1
|
Brownstein CD, Near TJ, Dearden RP. The Palaeozoic assembly of the holocephalan body plan far preceded post-Cretaceous radiations into the ocean depths. Proc Biol Sci 2024; 291:20241824. [PMID: 39471859 PMCID: PMC11521621 DOI: 10.1098/rspb.2024.1824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024] Open
Abstract
Among cartilaginous fishes, Holocephali represents the species-depauperate, morphologically conservative sister to sharks, rays and skates and the last survivor of a once far greater Palaeozoic and Mesozoic diversity. Currently, holocephalan diversity is concentrated in deep-sea species, suggesting that this lineage might contain relictual diversity that now persists in the ocean depths. However, the relationships of living holocephalans to their extinct relatives and the timescale of their diversification remain unclear. Here, we reconstruct the evolutionary history of holocephalans using comprehensive morphological and DNA sequence datasets. Our results suggest that crown holocephalans entered and diversified in deep (below 1000 m) ocean waters after the Cretaceous-Palaeogene mass extinction, contrasting with the hypothesis that this ecosystem has acted as a refugium of ancient cartilaginous fishes. These invasions were decoupled from the evolution of key features of the holocephalan body plan, including crushing dentition, a single frontal clasper, and holostylic jaw suspension, during the Palaeozoic Era. However, these invasions considerably postdated the appearance of extant holocephalan families 150 million years ago during a major period of biotic turnover in oceans termed the Mesozoic Marine Revolution. These results clarify the origins of living holocephalans as the recent diversification of a single surviving clade among numerous Palaeozoic lineages.
Collapse
Affiliation(s)
- Chase D. Brownstein
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06511, USA
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06511, USA
- Yale Peabody Museum, New Haven, CT06511, USA
| | - Richard P. Dearden
- Vertebrate Evolution, Development, and Ecology, Naturalis Biodiversity Center, Darwinweg 2, Leiden2333 CR, The Netherlands
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| |
Collapse
|
2
|
Schnetz L, Butler RJ, Coates MI, Sansom IJ. The skeletal completeness of the Palaeozoic chondrichthyan fossil record. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231451. [PMID: 38298400 PMCID: PMC10827434 DOI: 10.1098/rsos.231451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Chondrichthyes (sharks, rays, ratfish and their extinct relatives) originated and diversified in the Palaeozoic but are rarely preserved as articulated or partly articulated remains because of their predominantly cartilaginous endoskeletons. Consequently, their evolutionary history is perceived to be documented predominantly by isolated teeth, scales and fin spines. Here, we aim to capture and analyse the quality of the Palaeozoic chondrichthyan fossil record by using a variation of the skeletal completeness metric, which calculates how complete the skeletons of individuals are compared to estimates of their original entirety. Notably, chondrichthyan completeness is significantly lower than any published vertebrate group: low throughout the Silurian and Permian but peaking in the Devonian and Carboniferous. Scores increase to a range similar to pelycosaurs and parareptiles only when taxa identified solely from isolated teeth, scales and spines are excluded. We argue that environmental influences probably played an important role in chondrichthyan completeness. Sea level significantly negatively correlates with chondrichthyan completeness records and resembles patterns already evident in records of ichthyosaurs, plesiosaurs and sauropodomorphs. Such observed variations in completeness highlight the impact of different sampling biases on the chondrichthyan fossil record and the need to acknowledge these when inferring patterns of chondrichthyan macroevolution.
Collapse
Affiliation(s)
- Lisa Schnetz
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Richard J. Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Michael I. Coates
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637-1508, USA
| | - Ivan J. Sansom
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Gayford JH, Godfrey H, Whitehead DA. Ontogenetic morphometry of the brown smoothhound shark Mustelus henlei with implications for ecology and evolution. J Morphol 2023; 284:e21608. [PMID: 37458085 DOI: 10.1002/jmor.21608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023]
Abstract
The central tenet of ecomorphology links ecological and morphological variation through the process of selection. Traditionally used to rationalise morphological differences between taxa, an ecomorphological approach is increasingly being utilised to study morphological differences expressed through ontogeny. Elasmobranchii (sharks, rays and skates) is one clade in which such ontogenetic shifts in body form have been reported. Such studies are limited to a relatively small proportion of total elasmobranch ecological and morphological diversity, and questions remain regarding the extent to which ecological selection are driving observed morphometric trends. In this study, we report ontogenetic growth trajectories obtained via traditional linear morphometrics from a large data set of the brown smoothhound shark (Mustelus henlei). We consider various morphological structures including the caudal, dorsal and pectoral fins, as well as several girth measurements. We use an ecomorphological approach to infer the broad ecological characteristics of this population and refine understanding of the selective forces underlying the evolution of specific morphological structures. We suggest that observed scaling trends in M. henlei are inconsistent with migratory behaviour, but do not contradict a putative trophic niche shift. We also highlight the role of predation pressure and sex-based ecological differences in driving observed trends in morphometry, a factor which has previously been neglected when considering the evolution of body form in sharks.
Collapse
Affiliation(s)
- Joel H Gayford
- Department of Life Sciences, Imperial College London, Ascot, UK
- Marine Research and Conservation Department, Investigación Tiburones México A.C, La Paz, Mexico
- Shark Measurements, London, UK
| | - Hana Godfrey
- Marine Research and Conservation Department, Investigación Tiburones México A.C, La Paz, Mexico
| | - Darren A Whitehead
- Marine Research and Conservation Department, Investigación Tiburones México A.C, La Paz, Mexico
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, México
| |
Collapse
|
4
|
Klug C, Coates M, Frey L, Greif M, Jobbins M, Pohle A, Lagnaoui A, Haouz WB, Ginter M. Broad snouted cladoselachian with sensory specialization at the base of modern chondrichthyans. SWISS JOURNAL OF PALAEONTOLOGY 2023; 142:2. [PMID: 37009301 PMCID: PMC10050047 DOI: 10.1186/s13358-023-00266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/11/2023] [Indexed: 06/19/2023]
Abstract
UNLABELLED Throughout the Silurian and Devonian, cartilaginous fish successively evolved their specialized skeletal and dental characteristics, and increasingly refined their sensory systems. The Late Devonian shark taxon Maghriboselache mohamezanei gen. et sp. n. from the eastern Anti-Atlas of Morocco is known from multiple specimens preserving most of its skeletal features, which in some instances are preserved in three dimensions. Key details of the dentition, jaws, and pectoral skeleton are shared with the iconic genus Cladoselache. Phylogenetic analyses place the family Cladoselachidae as the sister group of symmoriiforms and these groups as sister group of the holocephalans. Further phylogenetic results corroborate that the initial evolutionary radiation of crown chondrichthyans occurred within or before the Late Devonian. Remarkably, this new stem holocephalan is equipped with a wide snout and large laterally separated nasal capsules: the earliest known example of this condition in the chondrichthyan and (perhaps) gnathostome record. This suggests sensory specialization approaching that of extant broad-rostrum elasmobranchs and represents a significant addition to increasingly apparent ecomorphological diversity among early chondrichthyans. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s13358-023-00266-6.
Collapse
Affiliation(s)
- Christian Klug
- Paläontologisches Institut und Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland
| | - Michael Coates
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57Th St., Chicago, 60637 USA
| | - Linda Frey
- Paläontologisches Institut und Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland
| | - Merle Greif
- Paläontologisches Institut und Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland
| | - Melina Jobbins
- Paläontologisches Institut und Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland
| | - Alexander Pohle
- Institute for Geology, Mineralogy, and Geophysics, Ruhr University Bochum, Universitätsstraβe 150, 44801 Bochum, Germany
| | - Abdelouahed Lagnaoui
- Interdisciplinary Research Laboratory in Sciences, Education and Training, Higher School of Education and Training Berrechid (ESEFB), Hassan First University, Avenue de l’Université, B.P:218, 26100 Berrechid, Morocco
- Laboratory of Stratigraphy of Oil-and-Gas Bearing Reservoirs, Department of Paleontology and Stratigraphy, Institute of Geology and Petroleum Technologies, Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Volga Region Russia
| | - Wahiba Bel Haouz
- Laboratory of Stratigraphy of Oil-and-Gas Bearing Reservoirs, Department of Paleontology and Stratigraphy, Institute of Geology and Petroleum Technologies, Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Volga Region Russia
- Geosciences Laboratory, Department of Geology, Faculty of Sciences Ain Chock, Hassan II University, Km 8 Route d’El Jadida, 20100 Casablanca, Morocco
| | - Michal Ginter
- Faculty of Geology, University of Warsaw, Al. Żwirki I Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
5
|
Villalobos-Segura E, Stumpf S, Türtscher J, Jambura PL, Begat A, López-Romero FA, Fischer J, Kriwet J. A Synoptic Review of the Cartilaginous Fishes (Chondrichthyes: Holocephali, Elasmobranchii) from the Upper Jurassic Konservat-Lagerstätten of Southern Germany: Taxonomy, Diversity, and Faunal Relationships. DIVERSITY 2023; 15:386. [PMID: 36950327 PMCID: PMC7614348 DOI: 10.3390/d15030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The Late Jurassic-Early Cretaceous (164-100 Ma) represents one of the main transitional periods in life history. Recent studies unveiled a complex scenario in which abiotic and biotic factors and drivers on regional and global scales due to the fragmentation of Pangaea resulted in dramatic faunal and ecological turnovers in terrestrial and marine environments. However, chondrichthyan faunas from this interval have received surprisingly little recognition. The presence of numerous entire skeletons of chondrichthyans preserved in several localities in southern Germany, often referred to as Konservat-Lagerstätten (e.g., Nusplingen and the Solnhofen Archipelago), provides a unique opportunity of to study the taxonomic composition of these assemblages, their ecological distributions and adaptations, and evolutionary histories in detail. However, even after 160 years of study, the current knowledge of southern Germany's Late Jurassic chondrichthyan diversity remains incomplete. Over the last 20 years, the systematic study and bulk sampling of southern Germany's Late Jurassic deposits significantly increased the number of known fossil chondrichthyan genera from the region (32 in the present study). In the present work, the fossil record, and the taxonomic composition of Late Jurassic chondrichthyans from southern Germany are reviewed and compared with several contemporaneous assemblages from other sites in Europe. Our results suggest, inter alia, that the Late Jurassic chondrichthyans displayed extended distributions within Europe. However, it nevertheless also is evident that the taxonomy of Late Jurassic chondrichthyans is in urgent need of revision.
