1
|
Gao G, Zhang F, Li W, Liu Y, Xu W, Yang C, Shao G, Wang K, Xiao Z. Genomic analysis and behavioral ecology records of the vulnerable Kong skate (Okamejei kenojei). Integr Zool 2024. [PMID: 39267449 DOI: 10.1111/1749-4877.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Wild populations of cartilaginous fish (sharks, skates, rays, and chimaeras) are encountering challenges. Here, we are unveiling genomic data and behavioral ecological records of Okamejei kenojei, a species listed in the IUCN Red List of Threatened Species, aiming to offer insights into the conservation and environmental adaptability of cartilaginous fish.
Collapse
Affiliation(s)
- Guang Gao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Fenghua Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic CO., LTD, Laizhou, China
| | - Yuxuan Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Wenjie Xu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | | | | | - Kun Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhizhong Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
2
|
Soraire T, Thompson K, Wenzler T, Taibi J, Coffin AB. Effect of pH on Development of the Zebrafish Inner Ear and Lateral Line: Comparisons between High School and University Settings. Zebrafish 2024. [PMID: 39075066 DOI: 10.1089/zeb.2024.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Increasing carbon dioxide levels associated with climate change will likely have a devastating effect on aquatic ecosystems. Aquatic environments sequester carbon dioxide, resulting in acidic conditions that can negatively affect fish development. Increasing climate change impacts in the coming decades will have an outsized effect on younger generations. Therefore, our research had two interconnected goals: 1) understand how aquatic acidification affects the development of zebrafish, and 2) support a high school scientist's ability to address environmental questions of increasing importance to her generation. Working with teachers and other mentors, the first author designed and conducted the research, first in her high school, then in a university research laboratory. Zebrafish embryos were reared in varying pH conditions (6.7-8.2) for up to 7 days. We assessed fish length and development of the inner ear, including the otoliths; structures that depend on calcium carbonate for proper development. Although pH did not affect fish length, fish reared in pH 7.75 had smaller anterior otoliths, showing that pH can impact zebrafish ear development. Furthermore, we demonstrate how zebrafish may be used for high school students to pursue open-ended questions using different levels of available resources.
Collapse
Affiliation(s)
- Theresa Soraire
- Walter G. O'Connell Copiague High School, Copiague, New York, USA
| | - Kaitlyn Thompson
- Walter G. O'Connell Copiague High School, Copiague, New York, USA
| | - Tracy Wenzler
- Walter G. O'Connell Copiague High School, Copiague, New York, USA
| | - Jason Taibi
- Walter G. O'Connell Copiague High School, Copiague, New York, USA
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington, USA
| |
Collapse
|
3
|
Auffret P, Servili A, Gonzalez AA, Fleury ML, Mark FC, Mazurais D. Transgenerational exposure to ocean acidification impacts the hepatic transcriptome of European sea bass (Dicentrarchus labrax). BMC Genomics 2023; 24:331. [PMID: 37322468 DOI: 10.1186/s12864-023-09353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
Physiological effects of ocean acidification associated with elevated CO2 concentrations in seawater is the subject of numerous studies in teleost fish. While the short time within-generation impact of ocean acidification (OA) on acid-base exchange and energy metabolism is relatively well described, the effects associated with transgenerational exposure to OA are much less known. Yet, the impacts of OA can vary in time with the potential for acclimation or adaptation of a species. Previous studies in our lab demonstrated that transgenerational exposure to OA had extensive effects on the transcriptome of the olfactory epithelium of European sea bass (Dicentrarchus labrax), especially on genes related to ion balance, energy metabolism, immune system, synaptic plasticity, neuron excitability and wiring. In the present study, we complete the previous work by investigating the effect of transgenerational exposure to OA on the hepatic transcriptome of European sea bass. Differential gene expression analysis was performed by RNAseq technology on RNA extracted from the liver of two groups of 18 months F2 juveniles that had been exposed since spawning to the same AO conditions as their parents (F1) to either actual pH or end-of-century predicted pH levels (IPCC RCP8.5), respectively. Here we show that transgenerational exposure to OA significantly impacts the expression of 236 hepatic transcripts including genes mainly involved in inflammatory/immune responses but also in carbohydrate metabolism and cellular homeostasis. Even if this transcriptomic impact is relatively limited compared to what was shown in the olfactory system, this work confirmed that fish transgenerationally exposed to OA exhibit molecular regulation of processes related to metabolism and inflammation. Also, our data expand the up-regulation of a key gene involved in different physiological pathways including calcium homeostasis (i.e. pthr1), which we already observed in the olfactory epithelium, to the liver. Even if our experimental design does not allow to discriminate direct within F2 generation effects from transgenerational plasticity, these results offer the perspective of more functional analyses to determine the potential physiological impact of OA exposure on fish physiology with ecological relevance.
