1
|
Zhang H, Bearup D, Barabás G, Fagan WF, Nijs I, Chen D, Liao J. Complex nonmonotonic responses of biodiversity to habitat destruction. Ecology 2023; 104:e4177. [PMID: 37782819 DOI: 10.1002/ecy.4177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2023]
Abstract
It has typically been assumed that habitat destruction, characterized by habitat loss and fragmentation, has consistently negative effects on biodiversity. While numerous empirical studies have shown the detrimental effects of habitat loss, debate continues as to whether habitat fragmentation has universally negative effects. To explore the effects of habitat fragmentation, we developed a simple model for site-occupancy dynamics in fragmented landscapes. With the model, we demonstrate that a competition-colonization trade-off can result in nonlinear oscillatory responses in biodiversity to both habitat loss and fragmentation. However, the overall pattern of habitat loss reducing species richness is still established, in line with empirical observations. Interestingly, the existence of localized oscillations in biodiversity can explain the mixed responses of species richness to habitat fragmentation per se observed in nature, thereby reconciling the debate on the fragmentation-diversity relationship. Therefore, this study offers a parsimonious mechanistic explanation for empirically observed biodiversity patterns in response to habitat destruction.
Collapse
Affiliation(s)
- Helin Zhang
- Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang, China
| | - Daniel Bearup
- School of Mathematics, Statistics and Actuarial Sciences, University of Kent, Canterbury, UK
| | - György Barabás
- Division of Theoretical Biology, Department IFM, Linköping University, Linköping, Sweden
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - William F Fagan
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Ivan Nijs
- Research Group Plants and Ecosystems, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Dongdong Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jinbao Liao
- Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang, China
- Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
2
|
Guo G, Zhao F, Nijs I, Liao J. Colonization-competition dynamics of basal species shape food web complexity in island metacommunities. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:169-177. [PMID: 37275541 PMCID: PMC10232389 DOI: 10.1007/s42995-023-00167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/28/2023] [Indexed: 06/07/2023]
Abstract
Exploring how food web complexity emerges and evolves in island ecosystems remains a major challenge in ecology. Food webs assembled from multiple islands are commonly recognized as highly complex trophic networks that are dynamic in both space and time. In the context of global climate change, it remains unclear whether food web complexity will decrease in a monotonic fashion when undergoing habitat destruction (e.g., the inundation of islands due to sea-level rise). Here, we develop a simple yet comprehensive patch-dynamic framework for complex food web metacommunities subject to the competition-colonization tradeoff between basal species. We found that oscillations in food web topological complexity (characterized by species diversity, mean food chain length and the degree of omnivory) emerge along the habitat destruction gradient. This outcome is robust to changing parameters or relaxing the assumption of a strict competitive hierarchy. Having oscillations in food web complexity indicates that small habitat changes could have disproportionate negative effects on species diversity, thus the success of conservation actions should be evaluated not only on changes in biodiversity, but also on system robustness to habitat alteration. Overall, this study provides a parsimonious mechanistic explanation for the emergence of food web complexity in island ecosystems, further enriching our understanding of metacommunity assembly. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00167-0.
Collapse
Affiliation(s)
- Guanming Guo
- Ministry of Education’s Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022 China
| | - Fei Zhao
- Ministry of Education’s Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022 China
| | - Ivan Nijs
- Research Group in Plants and Ecosystems, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Jinbao Liao
- Ministry of Education’s Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022 China
| |
Collapse
|
3
|
Sandor ME, Elphick CS, Tingley MW. Extinction of biotic interactions due to habitat loss could accelerate the current biodiversity crisis. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2608. [PMID: 35366031 DOI: 10.1002/eap.2608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Habitat loss disrupts species interactions through local extinctions, potentially orphaning species that depend on interacting partners, via mutualisms or commensalisms, and increasing secondary extinction risk. Orphaned species may become functionally or secondarily extinct, increasing the severity of the current biodiversity crisis. While habitat destruction is a major cause of biodiversity loss, the number of secondary extinctions is largely unknown. We investigate the relationship between habitat loss, orphaned species, and bipartite network properties. Using a real seed dispersal network, we simulate habitat loss to estimate the rate at which species are orphaned. To be able to draw general conclusions, we also simulate habitat loss in synthetic networks to quantify how changes in network properties affect orphan rates across broader parameter space. Both real and synthetic network simulations show that even small amounts of habitat loss can cause up to 10% of species to be orphaned. More area loss, less connected networks, and a greater disparity in the species richness of the network's trophic levels generally result in more orphaned species. As habitat is lost to land-use conversion and climate change, more orphaned species increase the loss of community-level and ecosystem functions. However, the potential severity of repercussions ranges from minimal (no species orphaned) to catastrophic (up to 60% of species within a network orphaned). Severity of repercussions also depends on how much the interaction richness and intactness of the community affects the degree of redundancy within networks. Orphaned species could add substantially to the loss of ecosystem function and secondary extinction worldwide.