Collapse
Affiliation(s)
- Eduardo Villalobos-Segura
- Evolutionary Morphology Research Group, Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Sebastian Stumpf
- Evolutionary Morphology Research Group, Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Julia Türtscher
- Evolutionary Morphology Research Group, Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Patrick L. Jambura
- Evolutionary Morphology Research Group, Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Arnaud Begat
- Evolutionary Morphology Research Group, Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Faviel A. López-Romero
- Evolutionary Morphology Research Group, Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Jan Fischer
- Urweltmuseum GEOSKOP/Burg Lichtenberg (Pfalz), Burgstraße 19, 66871 Thallichtenberg, Germany
| | - Jürgen Kriwet
- Evolutionary Morphology Research Group, Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
6
|
The Development of the Chimaeroid Pelvic Skeleton and the Evolution of Chondrichthyan Pelvic Fins. J Dev Biol 2022; 10:jdb10040053. [PMID: 36547475 PMCID: PMC9782884 DOI: 10.3390/jdb10040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/11/2022] [Accepted: 11/01/2022] [Indexed: 12/14/2022] Open
Abstract
Pelvic girdles, fins and claspers are evolutionary novelties first recorded in jawed vertebrates. Over the course of the evolution of chondrichthyans (cartilaginous fish) two trends in the morphology of the pelvic skeleton have been suggested to have occurred. These evolutionary shifts involved both an enlargement of the metapterygium (basipterygium) and a transition of fin radial articulation from the pelvic girdle to the metapterygium. To determine how these changes in morphology have occurred it is essential to understand the development of extant taxa as this can indicate potential developmental mechanisms that may have been responsible for these changes. The study of the morphology of the appendicular skeleton across development in chondrichthyans is almost entirely restricted to the historical literature with little contemporary research. Here, we have examined the morphology and development of the pelvic skeleton of a holocephalan chondrichthyan, the elephant shark (Callorhinchus milii), through a combination of dissections, histology, and nanoCT imaging and redescribed the pelvic skeleton of Cladoselache kepleri (NHMUK PV P 9269), a stem holocephalan. To put our findings in their evolutionary context we compare them with the fossil record of chondrichthyans and the literature on pelvic development in elasmobranchs from the late 19th century. Our findings demonstrate that the pelvic skeleton of C. milii initially forms as a single mesenchymal condensation, consisting of the pelvic girdle and a series of fin rays, which fuse to form the basipterygium. The girdle and fin skeleton subsequently segment into distinct components whilst chondrifying. This confirms descriptions of the early pelvic development in Scyliorhinid sharks from the historical literature and suggests that chimaeras and elasmobranchs share common developmental patterns in their pelvic anatomy. Alterations in the location and degree of radial fusion during early development may be the mechanism responsible for changes in pelvic fin morphology over the course of the evolution of both elasmobranchs and holocephalans, which appears to be an example of parallel evolution.
Collapse
|
7
|
Zhu YA, Li Q, Lu J, Chen Y, Wang J, Gai Z, Zhao W, Wei G, Yu Y, Ahlberg PE, Zhu M. The oldest complete jawed vertebrates from the early Silurian of China. Nature 2022; 609:954-958. [PMID: 36171378 DOI: 10.1038/s41586-022-05136-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/22/2022] [Indexed: 11/09/2022]
Abstract
Molecular studies suggest that the origin of jawed vertebrates was no later than the Late Ordovician period (around 450 million years ago (Ma))1,2. Together with disarticulated micro-remains of putative chondrichthyans from the Ordovician and early Silurian period3-8, these analyses suggest an evolutionary proliferation of jawed vertebrates before, and immediately after, the end-Ordovician mass extinction. However, until now, the earliest complete fossils of jawed fishes for which a detailed reconstruction of their morphology was possible came from late Silurian assemblages (about 425 Ma)9-13. The dearth of articulated, whole-body fossils from before the late Silurian has long rendered the earliest history of jawed vertebrates obscure. Here we report a newly discovered Konservat-Lagerstätte, which is marked by the presence of diverse, well-preserved jawed fishes with complete bodies, from the early Silurian (Telychian age, around 436 Ma) of Chongqing, South China. The dominant species, a 'placoderm' or jawed stem gnathostome, which we name Xiushanosteus mirabilis gen. et sp. nov., combines characters from major placoderm subgroups14-17 and foreshadows the transformation of the skull roof pattern from the placoderm to the osteichthyan condition10. The chondrichthyan Shenacanthus vermiformis gen. et sp. nov. exhibits extensive thoracic armour plates that were previously unknown in this lineage, and include a large median dorsal plate as in placoderms14-16, combined with a conventional chondrichthyan bauplan18,19. Together, these species reveal a previously unseen diversification of jawed vertebrates in the early Silurian, and provide detailed insights into the whole-body morphology of the jawed vertebrates of this period.
Collapse
Affiliation(s)
- You-An Zhu
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Qiang Li
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China.,Chongqing Institute of Geology and Mineral Resources, Chongqing, China
| | - Jing Lu
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Chen
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,Chongqing Institute of Geology and Mineral Resources, Chongqing, China
| | - Jianhua Wang
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China
| | - Zhikun Gai
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Wenjin Zhao
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guangbiao Wei
- Chongqing Institute of Geological Survey, Chongqing, China
| | - Yilun Yu
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Per E Ahlberg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| | - Min Zhu
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China. .,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China. .,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Spiny chondrichthyan from the lower Silurian of South China. Nature 2022; 609:969-974. [PMID: 36171377 DOI: 10.1038/s41586-022-05233-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
Modern representatives of chondrichthyans (cartilaginous fishes) and osteichthyans (bony fishes and tetrapods) have contrasting skeletal anatomies and developmental trajectories1-4 that underscore the distant evolutionary split5-7 of the two clades. Recent work on upper Silurian and Devonian jawed vertebrates7-10 has revealed similar skeletal conditions that blur the conventional distinctions between osteichthyans, chondrichthyans and their jawed gnathostome ancestors. Here we describe the remains (dermal plates, scales and fin spines) of a chondrichthyan, Fanjingshania renovata gen. et sp. nov., from the lower Silurian of China that pre-date the earliest articulated fossils of jawed vertebrates10-12. Fanjingshania possesses dermal shoulder girdle plates and a complement of fin spines that have a striking anatomical similarity to those recorded in a subset of stem chondrichthyans5,7,13 (climatiid 'acanthodians'14). Uniquely among chondrichthyans, however, it demonstrates osteichthyan-like resorptive shedding of scale odontodes (dermal teeth) and an absence of odontogenic tissues in its spines. Our results identify independent acquisition of these conditions in the chondrichthyan stem group, adding Fanjingshania to an increasing number of taxa7,15 nested within conventionally defined acanthodians16. The discovery of Fanjingshania provides the strongest support yet for a proposed7 early Silurian radiation of jawed vertebrates before their widespread appearance5 in the fossil record in the Lower Devonian series.