Collapse
Affiliation(s)
| | - Arianna Servili
- IFREMER, PHYTNESS, Univ Brest, CNRS, IRD, LEMAR, Plouzané, 29280, France
| | | | - Marie-Lou Fleury
- IFREMER, PHYTNESS, Univ Brest, CNRS, IRD, LEMAR, Plouzané, 29280, France
| | - Felix Christopher Mark
- Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), 27570, Bremerhaven, Germany
| | - David Mazurais
- IFREMER, PHYTNESS, Univ Brest, CNRS, IRD, LEMAR, Plouzané, 29280, France.
| |
Collapse
|
4
|
James RS, Seebacher F, Tallis J. Can animals tune tissue mechanics in response to changing environments caused by anthropogenic impacts? J Exp Biol 2023; 226:287009. [PMID: 36779312 DOI: 10.1242/jeb.245109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Anthropogenic climate change and pollution are impacting environments across the globe. This Review summarises the potential impact of such anthropogenic effects on animal tissue mechanics, given the consequences for animal locomotor performance and behaviour. More specifically, in light of current literature, this Review focuses on evaluating the acute and chronic effects of temperature on the mechanical function of muscle tissues. For ectotherms, maximal muscle performance typically occurs at temperatures approximating the natural environment of the species. However, species vary in their ability to acclimate to chronic changes in temperature, which is likely to have longer-term effects on species range. Some species undergo periods of dormancy to avoid extreme temperature or drought. Whilst the skeletal muscle of such species generally appears to be adapted to minimise muscle atrophy and maintain performance for emergence from dormancy, the increased occurrence of extreme climatic conditions may reduce the survival of individuals in such environments. This Review also considers the likely impact of anthropogenic pollutants, such as hormones and heavy metals, on animal tissue mechanics, noting the relative paucity of literature directly investigating this key area. Future work needs to determine the direct effects of anthropogenic environmental changes on animal tissues and related changes in locomotor performance and behaviour, including accounting for currently unknown interactions between environmental factors, e.g. temperature and pollutants.
Collapse
Affiliation(s)
- Rob S James
- Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Jason Tallis
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| |
Collapse
|
5
|
Di Santo V. EcoPhysioMechanics: Integrating energetics and biomechanics to understand fish locomotion under climate change. Integr Comp Biol 2022; 62:icac095. [PMID: 35759407 PMCID: PMC9494520 DOI: 10.1093/icb/icac095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Ecological physiologists and biomechanists have been broadly investigating swimming performance in a diversity of fishes, however the connection between form, function and energetics of locomotion has been rarely evaluated in the same system and under climate change scenarios. In this perspective I argue that working within the framework of 'EcoPhysioMechanics', i.e., integrating energetics and biomechanics tools, to measure locomotor performance and behavior under different abiotic factors, improves our understanding of the mechanisms, limits and costs of movement. To demonstrate how ecophysiomechanics can be applied to locomotor studies, I outline how linking biomechanics and physiology allows us to understand how fishes may modulate their movement to achieve high speeds or reduce the costs of locomotion. I also discuss how the framework is necessary to quantify swimming capacity under climate change scenarios. Finally, I discuss current dearth of integrative studies and gaps in empirical datasets that are necessary to understand fish swimming under changing environments.