Collapse
Affiliation(s)
- Manette E Sandor
- Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Northern Arizona University, Landscape Conservation Initiative, Flagstaff, Arizona, USA
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA
- Center for Biodiversity and Conservation, American Museum of Natural History, New York, New York, USA
| | - Chris S Elphick
- Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Morgan W Tingley
- Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
4
|
Knowledge Gaps and Missing Links in Understanding Mass Extinctions: Can Mathematical Modeling Help? Phys Life Rev 2022; 41:22-57. [DOI: 10.1016/j.plrev.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
|
5
|
Liao J, Bearup D, Strona G. A patch-dynamic metacommunity perspective on the persistence of mutualistic and antagonistic bipartite networks. Ecology 2022; 103:e3686. [PMID: 35315055 DOI: 10.1002/ecy.3686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 11/06/2022]
Abstract
The structure of interactions between species within a community plays a key role in maintaining biodiversity. Previous studies have found that the effects of these structures might substantially differ depending on interaction type, for example, a highly connected and nested architecture stabilizes mutualistic communities, while the stability of antagonistic communities is enhanced in modular and weakly connected structures. Here we show that, when network dynamics are modelled using a patch-dynamic metacommunity framework, the qualitative differences between antagonistic and mutualistic systems disappear, with nestedness and modularity interacting to promote metacommunity persistence. However, the interactive effects are significantly weaker in antagonistic metacommunities. Our model also predicts an increase in connectance, nestedness and modularity over time in both types of interaction, except in antagonistic networks where nestedness declines. At steady state, we find a strong negative correlation between nestedness and modularity in both mutualistic and antagonistic metacommunities. These predictions are consistent with the structural trends found in a large dataset of real-world antagonistic and mutualistic communities.
Collapse
Affiliation(s)
- Jinbao Liao
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Ziyang Road 99, Nanchang, China
| | - Daniel Bearup
- University of Kent, School of Mathematics, Statistics and Actuarial Sciences, Parkwood Road, Canterbury, UK
| | - Giovanni Strona
- Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 4, Finland
| |
Collapse
|
6
|
Gross T, Allhoff KT, Blasius B, Brose U, Drossel B, Fahimipour AK, Guill C, Yeakel JD, Zeng F. Modern models of trophic meta-communities. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190455. [PMID: 33131442 PMCID: PMC7662193 DOI: 10.1098/rstb.2019.0455] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Dispersal and foodweb dynamics have long been studied in separate models. However, over the past decades, it has become abundantly clear that there are intricate interactions between local dynamics and spatial patterns. Trophic meta-communities, i.e. meta-foodwebs, are very complex systems that exhibit complex and often counterintuitive dynamics. Over the past decade, a broad range of modelling approaches have been used to study these systems. In this paper, we review these approaches and the insights that they have revealed. We focus particularly on recent papers that study trophic interactions in spatially extensive settings and highlight the common themes that emerged in different models. There is overwhelming evidence that dispersal (and particularly intermediate levels of dispersal) benefits the maintenance of biodiversity in several different ways. Moreover, some insights have been gained into the effect of different habitat topologies, but these results also show that the exact relationships are much more complex than previously thought, highlighting the need for further research in this area. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.