Collapse
|
9
|
Andreev PS, Sansom IJ, Li Q, Zhao W, Wang J, Wang CC, Peng L, Jia L, Qiao T, Zhu M. The oldest gnathostome teeth. Nature 2022; 609:964-968. [PMID: 36171375 DOI: 10.1038/s41586-022-05166-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/29/2022] [Indexed: 11/09/2022]
Abstract
Mandibular teeth and dentitions are features of jawed vertebrates that were first acquired by the Palaeozoic ancestors1-3 of living chondrichthyans and osteichthyans. The fossil record currently points to the latter part of the Silurian period4-7 (around 425 million years ago) as a minimum date for the appearance of gnathostome teeth and to the evolution of growth and replacement mechanisms of mandibular dentitions in the subsequent Devonian period2,8-10. Here we provide, to our knowledge, the earliest direct evidence for jawed vertebrates by describing Qianodus duplicis, a new genus and species of an early Silurian gnathostome based on isolated tooth whorls from Guizhou province, China. The whorls possess non-shedding teeth arranged in a pair of rows that demonstrate a number of features found in modern gnathostome groups. These include lingual addition of teeth in offset rows and maintenance of this patterning throughout whorl development. Our data extend the record of toothed gnathostomes by 14 million years from the late Silurian into the early Silurian (around 439 million years ago) and are important for documenting the initial diversification of vertebrates. Our analyses add to mounting fossil evidence that supports an earlier emergence of jawed vertebrates as part of the Great Ordovician Biodiversification Event (approximately 485-445 million years ago).
Collapse
Affiliation(s)
- Plamen S Andreev
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China.,Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ivan J Sansom
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Qiang Li
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China.,Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wenjin Zhao
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Wang
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China
| | - Chun-Chieh Wang
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Lijian Peng
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China
| | - Liantao Jia
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Tuo Qiao
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Min Zhu
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China. .,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China. .,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Park JS, Almer JD, James KC, Natanson LJ, Stock SR. Bioapatite in shark centra studied by wide-angle and by small-angle X-ray scattering. J R Soc Interface 2022; 19:20220373. [PMID: 36128705 PMCID: PMC9490346 DOI: 10.1098/rsif.2022.0373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/01/2022] [Indexed: 01/29/2023] Open
Abstract
Members of subclass Elasmobranchii possess cartilage skeletons; the centra of many species are mineralized with a bioapatite, but virtually nothing is known about the mineral's organization. This study employed high-energy, small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS, i.e. X-ray diffraction) to investigate the bioapatite crystallography within blocks cut from centra of four species (two carcharhiniform families, one lamniform family and 1-ID of the Advanced Photon Source). All species' crystallographic quantities closely matched and indicated a bioapatite closely related to that in bone. The centra's lattice parameters a and c were somewhat smaller and somewhat larger, respectively, than in bone. Nanocrystallite sizes (WAXS peak widths) in shark centra were larger than typical of bone, and little microstrain was observed. Compared with bone, shark centra exhibited SAXS D-period peaks with larger D magnitudes, and D-period arcs with narrower azimuthal widths. The shark mineral phase, therefore, is closely related to that in bone but does possess real differences which probably affect mechanical property and which are worth further study.
Collapse
Affiliation(s)
- J. S. Park
- The Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - J. D. Almer
- The Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - K. C. James
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - L. J. Natanson
- (retired) Northeast Fisheries Science Center, National Marine Fisheries Service, NOAA, Narragansett, RI, USA
| | - S. R. Stock
- Department of Cell and Developmental Biology, Feinberg School of Medicine, and Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| |
Collapse
|
11
|
Shark Fishing vs. Conservation: Analysis and Synthesis. SUSTAINABILITY 2022. [DOI: 10.3390/su14159548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expanding shark fin market has resulted in intensive global shark fishing and with 90% of teleost fish stocks over-exploited, sharks have become the most lucrative target. As predators, they have high ecological value, are sensitive to fishing pressure, and are in decline, but the secretive nature of the fin trade and difficulties obtaining relevant data, obscure their true status. In consumer countries, shark fin is a luxury item and rich consumers pay high prices with little interest in sustainability or legal trade. Thus, market demand will continue to fuel the shark hunt and those accessible to fishing fleets are increasingly endangered. Current legal protections are not working, as exemplified by the case of the shortfin mako shark, and claims that sharks can be sustainably fished under these circumstances are shown to be misguided. In the interests of averting a catastrophic collapse across the planet’s aquatic ecosystems, sharks and their habitats must be given effective protection. We recommend that all sharks, chimaeras, manta rays, devil rays, and rhino rays be protected from international trade through an immediate CITES Appendix I listing. However, a binding international agreement for the protection of biodiversity in general is what is needed.
Collapse
|
12
|
Gai Z, Zhu M, Ahlberg PE, Donoghue PCJ. The Evolution of the Spiracular Region From Jawless Fishes to Tetrapods. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.887172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The spiracular region, comprising the hyomandibular pouch together with the mandibular and hyoid arches, has a complex evolutionary history. In living vertebrates, the embryonic hyomandibular pouch may disappear in the adult, develop into a small opening between the palatoquadrate and hyomandibula containing a single gill-like pseudobranch, or create a middle ear cavity, but it never develops into a fully formed gill with two hemibranchs. The belief that a complete spiracular gill must be the ancestral condition led some 20th century researchers to search for such a gill between the mandibular and hyoid arches in early jawed vertebrates. This hypothesized ancestral state was named the aphetohyoidean condition, but so far it has not been verified in any fossil; supposed examples, such as in the acanthodian Acanthodes and symmoriid chondrichthyans, have been reinterpreted and discounted. Here we present the first confirmed example of a complete spiracular gill in any vertebrate, in the galeaspid (jawless stem gnathostome) Shuyu. Comparisons with two other groups of jawless stem gnathostomes, osteostracans and heterostracans, indicate that they also probably possessed full-sized spiracular gills and that this condition may thus be primitive for the gnathostome stem group. This contrasts with the living jawless cyclostomes, in which the mandibular and hyoid arches are strongly modified and the hyomandibular pouch is lost in the adult. While no truly aphetohyoidean spiracular gill has been found in any jawed vertebrate, the recently reported presence in acanthodians of two pseudobranchs suggests a two-step evolutionary process whereby initial miniaturization of the spiracular gill was followed, independently in chondrichthyans and osteichthyans, by the loss of the anterior pseudobranch. On the basis of these findings we present an overview of spiracular evolution among vertebrates.
Collapse
|
13
|
Deakin WJ, Anderson PSL, den Boer W, Smith TJ, Hill JJ, Rücklin M, Donoghue PCJ, Rayfield EJ. Increasing morphological disparity and decreasing optimality for jaw speed and strength during the radiation of jawed vertebrates. SCIENCE ADVANCES 2022; 8:eabl3644. [PMID: 35302857 PMCID: PMC8932669 DOI: 10.1126/sciadv.abl3644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/28/2022] [Indexed: 05/25/2023]
Abstract
The Siluro-Devonian adaptive radiation of jawed vertebrates, which underpins almost all living vertebrate biodiversity, is characterized by the evolutionary innovation of the lower jaw. Multiple lines of evidence have suggested that the jaw evolved from a rostral gill arch, but when the jaw took on a feeding function remains unclear. We quantified the variety of form in the earliest jaws in the fossil record from which we generated a theoretical morphospace that we then tested for functional optimality. By drawing comparisons with the real jaw data and reconstructed jaw morphologies from phylogenetically inferred ancestors, our results show that the earliest jaw shapes were optimized for fast closure and stress resistance, inferring a predatory feeding function. Jaw shapes became less optimal for these functions during the later radiation of jawed vertebrates. Thus, the evolution of jaw morphology has continually explored previously unoccupied morphospace and accumulated disparity through time, laying the foundation for diverse feeding strategies and the success of jawed vertebrates.
Collapse
Affiliation(s)
- William J. Deakin
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Philip S. L. Anderson
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL, USA
| | - Wendy den Boer
- Swedish Museum of Natural History, Department of Palaeobiology, Frescativägen 40, 114 18 Stockholm, Sweden
| | - Thomas J. Smith
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jennifer J. Hill
- Smithsonian Institution, National Museum of Natural History, Washington, DC 20013-7012, USA
| | - Martin Rücklin
- Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, Netherlands
| | - Philip C. J. Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Emily J. Rayfield
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
14
|
Dearden RP, Giles S. Diverse stem-chondrichthyan oral structures and evidence for an independently acquired acanthodid dentition. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210822. [PMID: 34804566 PMCID: PMC8580420 DOI: 10.1098/rsos.210822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The teeth of sharks famously form a series of transversely organized files with a conveyor-belt replacement that are borne directly on the jaw cartilages, in contrast to the dermal plate-borne dentition of bony fishes that undergoes site-specific replacement. A major obstacle in understanding how this system evolved is the poorly understood relationships of the earliest chondrichthyans and the profusion of morphologically and terminologically diverse bones, cartilages, splints and whorls that they possess. Here, we use tomographic methods to investigate mandibular structures in several early branching 'acanthodian'-grade stem-chondrichthyans. We show that the dentigerous jaw bones of disparate genera of ischnacanthids are united by a common construction, being growing bones with non-shedding dentition. Mandibular splints, which support the ventro-lateral edge of the Meckel's cartilage in some taxa, are formed from dermal bone and may be an acanthodid synapomorphy. We demonstrate that the teeth of Acanthodopsis are borne directly on the mandibular cartilage and that this taxon is deeply nested within an edentulous radiation, representing an unexpected independent origin of teeth. Many or even all of the range of unusual oral structures may be apomorphic, but they should nonetheless be considered when building hypotheses of tooth and jaw evolution, both in chondrichthyans and more broadly.