Collapse
Affiliation(s)
- Valentina Di Santo
- Division of Functional Morphology, Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 11419 Stockholm, Sweden
| |
Collapse
|
6
|
Kwan GT, Tresguerres M. Elucidating the acid-base mechanisms underlying otolith overgrowth in fish exposed to ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153690. [PMID: 35143791 DOI: 10.1016/j.scitotenv.2022.153690] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Over a decade ago, ocean acidification (OA) exposure was reported to induce otolith overgrowth in teleost fish. This phenomenon was subsequently confirmed in multiple species; however, the underlying physiological causes remain unknown. Here, we report that splitnose rockfish (Sebastes diploproa) exposed to ~1600 μatm pCO2(pH ~7.5) were able to fully regulated the pH of both blood and endolymph (the fluid that surrounds the otolith within the inner ear). However, while blood was regulated around pH 7.80, the endolymph was regulated around pH ~8.30. These different pH setpoints result in increased pCO2diffusion into the endolymph, which in turn leads to proportional increases in endolymph [HCO3-] and [CO32-]. Endolymph pH regulation despite the increased pCO2suggests enhanced H+removal. However, a lack of differences in inner ear bulk and cell-specific Na+/K+-ATPase and vacuolar type H+-ATPase protein abundance localization pointed out to activation of preexisting ATPases, non-bicarbonate pH buffering, or both, as the mechanism for endolymph pH-regulation. These results provide the first direct evidence showcasing the acid-base chemistry of the endolymph of OA-exposed fish favors otolith overgrowth, and suggests that this phenomenon will be more pronounced in species that count with more robust blood and endolymph pH regulatory mechanisms.
Collapse
Affiliation(s)
- Garfield T Kwan
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, USA; NOAA Fisheries Service, Southwest Fisheries Science Center, USA.
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, USA.
| |
Collapse
|
7
|
Leung JYS, Nagelkerken I, Pistevos JCA, Xie Z, Zhang S, Connell SD. Shark teeth can resist ocean acidification. GLOBAL CHANGE BIOLOGY 2022; 28:2286-2295. [PMID: 35023266 DOI: 10.1111/gcb.16052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023]
Abstract
Ocean acidification can cause dissolution of calcium carbonate minerals in biological structures of many marine organisms, which can be exacerbated by warming. However, it is still unclear whether this also affects organisms that have body parts made of calcium phosphate minerals (e.g. shark teeth), which may also be impacted by the 'corrosive' effect of acidified seawater. Thus, we examined the effect of ocean acidification and warming on the mechanical properties of shark teeth (Port Jackson shark, Heterodontus portusjacksoni), and assessed whether their mineralogical properties can be modified in response to predicted near-future seawater pH (-0.3 units) and temperature (+3°C) changes. We found that warming resulted in the production of more brittle teeth (higher elastic modulus and lower mechanical resilience) that were more vulnerable to physical damage. Yet, when combined with ocean acidification, the durability of teeth increased (i.e. less prone to physical damage due to the production of more elastic teeth) so that they did not differ from those raised under ambient conditions. The teeth were chiefly made of fluorapatite (Ca5 (PO4 )3 F), with increased fluoride content under ocean acidification that was associated with increased crystallinity. The increased precipitation of this highly insoluble mineral under ocean acidification suggests that the sharks could modulate and enhance biomineralization to produce teeth which are more resistant to corrosion. This adaptive mineralogical adjustment could allow some shark species to maintain durability and functionality of their teeth, which underpins a fundamental component of predation and sustenance of the trophic dynamics of future oceans.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Centre for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing, PR China
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Jennifer C A Pistevos
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
- PSL Research University EPHE-UPVD-CNRS, USR 3278 CRIOBE, Moorea, French Polynesia
| | - Zonghan Xie
- School of Mechanical Engineering, The University of Adelaide, South Australia, Australia
| | - Sam Zhang
- Centre for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing, PR China
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Gillis JA, Bennett S, Criswell KE, Rees J, Sleight VA, Hirschberger C, Calzarette D, Kerr S, Dasen J. Big insight from the little skate: Leucoraja erinacea as a developmental model system. Curr Top Dev Biol 2022; 147:595-630. [PMID: 35337464 DOI: 10.1016/bs.ctdb.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The vast majority of extant vertebrate diversity lies within the bony and cartilaginous fish lineages of jawed vertebrates. There is a long history of elegant experimental investigation of development in bony vertebrate model systems (e.g., mouse, chick, frog and zebrafish). However, studies on the development of cartilaginous fishes (sharks, skates and rays) have, until recently, been largely descriptive, owing to the challenges of embryonic manipulation and culture in this group. This, in turn, has hindered understanding of the evolution of developmental mechanisms within cartilaginous fishes and, more broadly, within jawed vertebrates. The little skate (Leucoraja erinacea) is an oviparous cartilaginous fish and has emerged as a powerful and experimentally tractable developmental model system. Here, we discuss the collection, husbandry and management of little skate brood stock and eggs, and we present an overview of key stages of skate embryonic development. We also discuss methods for the manipulation and culture of skate embryos and illustrate the range of tools and approaches available for studying this system. Finally, we summarize a selection of recent studies on skate development that highlight the utility of this system for inferring ancestral anatomical and developmental conditions for jawed vertebrates, as well as unique aspects of cartilaginous fish biology.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; Marine Biological Laboratory, Woods Hole, MA, United States.