Collapse
Affiliation(s)
- Thilo Gross
- University of California Davis, Department of Computer Science, 1 Shields Avenue, Davis, CA 95616, USA
- Alfred Wegener Institut. Helmholtz Zentrum für Polar und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Univeristät Oldenburg, Institut für Chemie und Biologie des Meeres, Carl-von-Ossietzky-Strasse 9-11, 26111 Oldenburg, Germany
- Helmholtz Institute for Functional Marine Bidiversity, Ammerländer Heerstrasse 231, Oldenburg, Germany
| | - Korinna T. Allhoff
- Universität Tübingen, Department of Biology, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Bernd Blasius
- Alfred Wegener Institut. Helmholtz Zentrum für Polar und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Univeristät Oldenburg, Institut für Chemie und Biologie des Meeres, Carl-von-Ossietzky-Strasse 9-11, 26111 Oldenburg, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute for Biodiversity, Friedrich Schiller University Jena, Dornburger-Strasse 159, 07743 Jena, Germany
| | - Barbara Drossel
- TU Darmstadt, Institut für Festkörperphysik, Hochschulstrasse 6, 64289 Darmstadt, Germany
| | - Ashkaan K. Fahimipour
- National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center, 110 McAllister Way, Santa Cruz, CA 95060, USA
| | - Christian Guill
- Universität Potsdam, Institut für Biochemie und Biologie, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Justin D. Yeakel
- University of California, Merced, School of Natural Sciences, 5200 North Lake Road, Merced, CA 95343, USA
| | - Fanqi Zeng
- University of Bristol, Department of Engineering Mathematics, Merchant Venturers Building, Bristol BS8 1UB, UK
| |
Collapse
|
7
|
Häussler J, Barabás G, Eklöf A. A Bayesian network approach to trophic metacommunities shows that habitat loss accelerates top species extinctions. Ecol Lett 2020; 23:1849-1861. [PMID: 32981202 PMCID: PMC7702078 DOI: 10.1111/ele.13607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/09/2020] [Accepted: 08/14/2020] [Indexed: 11/28/2022]
Abstract
We develop a novel approach to analyse trophic metacommunities, which allows us to explore how progressive habitat loss affects food webs. Our method combines classic metapopulation models on fragmented landscapes with a Bayesian network representation of trophic interactions for calculating local extinction rates. This means that we can repurpose known results from classic metapopulation theory for trophic metacommunities, such as ranking the habitat patches of the landscape with respect to their importance to the persistence of the metacommunity as a whole. We use this to study the effects of habitat loss, both on model communities and the plant‐mammal Serengeti food web dataset as a case study. Combining straightforward parameterisability with computational efficiency, our method permits the analysis of species‐rich food webs over large landscapes, with hundreds or even thousands of species and habitat patches, while still retaining much of the flexibility of explicit dynamical models.
Collapse
Affiliation(s)
- Johanna Häussler
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, Jena, 07743, Germany
| | - György Barabás
- Linköping University, Linköping, SE-58183, Sweden.,MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Pázmány Péter sétány, Budapest, H-1117, Hungary
| | - Anna Eklöf
- Linköping University, Linköping, SE-58183, Sweden
| |
Collapse
|
8
|
Mid-domain effect for food chain length in a colonization–extinction model. THEOR ECOL-NETH 2020. [DOI: 10.1007/s12080-020-00454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Liao J, Xi X, Bearup D, Sun S. Metacommunity robustness of plant-fly-wasp tripartite networks with specialization to habitat loss. Ecology 2020; 101:e03071. [PMID: 32302011 DOI: 10.1002/ecy.3071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/07/2020] [Accepted: 03/16/2020] [Indexed: 11/10/2022]
Abstract
Recent observations have found plant-species-specific fly-host selection (i.e., specialization) of wasp parasitoids (wasps) in plant-fly-wasp (P-F-W) tripartite networks, yet no study has explored the dynamical implications of such high-order specialization for the persistence of this network. Here we develop a patch-dynamic framework for a unique P-F-W tripartite network with specialization observed in eastern Tibetan Plateau and explore its metacommunity robustness to habitat loss. We show that specialization in parasitoidism promotes fly species diversity, while the richness of both plant and wasp decreases. Compared to other two null models, real network structure favors plant species coexistence but increases the extinction risk for both flies and wasps. However, these effects of specialization and network structure would be weakened and ultimately disappear with increasing habitat loss. Interestingly, intermediate levels of habitat loss can maximize the diversity of flies and wasps, while increasing or decreasing habitat loss results in more species losses, supporting intermediate disturbance hypothesis. Finally, we observe that high levels of habitat loss initiate a bottom-up cascade of species extinction from plants to both flies and wasps, resulting in a rapid collapse of the whole tripartite networks. Overall, this theoretical framework is the first attempt to characterize the dynamics of whole tripartite metacommunities interacting in realistic high-order ways, offering new insights into complex multipartite networks.