Collapse
Affiliation(s)
- Richard P. Dearden
- CR2P, Centre de Recherche en Paléontologie–Paris, Muséum national d'Histoire naturelle, Sorbonne Université, Centre National de la Recherche Scientifique, CP 38, 57 Rue Cuvier, F75231 Paris Cedex 05, France
| | - Sam Giles
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
15
|
Mottequin B, Goolaerts S, Hunt AP, Olive S. The erroneous chondrichthyan egg case assignments from the Devonian: implications for the knowledge on the evolution of the reproductive strategy within chondrichthyans. Naturwissenschaften 2021; 108:36. [PMID: 34432151 DOI: 10.1007/s00114-021-01751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Spiraxis interstrialis, and its junior synonym Fayolia mourloni, an uppermost Famennian (Upper Devonian) fossil first described as algae and subsequently interpreted as the oldest known chondrichthyan egg case, is reinvestigated based on the discovery of several additional specimens in Belgian collections. New data, in particular from micro-CT imaging, allow to refute S. interstrialis, and by extension also Spiraxis major (the type species of Spiraxis Newberry, non Adams) and Spiraxis randalli from the Famennian of New York and Pennsylvania, as chondrichthyan egg cases. Alternative interpretations of these enigmatic helicoidal fossils are discussed. The first occurrence of oviparity in the fossil record of chondrichthyans is thus not as old as previously thought and is close to the first occurrence of viviparity in this group, both being recognised now in the Mississippian. The question of which of both conditions is plesiomorphic within chondrichthyans, and more widely within vertebrates, is discussed. Also, the presence of the genus Spiraxis in both the USA (east coast) and Belgium reinforces the strong faunal resemblance already observed in both palaeogeographical areas. It suggests important faunal exchanges between these regions of the Euramerica landmass during the Famennian.
Collapse
Affiliation(s)
- Bernard Mottequin
- O.D. Earth and History of Life, Royal Belgian Institute of Natural Sciences, rue Vautier 29, 1000, Brussels, Belgium.
| | - Stijn Goolaerts
- O.D. Earth and History of Life & Scientific Service of Heritage, Royal Belgian Institute of Natural Sciences, rue Vautier 29, 1000, Brussels, Belgium
| | - Adrian P Hunt
- Flying Heritage and Combat Armor Museum, 3407 109th St SW, Everett, WA, 98204, USA
| | - Sébastien Olive
- O.D. Earth and History of Life, Royal Belgian Institute of Natural Sciences, rue Vautier 29, 1000, Brussels, Belgium.
| |
Collapse
|
16
|
Rücklin M, King B, Cunningham JA, Johanson Z, Marone F, Donoghue PCJ. Acanthodian dental development and the origin of gnathostome dentitions. Nat Ecol Evol 2021; 5:919-926. [PMID: 33958756 DOI: 10.1038/s41559-021-01458-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022]
Abstract
Chondrichthyan dentitions are conventionally interpreted to reflect the ancestral gnathostome condition but interpretations of osteichthyan dental evolution in this light have proved unsuccessful, perhaps because chondrichthyan dentitions are equally specialized, or else evolved independently. Ischnacanthid acanthodians are stem-Chondrichthyes; as phylogenetic intermediates of osteichthyans and crown-chondrichthyans, the nature of their enigmatic dentition may inform homology and the ancestral gnathostome condition. Here we show that ischnacanthid marginal dentitions were statodont, composed of multicuspidate teeth added in distally diverging rows and through proximal superpositional replacement, while their symphyseal tooth whorls are comparable to chondrichthyan and osteichthyan counterparts. Ancestral state estimation indicates the presence of oral tubercles on the jaws of the gnathostome crown-ancestor; tooth whorls or tooth rows evolved independently in placoderms, osteichthyans, ischnacanthids, other acanthodians and crown-chondrichthyans. Crown-chondrichthyan dentitions are derived relative to the gnathostome crown-ancestor, which possessed a simple dentition and lacked a permanent dental lamina, which evolved independently in Chondrichthyes and Osteichthyes.
Collapse
Affiliation(s)
- Martin Rücklin
- Naturalis Biodiversity Center, Leiden, The Netherlands.
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, UK.
| | - Benedict King
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - John A Cunningham
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, UK
| | - Zerina Johanson
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, UK.
| |
Collapse
|
17
|
Dearden RP, Mansuit R, Cuckovic A, Herrel A, Didier D, Tafforeau P, Pradel A. The morphology and evolution of chondrichthyan cranial muscles: A digital dissection of the elephantfish Callorhinchus milii and the catshark Scyliorhinus canicula. J Anat 2021; 238:1082-1105. [PMID: 33415764 PMCID: PMC8053583 DOI: 10.1111/joa.13362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/25/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022] Open
Abstract
The anatomy of sharks, rays, and chimaeras (chondrichthyans) is crucial to understanding the evolution of the cranial system in vertebrates due to their position as the sister group to bony fishes (osteichthyans). Strikingly different arrangements of the head in the two constituent chondrichthyan groups-holocephalans and elasmobranchs-have played a pivotal role in the formation of evolutionary hypotheses targeting major cranial structures such as the jaws and pharynx. However, despite the advent of digital dissections as a means of easily visualizing and sharing the results of anatomical studies in three dimensions, information on the musculoskeletal systems of the chondrichthyan head remains largely limited to traditional accounts, many of which are at least a century old. Here, we use synchrotron tomographic data to carry out a digital dissection of a holocephalan and an elasmobranch widely used as model species: the elephantfish, Callorhinchus milii, and the small-spotted catshark, Scyliorhinus canicula. We describe and figure the skeletal anatomy of the head, labial, mandibular, hyoid, and branchial cartilages in both taxa as well as the muscles of the head and pharynx. In Callorhinchus, we make several new observations regarding the branchial musculature, revealing several previously unreported or ambiguously characterized muscles, likely homologous to their counterparts in the elasmobranch pharynx. We also identify a previously unreported structure linking the pharyngohyal of Callorhinchus to the neurocranium. Finally, we review what is known about the evolution of chondrichthyan cranial muscles from their fossil record and discuss the implications for muscle homology and evolution, broadly concluding that the holocephalan pharynx is likely derived from a more elasmobranch-like form which is plesiomorphic for the chondrichthyan crown group. This dataset has great potential as a resource, particularly for researchers using these model species for zoological research, functional morphologists requiring models of musculature and skeletons, as well as for palaeontologists seeking comparative models for extinct taxa.
Collapse
Affiliation(s)
- Richard P Dearden
- CR2P, Centre de Recherche en Paléontologie-Paris, Muséum national d'Histoire naturelle, Sorbonne Université, Centre National de la Recherche Scientifique, Paris cedex 05, France
| | - Rohan Mansuit
- CR2P, Centre de Recherche en Paléontologie-Paris, Muséum national d'Histoire naturelle, Sorbonne Université, Centre National de la Recherche Scientifique, Paris cedex 05, France.,UMR 7179 (MNHN-CNRS) MECADEV, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | | | - Anthony Herrel
- UMR 7179 (MNHN-CNRS) MECADEV, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | - Dominique Didier
- Department of Biology, Millersville University, Millersville, PA, USA
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| | - Alan Pradel
- CR2P, Centre de Recherche en Paléontologie-Paris, Muséum national d'Histoire naturelle, Sorbonne Université, Centre National de la Recherche Scientifique, Paris cedex 05, France
| |
Collapse
|
18
|
Pears JB, Johanson Z, Trinajstic K, Dean MN, Boisvert CA. Mineralization of the Callorhinchus Vertebral Column (Holocephali; Chondrichthyes). Front Genet 2020; 11:571694. [PMID: 33329708 PMCID: PMC7732695 DOI: 10.3389/fgene.2020.571694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Members of the Chondrichthyes (Elasmobranchii and Holocephali) are distinguished by their largely cartilaginous endoskeletons, which comprise an uncalcified core overlain by a mineralized layer; in the Elasmobranchii (sharks, skates, rays) most of this mineralization takes the form of calcified polygonal tiles known as tesserae. In recent years, these skeletal tissues have been described in ever increasing detail in sharks and rays, but those of Holocephali (chimaeroids) have been less well-studied, with conflicting accounts as to whether or not tesserae are present. During embryonic ontogeny in holocephalans, cervical vertebrae fuse to form a structure called the synarcual. The synarcual mineralizes early and progressively, anteroposteriorly and dorsoventrally, and therefore presents a good skeletal structure in which to observe mineralized tissues in this group. Here, we describe the development and mineralization of the synarcual in an adult and stage 36 elephant shark embryo (Callorhinchus milii). Small, discrete, but irregular blocks of cortical mineralization are present in stage 36, similar to what has been described recently in embryos of other chimaeroid taxa such as Hydrolagus, while in Callorhinchus adults, the blocks of mineralization are more irregular, but remain small. This differs from fossil members of the holocephalan crown group (Edaphodon), as well as from stem group holocephalans (e.g., Symmorida, Helodus, Iniopterygiformes), where tesserae are notably larger than in Callorhinchus and show similarities to elasmobranch tesserae, for example with respect to polygonal shape.