| | - Scott Bennett
- Marine Biological Laboratory, Woods Hole, MA, United States
| | | | - Jenaid Rees
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Victoria A Sleight
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Dan Calzarette
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Sarah Kerr
- Wesleyan University, Middletown, CT, United States
| | - Jeremy Dasen
- Department of Neuroscience and Physiology, NYU School of Medicine, Neuroscience Institute, NY, United States
| |
Collapse
|
9
|
A Systematic Review of the Behavioural Changes and Physiological Adjustments of Elasmobranchs and Teleost’s to Ocean Acidification with a Focus on Sharks. FISHES 2022. [DOI: 10.3390/fishes7020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In recent years, much attention has been focused on the impact of climate change, particularly via ocean acidification (OA), on marine organisms. Studying the impact of OA on long-living organisms, such as sharks, is especially challenging. When the ocean waters absorb anthropogenic carbon dioxide (CO2), slow-growing shark species with long generation times may be subjected to stress, leading to a decrease in functionality. Our goal was to examine the behavioral and physiological responses of sharks to OA and the possible impacts on their fitness and resilience. We conducted a systematic review in line with PRISMA-Analyses, of previously reported scientific experiments. We found that most studies used CO2 partial pressures (pCO2) that reflect representative concentration pathways for the year 2100 (e.g., pH ~7.8, pCO2 ~1000 μatm). Since there is a considerable knowledge gap on the effect of OA on sharks, we utilized existing data on bony fish to synthesize the available knowledge. Given the similarities between the behaviors and physiology of these two superclasses’ to changes in CO2 and pH levels, there is merit in including the available information on bony fish as well. Several studies indicated a decrease in shark fitness in relation to increased OA and CO2 levels. However, the decrease was species-specific and influenced by the intensity of the change in atmospheric CO2 concentration and other anthropogenic and environmental factors (e.g., fishing, temperature). Most studies involved only limited exposure to future environmental conditions and were conducted on benthic shark species studied in the laboratory rather than on apex predator species. While knowledge gaps exist, and more research is required, we conclude that anthropogenic factors are likely contributing to shark species’ vulnerability worldwide. However, the impact of OA on the long-term stability of shark populations is not unequivocal.
Collapse
|
10
|
Larval Development in Tropical Gar (Atractosteus tropicus) Is Dependent on the Embryonic Thermal Regime: Ecological Implications under a Climate Change Context. FISHES 2022. [DOI: 10.3390/fishes7010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In ectotherm species, environmental temperature plays a key role in development, growth, and survival. Thus, determining how temperature affects fish populations is of utmost importance to accurately predict the risk of climate change over fisheries and aquaculture, critical to warrant nutrition and food security in the coming years. Here, the potential effects of abnormal thermal regimes (24, 28 and 32 °C; TR24, TR28, and TR32, respectively) exclusively applied during embryogenesis in tropical gar (Atractosteus tropicus) has been explored to decipher the potential consequences on hatching and growth from fertilization to 16 days post-fertilization (dpf), while effects on skeletal development and body morphology were explored at fertilization and 16 dpf. Egg incubation at higher temperatures induced an early hatching and mouth opening. A higher hatching rate was obtained in eggs incubated at 28 °C when compared to those at 24 °C. No differences were found in fish survival at 16 dpf, with values ranging from 84.89 to 88.86%, but increased wet body weight and standard length were found in larvae from TR24 and TR32 groups. Thermal regime during embryogenesis also altered the rate at which the skeletal development occurs. Larvae from the TR32 group showed an advanced skeletal development, with a higher development of cartilaginous structures at hatching but reduced at 16 dpf when compared with the TR24 and TR28 groups. Furthermore, this advanced skeletal development seemed to determine the fish body morphology. Based on biometric measures, a principal component analysis showed how along development, larvae from each thermal regime were clustered together, but with each population remaining clearly separated from each other. The current study shows how changes in temperature may induce craniofacial and morphological alterations in fish during early stages and contribute to understanding the possible effects of global warming in early development of fish and its ecological implications.