Collapse
Affiliation(s)
- Jinbao Liao
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Ziyang Road 99, 330022, Nanchang, China
| | - Xinqiang Xi
- Department of Ecology, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Daniel Bearup
- School of Mathematics, Statistics and Actuarial Sciences, University of Kent, Parkwood Road, Canterbury, CT2 7FS, United Kingdom
| | - Shucun Sun
- Department of Ecology, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| |
Collapse
|
10
|
Liao J, Bearup D, Fagan WF. The role of omnivory in mediating metacommunity robustness to habitat destruction. Ecology 2020; 101:e03026. [PMID: 32083738 DOI: 10.1002/ecy.3026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/01/2019] [Accepted: 01/29/2020] [Indexed: 11/07/2022]
Abstract
Omnivores have long been known to play an important role in determining the stability of ecological communities. Recent theoretical studies have suggested that they may also increase the resilience of their communities to habitat destruction, one of the major drivers of species extinctions globally. However, these outcomes were obtained for minimal food webs consisting of only a single omnivore and its prey species, while much more complex communities can be anticipated in nature. In this study, we undertake a systematic comparative analysis of the robustness of metacommunities containing various omnivory structures to habitat loss and fragmentation using a mathematical model. We observe that, in general, omnivores are better able to survive facing habitat destruction than specialist predators of similar trophic level. However, the community as a whole does not always benefit from the presence of omnivores, as they may drive their intraguild prey to extinction. We also analyze the frequency with which these modules occur in a set of empirical food webs, and demonstrate that variation in their rate of occurrence is consistent with our model predictions. Our findings demonstrate the importance of considering the complete food web in which an omnivore is embedded, suggesting that future study should focus on more holistic community analysis.
Collapse
Affiliation(s)
- Jinbao Liao
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Ziyang Road 99, Nanchang, 330022, China
| | - Daniel Bearup
- School of Mathematics, Statistics and Actuarial Sciences, University of Kent, Parkwood Road, Canterbury, CT2 7FS, United Kingdom
| | - William F Fagan
- Department of Biology, University of Maryland, College Park, Maryland, 20742, USA
| |
Collapse
|
11
|
Zhang H, Chen D, Ying Z, Zhang F, Liao J. Robustness of the pollination-herbivory system with high-order interactions to habitat loss. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.108826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Hillaert J, Vandegehuchte ML, Hovestadt T, Bonte D. Habitat loss and fragmentation increase realized predator–prey body size ratios. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jasmijn Hillaert
- Department of Biology Terrestrial Ecology Unit Ghent University Ghent Belgium
| | | | - Thomas Hovestadt
- Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Würzburg Germany
| | - Dries Bonte
- Department of Biology Terrestrial Ecology Unit Ghent University Ghent Belgium
| |
Collapse
|
13
|
|
14
|
Ryser R, Häussler J, Stark M, Brose U, Rall BC, Guill C. The biggest losers: habitat isolation deconstructs complex food webs from top to bottom. Proc Biol Sci 2019; 286:20191177. [PMID: 31362639 PMCID: PMC6710599 DOI: 10.1098/rspb.2019.1177] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Habitat fragmentation threatens global biodiversity. To date, there is only limited understanding of how the different aspects of habitat fragmentation (habitat loss, number of fragments and isolation) affect species diversity within complex ecological networks such as food webs. Here, we present a dynamic and spatially explicit food web model which integrates complex food web dynamics at the local scale and species-specific dispersal dynamics at the landscape scale, allowing us to study the interplay of local and spatial processes in metacommunities. We here explore how the number of habitat patches, i.e. the number of fragments, and an increase of habitat isolation affect the species diversity patterns of complex food webs (α-, β-, γ-diversities). We specifically test whether there is a trophic dependency in the effect of these two factors on species diversity. In our model, habitat isolation is the main driver causing species loss and diversity decline. Our results emphasize that large-bodied consumer species at high trophic positions go extinct faster than smaller species at lower trophic levels, despite being superior dispersers that connect fragmented landscapes better. We attribute the loss of top species to a combined effect of higher biomass loss during dispersal with increasing habitat isolation in general, and the associated energy limitation in highly fragmented landscapes, preventing higher trophic levels to persist. To maintain trophic-complex and species-rich communities calls for effective conservation planning which considers the interdependence of trophic and spatial dynamics as well as the spatial context of a landscape and its energy availability.