Collapse
Affiliation(s)
- Jacob B Pears
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Zerina Johanson
- Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | - Kate Trinajstic
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Mason N Dean
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | |
Collapse
|
19
|
King B, Rücklin M. A Bayesian approach to dynamic homology of morphological characters and the ancestral phenotype of jawed vertebrates. eLife 2020; 9:e62374. [PMID: 33274719 PMCID: PMC7793628 DOI: 10.7554/elife.62374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
Phylogenetic analysis of morphological data proceeds from a fixed set of primary homology statements, the character-by-taxon matrix. However, there are cases where multiple conflicting homology statements can be justified from comparative anatomy. The upper jaw bones of placoderms have traditionally been considered homologous to the palatal vomer-dermopalatine series of osteichthyans. The discovery of 'maxillate' placoderms led to the alternative hypothesis that 'core' placoderm jaw bones are premaxillae and maxillae lacking external (facial) laminae. We introduce a BEAST2 package for simultaneous inference of homology and phylogeny, and find strong evidence for the latter hypothesis. Phenetic analysis of reconstructed ancestors suggests that maxillate placoderms are the most plesiomorphic known gnathostomes, and the shared cranial architecture of arthrodire placoderms, maxillate placoderms and osteichthyans is inherited. We suggest that the gnathostome ancestor possessed maxillae and premaxillae with facial and palatal laminae, and that these bones underwent divergent evolutionary trajectories in placoderms and osteichthyans.
Collapse
|
20
|
Frey L, Coates MI, Tietjen K, Rücklin M, Klug C. A symmoriiform from the Late Devonian of Morocco demonstrates a derived jaw function in ancient chondrichthyans. Commun Biol 2020; 3:681. [PMID: 33203942 PMCID: PMC7672094 DOI: 10.1038/s42003-020-01394-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/16/2020] [Indexed: 12/02/2022] Open
Abstract
The Palaeozoic record of chondrichthyans (sharks, rays, chimaeras, extinct relatives) and thus our knowledge of their anatomy and functional morphology is poor because of their predominantly cartilaginous skeletons. Here, we report a previously undescribed symmoriiform shark, Ferromirum oukherbouchi, from the Late Devonian of the Anti-Atlas. Computed tomography scanning reveals the undeformed shape of the jaws and hyoid arch, which are of a kind often used to represent primitive conditions for jawed vertebrates. Of critical importance, these closely fitting cartilages preclude the repeatedly hypothesized presence of a complete gill between mandibular and hyoid arches. We show that the jaw articulation is specialized and drives mandibular rotation outward when the mouth opens, and inward upon closure. The resultant eversion and inversion of the lower dentition presents a greater number of teeth to prey through the bite-cycle. This suggests an increased functional and ecomorphological disparity among chondrichthyans preceding and surviving the end-Devonian extinctions. Frey and colleagues describe a new fossil shark from the Late Devonian of Morocco in which the specialized jaw articulation is unusually well preserved. Biomechanical modelling reveals that the mandible rolled throughout its movement arc, engaging more of its tooth battery in a clutching bite action.
Collapse
Affiliation(s)
- Linda Frey
- Paläontologisches Institut und Museum, University of Zurich, Karl-Schmid-Strasse 4, CH-8006, Zürich, Switzerland.
| | - Michael I Coates
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th St., Chicago, IL, 60637, USA
| | - Kristen Tietjen
- Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd, Lawrence, KS, 66045, USA
| | - Martin Rücklin
- Naturalis Biodiversity Center, Vertebrate Evolution Development and Ecology, Postbus 9517, 2300 RA, Leiden, The Netherlands
| | - Christian Klug
- Paläontologisches Institut und Museum, University of Zurich, Karl-Schmid-Strasse 4, CH-8006, Zürich, Switzerland.
| |
Collapse
|
21
|
Barske L, Fabian P, Hirschberger C, Jandzik D, Square T, Xu P, Nelson N, Yu HV, Medeiros DM, Gillis JA, Crump JG. Evolution of vertebrate gill covers via shifts in an ancient Pou3f3 enhancer. Proc Natl Acad Sci U S A 2020; 117:24876-24884. [PMID: 32958671 PMCID: PMC7547273 DOI: 10.1073/pnas.2011531117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Whereas the gill chambers of jawless vertebrates open directly into the environment, jawed vertebrates evolved skeletal appendages that drive oxygenated water unidirectionally over the gills. A major anatomical difference between the two jawed vertebrate lineages is the presence of a single large gill cover in bony fishes versus separate covers for each gill chamber in cartilaginous fishes. Here, we find that these divergent patterns correlate with the pharyngeal arch expression of Pou3f3 orthologs. We identify a deeply conserved Pou3f3 arch enhancer present in humans through sharks but undetectable in jawless fish. Minor differences between the bony and cartilaginous fish enhancers account for their restricted versus pan-arch expression patterns. In zebrafish, mutation of Pou3f3 or the conserved enhancer disrupts gill cover formation, whereas ectopic pan-arch Pou3f3b expression generates ectopic skeletal elements resembling the multimeric covers of cartilaginous fishes. Emergence of this Pou3f3 arch enhancer >430 Mya and subsequent modifications may thus have contributed to the acquisition and diversification of gill covers and respiratory strategies during gnathostome evolution.
Collapse
Affiliation(s)
- Lindsey Barske
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Peter Fabian
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | | | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309
- Department of Zoology, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | - Tyler Square
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Pengfei Xu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Nellie Nelson
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Haoze Vincent Yu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309
| | - J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
- Marine Biological Laboratory, Woods Hole, MA 02543
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033;
| |
Collapse
|
22
|
Hulsey CD, Cohen KE, Johanson Z, Karagic N, Meyer A, Miller CT, Sadier A, Summers AP, Fraser GJ. Grand Challenges in Comparative Tooth Biology. Integr Comp Biol 2020; 60:563-580. [PMID: 32533826 PMCID: PMC7821850 DOI: 10.1093/icb/icaa038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Teeth are a model system for integrating developmental genomics, functional morphology, and evolution. We are at the cusp of being able to address many open issues in comparative tooth biology and we outline several of these newly tractable and exciting research directions. Like never before, technological advances and methodological approaches are allowing us to investigate the developmental machinery of vertebrates and discover both conserved and excitingly novel mechanisms of diversification. Additionally, studies of the great diversity of soft tissues, replacement teeth, and non-trophic functions of teeth are providing new insights into dental diversity. Finally, we highlight several emerging model groups of organisms that are at the forefront of increasing our appreciation of the mechanisms underlying tooth diversification.
Collapse
Affiliation(s)
- C Darrin Hulsey
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Karly E Cohen
- Friday Harbor Laboratories, School of Aquatic and Fishery Sciences, Department of Biology, University of Washington, WA 98195, USA
| | - Zerina Johanson
- Department of Earth Sciences, Natural History Museum, London SW7 5HD, UK
| | - Nidal Karagic
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Alexa Sadier
- Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, CA 90032, USA
| | - Adam P Summers
- Friday Harbor Laboratories, School of Aquatic and Fishery Sciences, Department of Biology, University of Washington, WA 98195, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
23
|
Evolutionary trends of the conserved neurocranium shape in angel sharks (Squatiniformes, Elasmobranchii). Sci Rep 2020; 10:12582. [PMID: 32724124 PMCID: PMC7387474 DOI: 10.1038/s41598-020-69525-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/19/2020] [Indexed: 11/24/2022] Open
Abstract
Elasmobranchii (i.e., sharks, skates, and rays) forms one of the most diverse groups of marine predators. With a fossil record extending back into the Devonian, several modifications in their body plan illustrate their body shape diversity through time. The angel sharks, whose fossil record dates back to the Late Jurassic, some 160 Ma, have a dorsoventrally flattened body, similar to skates and rays. Fossil skeletons of this group show that the overall morphology was well established earlier in its history. By examining the skull shape of well-preserved fossil material compared to extant angel sharks using geometric morphometric methods, within a phylogenetic framework, we were able to determine the conservative skull shape among angel sharks with a high degree of integration. The morphospace occupation of extant angel sharks is rather restricted, with extensive overlap. Most of the differences in skull shape are related to their geographic distribution patterns. We found higher levels of disparity in extinct forms, but lower ones in extant species. Since angel sharks display a highly specialized prey capture behaviour, we suggest that the morphological integration and biogeographic processes are the main drivers of their diversity, which might limit their capacity to display higher disparities since their origin.
