiz Leal s/n, Parque Gral, San Martín 5500, Mendoza, Argentina
| | - Bernardino Mamani Quispe
- Departamento de Paleontología, Museo Nacional de Historia Natural, Calle 26 s/n, Cota Cota, La Paz, Bolivia
| | - Guillaume Billet
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P), UMR CNRS 7207, CP38, Muséum national d'Histoire naturelle, Univ Paris 6, 8 rue Buffon, 75005 Paris, France
| |
Collapse
|
17
|
Asahara M. Geographic Variation of Absolute and Relative Lower Molar Sizes in Two Closely Related Species of Japanese Field Mice (Apodemus speciosus and Apodemus argenteus: Muridae, Rodentia). Zoolog Sci 2017; 34:26-34. [PMID: 28148213 DOI: 10.2108/zs160103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Geographic variation of the sizes of lower molar (M1 size) and relative lower molar sizes (size proportions among M1, M2, and M3) were examined in two species of closely related Japanese field mice (Apodemus speciosus and Apodemus argenteus). To determine the cause of the geographic variations observed, phylogeographic structure, interspecific competition, climate, and location (mainland or island) were compared. With regard to the phylogeographic structure, the sizes of the molar and the relative molar sizes in A. speciosus did not differ between two major clades (mainland vs. Hokkaido and peripheral islands), whereas the phylogeographic structure was not examined in A. argenteus, as no clear phylogeographic structure was evident. The sizes of M1 and relative molar size (M3/M1 score) in A. speciosus differed significantly between the mainland and islands; however, there was no significant difference between islands within and outside the distribution of A. argenteus. Interspecific competition between the two species may thus not be considerable. Climatic factors (temperature) and relative molar sizes (M2/M1 and M3/M1 scores) were significantly correlated in the mainland populations of A. speciosus, indicating that geographic variations in relative molar sizes may be affected by climate. In addition, M3/M1 scores varied more in the islands than on the mainland, suggesting effects of genetic drift. However, M1 size increases in the island populations of the two species are not attributed to the climate, but are explained by the so-called Island Rule. Geographic variation in A. speciosus is thus likely attributable to various effects.
Collapse
Affiliation(s)
- Masakazu Asahara
- College of Liberal Arts and Sciences, Mie University, Kurima-Machiya-Cho, Tsu, Mie 514-8507, Japan
| |
Collapse
|
18
|
Asahara M, Nishioka Y. Geographic Variation of Absolute and Relative Lower Molar Sizes in the Japanese Macaque (Macaca fuscata: Primates, Mammalia). Zoolog Sci 2017; 34:35-41. [DOI: 10.2108/zs160104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Asahara M. The origin of the lower fourth molar in canids, inferred by individual variation. PeerJ 2016; 4:e2689. [PMID: 27843722 PMCID: PMC5103830 DOI: 10.7717/peerj.2689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/14/2016] [Indexed: 11/21/2022] Open
Abstract
Background An increase in tooth number is an exception during mammalian evolution. The acquisition of the lower fourth molar in the bat-eared fox (Otocyon megalotis, Canidae, Carnivora, Mammalia) is one example; however, its developmental origin is not clear. In some canids (Canidae), individual variation exist as supernumerary molar M4. This study focuses on the acquisition of the lower fourth molar in canids and proposes that the inhibitory cascade model can explain its origin. Methods Occlusal view projected area of lower molars was determined from 740 mandibles obtained from Canis latrans, Nyctereutes procyonoides, and Urocyon cinereoargenteus museum specimens. For each molar, relative sizes of molars (M2/M1 and M3/M1 scores) affected by inhibition/activation dynamics during development, were compared between individuals with and without supernumerary molar (M4). Results Possession of a supernumerary molar was associated with significantly larger M2/M1 score in Canis latrans, M3/M1 score in Nyctereutes procyonoides, and M2/M1 and M3/M1 scores in Urocyon cinereoargenteus compared to individuals of these species that lacked supernumerary molars. Discussion We propose that, in canids, the supernumerary fourth molar is attributable to reduced inhibition and greater activation during molar development. In the bat-eared fox, altered inhibition and activation dynamics of dental development during omnivorous-insectivorous adaptation may be a contributing factor in the origin of the lower fourth molar.
Collapse
Affiliation(s)
- Masakazu Asahara
- College of Liberal Arts and Sciences, Mie University , Tsu, Mie , Japan
| |
Collapse
|
20
|
Asahara M, Takai M. Estimation of diet in extinct raccoon dog species by the molar ratio method. ACTA ZOOL-STOCKHOLM 2016. [DOI: 10.1111/azo.12179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masakazu Asahara
- College of Liberal Arts and Sciences; Mie University; Kurima-Machiya-Cho Tsu Mie 514-8507 Japan
| | - Masanaru Takai
- Primate Research Institute; Kyoto University; Inuyama Aichi 484-8506 Japan
| |
Collapse
|