Collapse
Affiliation(s)
- Remo Ryser
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Strasse 159, 07743 Jena, Germany
| | - Johanna Häussler
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Strasse 159, 07743 Jena, Germany
| | - Markus Stark
- Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469 Potsdam, Germany
| | - Ulrich Brose
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Strasse 159, 07743 Jena, Germany
| | - Björn C Rall
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Strasse 159, 07743 Jena, Germany
| | - Christian Guill
- Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469 Potsdam, Germany
| |
Collapse
|
15
|
Ying Z, Ge G, Liu Y. The effects of clonal integration on the responses of plant species to habitat loss and habitat fragmentation. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Hillaert J, Vandegehuchte ML, Hovestadt T, Bonte D. Information use during movement regulates how fragmentation and loss of habitat affect body size. Proc Biol Sci 2018; 285:20180953. [PMID: 30111596 PMCID: PMC6111160 DOI: 10.1098/rspb.2018.0953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022] Open
Abstract
An individual's body size is central to its behaviour and physiology, and tightly linked to its movement ability. The spatial arrangement of resources and a consumer's capacity to locate them are therefore expected to exert strong selection on consumer body size. We investigated the evolutionary impact of both the fragmentation and loss of habitat on consumer body size and its feedback effects on resource distribution, under varying levels of information used during habitat choice. We developed a mechanistic, individual-based, spatially explicit model, including several allometric rules for key consumer traits. Our model reveals that as resources become more fragmented and scarce, informed habitat choice selects for larger body sizes while random habitat choice promotes small sizes. Information use may thus be an overlooked explanation for the observed variation in body size responses to habitat fragmentation. Moreover, we find that resources can accumulate and aggregate if information about resource abundance is incomplete. Informed movement results in stable resource-consumer dynamics and controlled resources across space. However, habitat loss and fragmentation destabilize local dynamics and disturb resource suppression by the consumer. Considering information use during movement is thus critical to understand the eco-evolutionary dynamics underlying the functioning and structuring of consumer communities.
Collapse
Affiliation(s)
- Jasmijn Hillaert
- Department of Biology, Terrestrial Ecology Unit, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Martijn L Vandegehuchte
- Department of Biology, Terrestrial Ecology Unit, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Thomas Hovestadt
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Wuerzburg, Emil-Fischer-Strasse 32, 97074 Wuerzburg, Germany
| | - Dries Bonte
- Department of Biology, Terrestrial Ecology Unit, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Srinivasu PDN, Vamsi DKK, Ananth VS. Additional food supplements as a tool for biological conservation of predator-prey systems involving type III functional response: A qualitative and quantitative investigation. J Theor Biol 2018; 455:303-318. [PMID: 30036525 DOI: 10.1016/j.jtbi.2018.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Provision of additional food supplements for the purpose of biological conservation in ecosystems has of late been intensely researched by agriculturalists, biologists and mathematicians. The study of these ecosystems is usually done using the predator-prey systems. In these ecological studies it has been observed that the quality and quantity of additional food supplements provided play a crucial role in the growth of the predators and thereby influence the eventual state of the ecosystem. Also, in some of the ecological experiments it has been observed that predators exhibit non-optimal foraging behaviour in the presence of additional food. Findings also show that the predators exhibit a Holling type II response towards a target prey with predation highest at low prey densities. The results suggest that predation by predators is unlikely to stabilize low density prey populations. This can be attributed to the prey detectability independent nature of the type II response. In nature, sigmoidal functional responses such as the Holling type III response, have been documented in organisms from various taxa. In this kind of type III response the predators exhibit low detectability nature at low prey densities. Due to this the ecosystem tends to get stabilized at low prey densities avoiding the oscillations encountered in type II response. Motivated by these studies, in this paper, we consider a predator-prey system provided with additional food where the predator is assumed to exhibit Holling type III functional response towards the available food and the additional food supplements provided are assumed to be of constant density. We also assume that the predators are not optimal foragers. The model is analyzed in the control parameter space using the control parameters, quality and quantity of additional food. It is observed that the system exhibits apparent competition only when the predators are provided with high quality additional food supplements. Further, it has been shown that the ecosystem tends to get stabilized at low prey densities and the system can be steered to a desired state by a suitable choice of additional food supplements. Provision of low quality additional food supplements can result in completely opposite results to the expected ones.
Collapse
Affiliation(s)
- P D N Srinivasu
- Department of Mathematics, Andhra-University, Vishkapatanam, Andhra-Pradesh 530003, India
| | - D K K Vamsi
- Department of Mathematics and computer Science, Sri Sathya Sai Institute of Higher Learning, Ananthapur, Andhra-Pradesh 515134, India.
| | - V S Ananth
- Department of Mathematics and computer Science, Sri Sathya Sai Institute of Higher Learning, Ananthapur, Andhra-Pradesh 515134, India
| |
Collapse
|
18
|
Xu Z, Shen Y, Liao J. Patch dynamics of various plant-animal interactions in fragmented landscapes. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2017.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|