Collapse
|
24
|
Johanson Z, Manzanares E, Underwood C, Clark B, Fernandez V, Smith M. Evolution of the Dentition in Holocephalans (Chondrichthyes) Through Tissue Disparity. Integr Comp Biol 2020; 60:630-643. [DOI: 10.1093/icb/icaa093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The Holocephali is a major group of chondrichthyan fishes, the sister taxon to the sharks and rays (Elasmobranchii). However, the dentition of extant holocephalans is very different from that of the elasmobranchs, lacking individual tooth renewal, but comprising dental plates made entirely of self-renewing dentine. This renewal of all tissues occurs at the postero-lingual plate surface, as a function of their statodont condition. The fossil record of the holocephalans illuminates multiple different trends in the dentition, including shark-like teeth through to those with dentitions completely lacking individual teeth. Different taxa illustrate developmental retention of teeth but with fusion in their serial development. Dentine of different varieties comprises these teeth and composite dental plates, whose histology includes vascularized tubes within coronal dentine, merging with basal trabecular dentine. In this coronal vascularized dentine, extensive hypermineralization forms a wear resistant tissue transformed into a variety of morphologies. Through evolution, hypermineralized dentine becomes enclosed within the trabecular dentine, and specialized by reduction into specific zones within a composite dental plate, with these increasing in morphological disparity, all reflecting loss of defined teeth but retention of dentine production from the inherited developmental package.
Collapse
Affiliation(s)
- Zerina Johanson
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Esther Manzanares
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, Paterna, Valencia 46980, Spain
| | - Charlie Underwood
- Department of Earth Sciences, Natural History Museum, London, UK
- Department of Earth and Planetary Sciences, Birkbeck, University of London, London, UK
| | - Brett Clark
- Core Research Laboratories, Natural History Museum, London, UK
| | | | - Moya Smith
- Department of Earth Sciences, Natural History Museum, London, UK
- Centre for Craniofacial and Regenerative Biology, Oral and Craniofacial Sciences, King’s College London, London, UK
| |
Collapse
|
25
|
Smith M, Manzanares E, Underwood C, Healy C, Clark B, Johanson Z. Holocephalan (Chondrichthyes) dental plates with hypermineralized dentine as a substitute for missing teeth through developmental plasticity. JOURNAL OF FISH BIOLOGY 2020; 97:16-27. [PMID: 32119120 DOI: 10.1111/jfb.14302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/20/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
All extant holocephalans (Chimaeroidei) have lost the ability to make individual teeth, as tooth germs are not part of the embryonic development of the dental plates or of their continuous growth. Instead, a hypermineralized dentine with a unique mineral, whitlockin, is specifically distributed within a dentine framework into structures that give the dental plates their distinctive, species-specific morphology. Control of the regulation of this distribution must be cellular, with a dental epithelium initiating the first outer dentine, and via contact with ectomesenchymal tissue as the only embryonic cell type that can make dentine. Chimaeroids have three pairs of dental plates within their mouth, two in the upper jaw and one in the lower. In the genera Chimaera, Hydrolagus and Harriotta, the morphology and distribution of this whitlockin within each dental plate differs both between different plates in the same species and between species. Whitlockin structures include ovoids, rods and tritoral pads, with substantial developmental changes between these. For example, rods appear before the ovoids and result from a change in the surrounding trabecular dentine. In Harriotta, ovoids form separately from the tritoral pads, but also contribute to tritor development, while in Chimaera and Hydrolagus, tritoral pads develop from rods that later are perforated to accommodate the vasculature. Nevertheless, the position of these structures, secreted by the specialized odontoblasts (whitloblasts), appears highly regulated in all three species. These distinct morphologies are established at the aboral margin of the dental plate, with proposed involvement of the outer dentine. We observe that this outer layer forms into serially added lingual ridges, occurring on the anterior plate only. We propose that positional, structural specificity must be contained within the ectomesenchymal populations, as stem cells below the dental epithelium, and a coincidental occurrence of each lingual, serial ridge with the whitlockin structures that contribute to the wear-resistant oral surface.
Collapse
Affiliation(s)
- Moya Smith
- Department of Earth Sciences, Natural History Museum London, London, UK
- Centre for Craniofacial and Regenerative Biology, Oral and Craniofacial Sciences King's College London, London, UK
| | - Esther Manzanares
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, Paterna, Spain
| | - Charlie Underwood
- Department of Earth Sciences, Natural History Museum London, London, UK
- Department of Earth and Planetary Sciences, Birkbeck, University of London, London, UK
| | - Chris Healy
- Centre for Craniofacial and Regenerative Biology, Oral and Craniofacial Sciences King's College London, London, UK
| | - Brett Clark
- Core Research Laboratories, Natural History Museum, London, UK
| | - Zerina Johanson
- Department of Earth Sciences, Natural History Museum London, London, UK
| |
Collapse
|
26
|
King B, Rücklin M. Tip dating with fossil sites and stratigraphic sequences. PeerJ 2020; 8:e9368. [PMID: 32617191 PMCID: PMC7323711 DOI: 10.7717/peerj.9368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/26/2020] [Indexed: 11/24/2022] Open
Abstract
Tip dating, a method of phylogenetic analysis in which fossils are included as terminals and assigned an age, is becoming increasingly widely used in evolutionary studies. Current implementations of tip dating allow fossil ages to be assigned as a point estimate, or incorporate uncertainty through the use of uniform tip age priors. However, the use of tip age priors has the unwanted effect of decoupling the ages of fossils from the same fossil site. Here we introduce a new Markov Chain Monte Carlo (MCMC) proposal, which allows fossils from the same site to have linked ages, while still incorporating uncertainty in the age of the fossil site itself. We also include an extension, allowing fossil sites to be ordered in a stratigraphic column with age bounds applied only to the top and bottom of the sequence. These MCMC proposals are implemented in a new open-source BEAST2 package, palaeo. We test these new proposals on a dataset of early vertebrate fossils, concentrating on the effects on two sites with multiple acanthodian fossil taxa but wide age uncertainty, the Man On The Hill (MOTH) site from northern Canada, and the Turin Hill site from Scotland, both of Lochkovian (Early Devonian) age. The results show an increased precision of age estimates when fossils have linked tip ages compared to when ages are unlinked, and in this example leads to support for a younger age for the MOTH site compared with the Turin Hill site. There is also a minor effect on the tree topology of acanthodians. These new MCMC proposals should be widely applicable to studies that employ tip dating, particularly when the terminals are coded as individual specimens.
Collapse
|
27
|
Kryukova NV, Kuznetsov AN. Suboccipital muscle of sharpnose sevengill shark Heptranchias perlo and its possible role in prey dissection. J Morphol 2020; 281:842-861. [PMID: 32557707 DOI: 10.1002/jmor.21142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 11/11/2022]
Abstract
Skull and head muscles of Heptranchias perlo were studied. Its distinctive features include the suboccipital muscles, described for the first time, the absence of the palatoquadrate symphysis, a longitudinally extended mouth, and teeth unsuited for dissecting prey in typical method of modern sharks, which is cutting motions powered by head shaking from side to side. The palatoquadrate cartilages of H. perlo and closely related Hexanchidae articulate with the neurocranium via orbital and postorbital articulations, which together allow for lateral expansion of the jaws, but restrict retraction and protraction. We interpret these features as an adaptation to a different method of prey dissection, that is, ripping in a backward pull. It employs the specific postorbital articulation together with the suboccipital muscles as force-transmitting devices, and is powered by swimming muscles which produce a rearward thrust of the tail. During this type of dissection, the anterior part of the vertebral column should experience a tensile stress which explains the replacement of rigid vertebral bodies by a collagenous sheath around the notochord in H. perlo. The backward-ripping dissection could have been common among ancient Elasmobranchii based on the similarly developed postorbital articulation, a longitudinally extended mouth, and the absence of the palatoquadrate symphysis. A biomechanical comparison with the extinct Pucapampella indicates that ancient elasmobranchs could be also specialized in the backward-ripping prey dissection, but their mechanism was different from that inferred for H. perlo. We suggest that in the early evolution of sharks this mechanism was replaced by head-shaking dissection and then later was restored in H. perlo on a new morphological basis. A new position of the postorbital articulation below the vertebral axis is fraught with the braincase elevation when backward ripping the prey, and as a counter-mean, requires formation of suboccipital portions of the axial musculature unknown in other sharks. Homology and origin of these portions is considered.