Collapse
|
11
|
Delaval A, Frost M, Bendall V, Hetherington SJ, Stirling D, Hoarau G, Jones CS, Noble LR. Population and seascape genomics of a critically endangered benthic elasmobranch, the blue skate Dipturus batis. Evol Appl 2022; 15:78-94. [PMID: 35126649 PMCID: PMC8792474 DOI: 10.1111/eva.13327] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/28/2022] Open
Abstract
The blue skate (Dipturus batis) has a patchy distribution across the North-East Atlantic Ocean, largely restricted to occidental seas around the British Isles following fisheries-induced population declines and extirpations. The viability of remnant populations remains uncertain and could be impacted by continued fishing and by-catch pressure, and the projected impacts of climate change. We genotyped 503 samples of D. batis, obtained opportunistically from the widest available geographic range, across 6 350 single nucleotide polymorphisms (SNPs) using a reduced-representation sequencing approach. Genotypes were used to assess the species' contemporary population structure, estimate effective population sizes and identify putative signals of selection in relation to environmental variables using a seascape genomics approach. We identified genetic discontinuities between inshore (British Isles) and offshore (Rockall and Faroe Island) populations, with differentiation most pronounced across the deep waters of the Rockall Trough. Effective population sizes were largest in the Celtic Sea and Rockall, but low enough to be of potential conservation concern among Scottish and Faroese sites. Among the 21 candidate SNPs under positive selection was one significantly correlated with environmental variables predicted to be affected by climate change, including bottom temperature, salinity and pH. The paucity of well-annotated elasmobranch genomes precluded us from identifying a putative function for this SNP. Nevertheless, our findings suggest that climate change could inflict a strong selective force upon remnant populations of D. batis, further constraining its already-restricted habitat. Furthermore, the results provide fundamental insights on the distribution, behaviour and evolutionary biology of D. batis in the North-East Atlantic that will be useful for the establishment of conservation actions for this and other critically endangered elasmobranchs.
Collapse
Affiliation(s)
| | - Michelle Frost
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | - Victoria Bendall
- Centre for EnvironmentFisheries and Aquaculture ScienceLowestoftUK
| | | | | | - Galice Hoarau
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | | | - Leslie R. Noble
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
12
|
Baag S, Mandal S. Combined effects of ocean warming and acidification on marine fish and shellfish: A molecule to ecosystem perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149807. [PMID: 34450439 DOI: 10.1016/j.scitotenv.2021.149807] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
It is expected that by 2050 human population will exceed nine billion leading to increased pressure on marine ecosystems. Therefore, it is conjectured various levels of ecosystem functioning starting from individual to population-level, species distribution, food webs and trophic interaction dynamics will be severely jeopardized in coming decades. Ocean warming and acidification are two prime threats to marine biota, yet studies about their cumulative effect on marine fish and shellfishes are still in its infancy. This review assesses existing information regarding the interactive effects of global environmental factors like warming and acidification in the perspective of marine capture fisheries and aquaculture industry. As climate change continues, distribution pattern of species is likely to be altered which will impact fisheries and fishing patterns. Our work is an attempt to compile the existing literatures in the biological perspective of the above-mentioned stressors and accentuate a clear outline of knowledge in this subject. We reviewed studies deciphering the biological consequences of warming and acidification on fish and shellfishes in the light of a molecule to ecosystem perspective. Here, for the first time impacts of these two global environmental drivers are discussed in a holistic manner taking into account growth, survival, behavioural response, prey predator dynamics, calcification, biomineralization, reproduction, physiology, thermal tolerance, molecular level responses as well as immune system and disease susceptibility. We suggest urgent focus on more robust, long term, comprehensive and ecologically realistic studies that will significantly contribute to the understanding of organism's response to climate change for sustainable capture fisheries and aquaculture.