Collapse
Affiliation(s)
- Nadezhda V Kryukova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
28
|
Andreev PS, Zhao W, Wang NZ, Smith MM, Li Q, Cui X, Zhu M, Sansom IJ. Early Silurian chondrichthyans from the Tarim Basin (Xinjiang, China). PLoS One 2020; 15:e0228589. [PMID: 32053606 PMCID: PMC7018067 DOI: 10.1371/journal.pone.0228589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/17/2020] [Indexed: 11/18/2022] Open
Abstract
The Sinacanthida ordo nov. and Mongolepidida are spine- and scale-based taxa whose remains encompass some of the earliest reported fossils of chondrichthyan fish. Investigation of fragmentary material from the Early Silurian Tataertag and Ymogantau Formations of the Tarim Basin (Xinjiang Uygur Autonomous Region, China) has revealed a diverse mongolepidid and sinacanthid fauna dominated by mongolepids and sinacanthids in association with abundant dermoskeletal elements of the endemic ‘armoured’ agnathans known as galeaspids. Micro-computed tomography, scanning electron microscopy and histological sections were used to identify seven mongolepid genera (including Tielikewatielepis sinensis gen. et sp. nov., Xiaohaizilepis liui gen. et sp. nov. and Taklamakanolepis asiaticus gen. et sp. nov.) together with a new chondrichthyan (Yuanolepis bachunensis gen. et sp. nov.) with scale crowns consisting of a mongolepid-type atubular dentine (lamellin). Unlike the more elaborate crown architecture of mongolepids, Yuanolepis gen. nov. exhibits a single row of crown elements consistent with the condition reported in stem chondrichthyans from the Lower Devonian (e.g. in Seretolepis, Parexus). The results corroborate previous work by recognising lamellin as the main component of sinacanthid spines and point to corresponding developmental patterns shared across the dermal skeleton of taxa with lamellin and more derived chondrichthyans (e.g. Doliodus, Kathemacanthus, Seretolepis and Parexus). The Tarim mongolepid fauna is inclusive of coeval taxa from the South China Block and accounts for over two-thirds of the species currently attributed to Mongolepidida. This demonstrates considerable overlap between the Tarim and South China components of the Lower Silurian Zhangjiajie Vertebrate Fauna.
Collapse
Affiliation(s)
- Plamen S. Andreev
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, Yunnan Province, China
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (MZ); (PSA)
| | - Wenjin Zhao
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Nian-Zhong Wang
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Moya M. Smith
- Department of Earth Sciences, Natural History Museum London, London, England, United Kingdom
- Faculty of Dentistry, Oral & Craniofacial Sciences, KCL, London, England, United Kingdom
| | - Qiang Li
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, Yunnan Province, China
| | - Xindong Cui
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhu
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
- * E-mail: (MZ); (PSA)
| | - Ivan J. Sansom
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| |
Collapse
|
29
|
Schnetz L, Pfaff C, Libowitzky E, Johanson Z, Stepanek R, Kriwet J. Morphology and evolutionary significance of phosphatic otoliths within the inner ears of cartilaginous fishes (Chondrichthyes). BMC Evol Biol 2019; 19:238. [PMID: 31888446 PMCID: PMC6937729 DOI: 10.1186/s12862-019-1568-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/17/2019] [Indexed: 12/02/2022] Open
Abstract
Background Chondrichthyans represent a monophyletic group of crown group gnathostomes and are central to our understanding of vertebrate evolution. Like all vertebrates, cartilaginous fishes evolved concretions of material within their inner ears to aid with equilibrium and balance detection. Up to now, these materials have been identified as calcium carbonate-bearing otoconia, which are small bio-crystals consisting of an inorganic mineral and a protein, or otoconial masses (aggregations of otoconia bound by an organic matrix), being significantly different in morphology compared to the singular, polycrystalline otolith structures of bony fishes, which are solidified bio-crystals forming stony masses. Reinvestigation of the morphological and chemical properties of these chondrichthyan otoconia revises our understanding of otolith composition and has implications on the evolution of these characters in both the gnathostome crown group, and cartilaginous fishes in particular. Results Dissections of Amblyraja radiata, Potamotrygon leopoldi, and Scyliorhinus canicula revealed three pairs of singular polycrystalline otolith structures with a well-defined morphology within their inner ears, as observed in bony fishes. IR spectroscopy identified the material to be composed of carbonate/collagen-bearing apatite in all taxa. These findings contradict previous hypotheses suggesting these otoconial structures were composed of calcium carbonate in chondrichthyans. A phylogenetic mapping using 37 chondrichthyan taxa further showed that the acquisition of phosphatic otolith structures might be widespread within cartilaginous fishes. Conclusions Differences in the size and shape of otoliths between taxa indicate a taxonomic signal within elasmobranchs. Otoliths made of carbonate/collagen-bearing apatite are reported for the first time in chondrichthyans. The intrinsic pathways to form singular, polycrystalline otoliths may represent the plesiomorphic condition for vertebrates but needs further testing. Likewise, the phosphatic composition of otoliths in early vertebrates such as cyclostomes and elasmobranchs is probably closely related to the lack of bony tissue in these groups, supporting a close relationship between skeletal tissue mineralization patterns and chemical otolith composition, underlined by physiological constraints.
Collapse
Affiliation(s)
- Lisa Schnetz
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham, B15 2TT, UK.
| | - Cathrin Pfaff
- University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Institute of Palaeontology, Geozentrum, Althanstraße 14, 1090, Vienna, Austria
| | - Eugen Libowitzky
- University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Institute of Mineralogy and Crystallography, Geozentrum, Althanstraße 14, 1090, Vienna, Austria
| | - Zerina Johanson
- Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Rica Stepanek
- University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Institute of Palaeontology, Geozentrum, Althanstraße 14, 1090, Vienna, Austria
| | - Jürgen Kriwet
- University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Institute of Palaeontology, Geozentrum, Althanstraße 14, 1090, Vienna, Austria.
| |
Collapse
|
30
|
Frey L, Coates M, Ginter M, Hairapetian V, Rücklin M, Jerjen I, Klug C. The early elasmobranch Phoebodus: phylogenetic relationships, ecomorphology and a new time-scale for shark evolution. Proc Biol Sci 2019; 286:20191336. [PMID: 31575362 PMCID: PMC6790773 DOI: 10.1098/rspb.2019.1336] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/11/2019] [Indexed: 11/12/2022] Open
Abstract
Anatomical knowledge of early chondrichthyans and estimates of their phylogeny are improving, but many taxa are still known only from microremains. The nearly cosmopolitan and regionally abundant Devonian genus Phoebodus has long been known solely from isolated teeth and fin spines. Here, we report the first skeletal remains of Phoebodus from the Famennian (Late Devonian) of the Maïder region of Morocco, revealing an anguilliform body, specialized braincase, hyoid arch, elongate jaws and rostrum, complementing its characteristic dentition and ctenacanth fin spines preceding both dorsal fins. Several of these features corroborate a likely close relationship with the Carboniferous species Thrinacodus gracia, and phylogenetic analysis places both taxa securely as members of the elasmobranch stem lineage. Identified as such, phoebodont teeth provide a plausible marker for range extension of the elasmobranchs into the Middle Devonian, thus providing a new minimum date for the origin of the chondrichthyan crown-group. Among pre-Carboniferous jawed vertebrates, the anguilliform body shape of Phoebodus is unprecedented, and its specialized anatomy is, in several respects, most easily compared with the modern frilled shark Chlamydoselachus. These results add greatly to the morphological, and by implication ecological, disparity of the earliest elasmobranchs.
Collapse
Affiliation(s)
- Linda Frey
- Paläontologisches Institut und Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland
| | - Michael Coates
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th Street, Chicago, IL 60637, USA
| | - Michał Ginter
- Faculty of Geology, University of Warsaw, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland
| | - Vachik Hairapetian
- Department of Geology, Khorasgan Branch, Islamic Azad University, PO Box 81595-158, Esfahan, Iran
| | - Martin Rücklin
- Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, The Netherlands
| | - Iwan Jerjen
- Gloor Instruments AG, Schaffhauserstrasse 121, 8302 Kloten, Switzerland
| | - Christian Klug
- Paläontologisches Institut und Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland
| |
Collapse
|
31
|
Coates MI, Tietjen K, Olsen AM, Finarelli JA. High-performance suction feeding in an early elasmobranch. SCIENCE ADVANCES 2019; 5:eaax2742. [PMID: 31535026 PMCID: PMC6739094 DOI: 10.1126/sciadv.aax2742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
High-performance suction feeding is often presented as a classic innovation of ray-finned fishes, likely contributing to their remarkable evolutionary success, whereas sharks, with seemingly less sophisticated jaws, are generally portrayed as morphologically conservative throughout their history. Here, using a combination of computational modeling, physical modeling, and quantitative three-dimensional motion simulation, we analyze the cranial skeleton of one of the earliest known stem elasmobranchs, Tristychius arcuatus from the Middle Mississippian of Scotland. The feeding apparatus is revealed as highly derived, capable of substantial oral expansion, and with clear potential for high-performance suction feeding some 50 million years before the earliest osteichthyan equivalent. This exceptional jaw performance is not apparent from standard measures of ecomorphospace using two-dimensional data. Tristychius signals the emergence of entirely new chondrichthyan ecomorphologies in the aftermath of the end-Devonian extinction and highlights sharks as significant innovators in the early radiation of the modern vertebrate biota.
Collapse
Affiliation(s)
- Michael I. Coates
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E 57th St., Chicago, IL 60637, USA
| | - Kristen Tietjen
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E 57th St., Chicago, IL 60637, USA
| | - Aaron M. Olsen
- Department of Ecology and Evolutionary Biology, Brown University, 171 Meeting St., Box G-B 204, Providence, RI 02912, USA
| | - John A. Finarelli
- UCD School of Biology and Environmental Science, UCD Science Education and Research Centre (West), UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
32
|
The pharynx of the stem-chondrichthyan Ptomacanthus and the early evolution of the gnathostome gill skeleton. Nat Commun 2019; 10:2050. [PMID: 31053719 PMCID: PMC6499890 DOI: 10.1038/s41467-019-10032-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/10/2019] [Indexed: 11/25/2022] Open
Abstract
The gill apparatus of gnathostomes (jawed vertebrates) is fundamental to feeding and ventilation and a focal point of classic hypotheses on the origin of jaws and paired appendages. The gill skeletons of chondrichthyans (sharks, batoids, chimaeras) have often been assumed to reflect ancestral states. However, only a handful of early chondrichthyan gill skeletons are known and palaeontological work is increasingly challenging other pre-supposed shark-like aspects of ancestral gnathostomes. Here we use computed tomography scanning to image the three-dimensionally preserved branchial apparatus in Ptomacanthus, a 415 million year old stem-chondrichthyan. Ptomacanthus had an osteichthyan-like compact pharynx with a bony operculum helping constrain the origin of an elongate elasmobranch-like pharynx to the chondrichthyan stem-group, rather than it representing an ancestral condition of the crown-group. A mixture of chondrichthyan-like and plesiomorphic pharyngeal patterning in Ptomacanthus challenges the idea that the ancestral gnathostome pharynx conformed to a morphologically complete ancestral type. Our understanding of the origin of jaws is hampered by the poor fossil preservation of pharyngeal morphology. Here, Dearden et al. provide insight into the skull conditions of early jawed vertebrates through three-dimensional computed tomography imaging of a 415 million year old stem-chondrichthyan.
Collapse
|
33
|
Coates MI, Finarelli JA, Sansom IJ, Andreev PS, Criswell KE, Tietjen K, Rivers ML, La Riviere PJ. An early chondrichthyan and the evolutionary assembly of a shark body plan. Proc Biol Sci 2019; 285:rspb.2017.2418. [PMID: 29298937 DOI: 10.1098/rspb.2017.2418] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/29/2017] [Indexed: 11/12/2022] Open
Abstract
Although relationships among the major groups of living gnathostomes are well established, the relatedness of early jawed vertebrates to modern clades is intensely debated. Here, we provide a new description of Gladbachus, a Middle Devonian (Givetian approx. 385-million-year-old) stem chondrichthyan from Germany, and one of the very few early chondrichthyans in which substantial portions of the endoskeleton are preserved. Tomographic and histological techniques reveal new details of the gill skeleton, hyoid arch and jaws, neurocranium, cartilage, scales and teeth. Despite many features resembling placoderm or osteichthyan conditions, phylogenetic analysis confirms Gladbachus as a stem chondrichthyan and corroborates hypotheses that all acanthodians are stem chondrichthyans. The unfamiliar character combination displayed by Gladbachus, alongside conditions observed in acanthodians, implies that pre-Devonian stem chondrichthyans are severely under-sampled and strongly supports indications from isolated scales that the gnathostome crown group originated at the latest by the early Silurian (approx. 440 Ma). Moreover, phylogenetic results highlight the likely convergent evolution of conventional chondrichthyan conditions among earliest members of this primary gnathostome division, while skeletal morphology points towards the likely suspension feeding habits of Gladbachus, suggesting a functional origin of the gill slit condition characteristic of the vast majority of living and fossil chondrichthyans.
Collapse
Affiliation(s)
- Michael I Coates
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637-1508, USA
| | - John A Finarelli
- UCD School of Biology and Environmental Science, UCD Science Education and Research Centre (West), UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ivan J Sansom
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Plamen S Andreev
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Katharine E Criswell
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637-1508, USA.,Department of Zoology, Cambridge University, Cambridge CB2 3EJ, UK
| | - Kristen Tietjen
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637-1508, USA
| | - Mark L Rivers
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637-1508, USA
| | | |
Collapse
|
34
|
Atake OJ, Cooper DM, Eames BF. Bone-like features in skate suggest a novel elasmobranch synapomorphy and deep homology of trabecular mineralization patterns. Acta Biomater 2019; 84:424-436. [PMID: 30500446 DOI: 10.1016/j.actbio.2018.11.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/03/2018] [Accepted: 11/26/2018] [Indexed: 12/26/2022]
Abstract
Bone is a defining characteristic of the vertebrate skeleton, and while chondrichthyans (sharks, skates, and other cartilaginous fishes) are vertebrates, they are hypothesized to have lost the ability to make bone during their evolution. Multiple descriptions of a bone-like tissue in neural arches of vertebrae in various shark species (selachians), however, challenge this hypothesis. Here, we extend this argument by analyzing vertebrae of two members of the batoids (the little skate Leucoraja erinacea and Eaton's skate Bathyraja eatonii), the sister group to selachians within elasmobranchs. Micro-CT images showed a bone-like mineralization pattern in neural arches of each skate species, and histological analyses confirmed that this bone-like tissue surrounded a cartilage core, exactly as described in sharks. Another mineralization pattern identified in skate vertebrae was distinct from the polygonal tesseral and areolar patterns that classically are associated with the chondrichthyan endoskeleton. Many regions of the vertebrae, including the neural spine and transverse processes, showed this perichondral mineralization pattern, termed here trabecular tesseral. Other than the cartilage core of the neural arch, all mineralized tissues in skate vertebrae had flattened cells surrounded by matrix with bone-like histology. Analyses of quantitative microstructural parameters revealed that, compared to rat vertebrae, the bone-like mineralization pattern in the neural arches of skate vertebrae was more similar to compact bone than trabecular bone. In contrast, the thickness of the trabecular tesseral pattern was more similar to trabecular bone than compact bone of rat vertebrae. In conclusion, a bone-like tissue in neural arches of skate vertebrae appears to be a novel elasmobranch synapomorphy. We propose that the trabecular tesseral mineralization pattern in the skate might have deep homology to the mineralization pattern utilized in trabecular bone. STATEMENT OF SIGNIFICANCE: Mineralization patterns of skeletal tissues have not been investigated thoroughly in all vertebrate clades. Despite their designation as 'cartilaginous fish', chondrichthyans clearly evolved from ancestral vertebrates that made bone. The consensus that chondrichthyans lost the ability to make bone during their evolution, however, is challenged by reports of bone and bone-like tissues in the neural arches of vertebrae in extant sharks (selachians). Here, we provide evidence from micro-CT imaging and histological analyses to support our hypothesis that a bone-like tissue is present in the neural arches of batoids (the sister group to selachians within elasmobranchs). These results argue strongly that the neural arch bone-like tissue is a previously unknown synapomorphy of elasmobranchs. In addition to the bone-like mineralization pattern identified in the neural arches, micro-CT images also showed a novel mineralization pattern which we described as trabecular tesseral. Quantitative microstructural features shared between trabecular tesseral pattern and trabecular bone (from homologous rat vertebrae) suggest that both patterns might derive from an ancestral gene network driving trabecular mineralization (i.e., deep homology).
Collapse
|
35
|
DeLaurier A. Evolution and development of the fish jaw skeleton. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e337. [PMID: 30378758 DOI: 10.1002/wdev.337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
The evolution of the jaw represents a key innovation in driving the diversification of vertebrate body plans and behavior. The pharyngeal apparatus originated as gill bars separated by slits in chordate ancestors to vertebrates. Later, with the acquisition of neural crest, pharyngeal arches gave rise to branchial basket cartilages in jawless vertebrates (agnathans), and later bone and cartilage of the jaw, jaw support, and gills of jawed vertebrates (gnathostomes). Major events in the evolution of jaw structure from agnathans to gnathostomes include axial regionalization of pharyngeal elements and formation of a jaw joint. Hox genes specify the anterior-posterior identity of arches, and edn1, dlx, hand2, Jag1b-Notch2 signaling, and Nr2f factors specify dorsal-ventral identity. The formation of a jaw joint, an important step in the transition from an un-jointed pharynx in agnathans to a hinged jaw in gnathostomes involves interaction between nkx3.2, hand2, and barx1 factors. Major events in jaw patterning between fishes and reptiles include changes to elements of the second pharyngeal arch, including a loss of opercular and branchiostegal ray bones and transformation of the hyomandibula into the stapes. Further changes occurred between reptiles and mammals, including the transformation of the articular and quadrate elements of the jaw joint into the malleus and incus of the middle ear. Fossils of transitional jaw phenotypes can be analyzed from a developmental perspective, and there exists potential to use genetic manipulation techniques in extant taxa to test hypotheses about the evolution of jaw patterning in ancient vertebrates. This article is categorized under: Comparative Development and Evolution > Evolutionary Novelties Early Embryonic Development > Development to the Basic Body Plan Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- April DeLaurier
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina
| |
Collapse
|