Collapse
Affiliation(s)
- Sritama Baag
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Sumit Mandal
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
13
|
Jorgensen SJ, Micheli F, White TD, Van Houtan KS, Alfaro-Shigueto J, Andrzejaczek S, Arnoldi NS, Baum JK, Block B, Britten GL, Butner C, Caballero S, Cardeñosa D, Chapple TK, Clarke S, Cortés E, Dulvy NK, Fowler S, Gallagher AJ, Gilman E, Godley BJ, Graham RT, Hammerschlag N, Harry AV, Heithaus M, Hutchinson M, Huveneers C, Lowe CG, Lucifora LO, MacKeracher T, Mangel JC, Barbosa Martins AP, McCauley DJ, McClenachan L, Mull C, Natanson LJ, Pauly D, Pazmiño DA, Pistevos JCA, Queiroz N, Roff G, Shea BD, Simpfendorfer CA, Sims DW, Ward-Paige C, Worm B, Ferretti F. Emergent research and priorities for shark and ray conservation. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Bouyoucos IA, Shipley ON, Jones E, Brooks EJ, Mandelman JW. Wound healing in an elasmobranch fish is not impaired by high-CO 2 exposure. JOURNAL OF FISH BIOLOGY 2020; 96:1508-1511. [PMID: 32166741 DOI: 10.1111/jfb.14320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to test the effects of high CO2 exposure on wound healing rates in an elasmobranch fish (Urobatis jamaicensis). Small dermal injuries (8 mm biopsy) closed by 22 days post wounding with a decrease in haematocrit. High CO2 exposure (ΔpH = 1.4) did not influence healing rate or haematocrit. Combined, these data provide evidence that minimally invasive scientific procedures have short-term impacts on elasmobranch fishes even during exposure to a chronic stressor. Therefore, wound healing rates may not be strongly impacted by ocean acidification (ΔpH = 0.4).
Collapse
Affiliation(s)
- Ian A Bouyoucos
- Shark Research and Conservation Program, Cape Eleuthera Institute, Rock Sound, Eleuthera, The Bahamas
| | - Oliver N Shipley
- Shark Research and Conservation Program, Cape Eleuthera Institute, Rock Sound, Eleuthera, The Bahamas
| | - Emily Jones
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA
| | - Edward J Brooks
- Shark Research and Conservation Program, Cape Eleuthera Institute, Rock Sound, Eleuthera, The Bahamas
| | - John W Mandelman
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA
| |
Collapse
|
15
|
Dziergwa J, Singh S, Bridges CR, Kerwath SE, Enax J, Auerswald L. Acid-base adjustments and first evidence of denticle corrosion caused by ocean acidification conditions in a demersal shark species. Sci Rep 2019; 9:18668. [PMID: 31857600 PMCID: PMC6923475 DOI: 10.1038/s41598-019-54795-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023] Open
Abstract
Global ocean acidification is expected to chronically lower the pH to 7.3 (>2200 µatm seawater pCO2) by the year 2300. Acute hypercapnia already occurs along the South African west and south coasts due to upwelling- and low-oxygen events, with increasing frequency. In the present project we investigated the impact of hypercapnia on the endemic demersal shark species Haploblepharus edwardsii. Specifically, we experimentally analysed acid-base regulation during acute and chronic hypercapnia, the effects of chronic hypercapnia on growth rates and on denticle structure- and composition. While H. edwardsii are physiologically well adapted to acute and chronic hypercapnia, we observed, for the first time, denticle corrosion as a result of chronic exposure. We conclude that denticle corrosion could increase denticle turnover and compromise hydrodynamics and skin protection.
Collapse
Affiliation(s)
- Jacqueline Dziergwa
- Heinrich-Heine University, Düsseldorf, Institute of Metabolic Physiology/Ecophysiology, Düsseldorf, Germany
| | - Sarika Singh
- Ocean and Coastal Research, Department of Environmental Affairs (DEA), Cape Town, South Africa
| | - Christopher R Bridges
- Heinrich-Heine University, Düsseldorf, Institute of Metabolic Physiology/Ecophysiology, Düsseldorf, Germany
| | - Sven E Kerwath
- Branch: Fisheries Management, Department of Agriculture, Forestry and Fisheries (DAFF), Cape Town, South Africa
- Department of Animal Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Joachim Enax
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Lutz Auerswald
- Branch: Fisheries Management, Department of Agriculture, Forestry and Fisheries (DAFF), Cape Town, South Africa.
- Department of Animal Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|