1
|
Anders JL, Davey M, Van Moorter B, Fossøy F, Boessenkool S, Solberg EJ, Meisingset EL, Mysterud A, Rolandsen CM. Elucidating nematode diversity and prevalence in moose across a wide latitudinal gradient using DNA metabarcoding. Int J Parasitol Parasites Wildl 2024; 24:100962. [PMID: 39099677 PMCID: PMC11295938 DOI: 10.1016/j.ijppaw.2024.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Parasitic nematodes are ubiquitous and can negatively impact their host by reducing fecundity or increasing mortality, yet the driver of variation in the parasite community across a wildlife host's geographic distribution remains elusive for most species. Based on an extensive collection of fecal samples (n = 264) from GPS marked moose (Alces alces), we used DNA metabarcoding to characterize the individual (sex, age class) and seasonal parasitic nematode community in relation to habitat use and migration behavior in five populations distributed across a wide latitudinal gradient (59.6°N to 70.5°N) in Norway. We detected 21 distinct nematode taxa with the six most common being Ostertagia spp., Nematodirella spp., Trichostongylus spp., T. axei, Elaphostrongylus alces, and an unclassified Strongylida. There was higher prevalence of livestock parasites in areas with larger sheep populations indicating a higher risk of spillover events. The individual level nematode richness was mostly consistent across study areas, while the number and type of nematode taxa detected at each study area varied considerably but did not follow a latitudinal gradient. While migration distance affected nematode beta-diversity across all sites, it had a positive effect on richness at only two of the five study areas suggesting population specific effects. Unexpectedly, nematode richness was higher in winter than summer when very few nematodes were detected. Here we provide the first extensive description of the parasitic nematode community of moose across a wide latitudinal range. Overall, the population-specific impact of migration on parasitism across the distribution range and variation in sympatry with other ruminants suggest local characteristics affect host-parasite relationships.
Collapse
Affiliation(s)
- Jason L. Anders
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316 Oslo, Norway
| | - Marie Davey
- Norwegian Institute for Nature Research (NINA), P. O. Box 5685 Sluppen, NO-7485 Trondheim, Norway
| | - Bram Van Moorter
- Norwegian Institute for Nature Research (NINA), Sognsveien 68, 0855 Oslo, Norway
| | - Frode Fossøy
- Norwegian Institute for Nature Research (NINA), P. O. Box 5685 Sluppen, NO-7485 Trondheim, Norway
| | - Sanne Boessenkool
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316 Oslo, Norway
| | - Erling J. Solberg
- Norwegian Institute for Nature Research (NINA), P. O. Box 5685 Sluppen, NO-7485 Trondheim, Norway
| | - Erling L. Meisingset
- Department of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research, Tingvoll gard, NO-6630, Tingvoll, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316 Oslo, Norway
- Norwegian Institute for Nature Research (NINA), P. O. Box 5685 Sluppen, NO-7485 Trondheim, Norway
| | - Christer M. Rolandsen
- Norwegian Institute for Nature Research (NINA), P. O. Box 5685 Sluppen, NO-7485 Trondheim, Norway
| |
Collapse
|
2
|
Dobor L, Baldo M, Bílek L, Barka I, Máliš F, Štěpánek P, Hlásny T. The interacting effect of climate change and herbivory can trigger large-scale transformations of European temperate forests. GLOBAL CHANGE BIOLOGY 2024; 30:e17194. [PMID: 38385958 DOI: 10.1111/gcb.17194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
In many regions of Europe, large wild herbivores alter forest community composition through their foraging preferences, hinder the forest's natural adaptive responses to climate change, and reduce ecosystem resilience. We investigated a widespread European forest type, a mixed forest dominated by Picea abies, which has recently experienced an unprecedented level of disturbance across the continent. Using the forest landscape model iLand, we investigated the combined effect of climate change and herbivory on forest structure, composition, and carbon and identified conditions leading to ecosystem transitions on a 300-year timescale. Eight climate change scenarios, driven by Representative Concentration Pathways 4.5 and 8.5, combined with three levels of regeneration browsing, were tested. We found that the persistence of the current level of browsing pressure impedes adaptive changes in community composition and sustains the presence of the vulnerable yet less palatable P. abies. These development trajectories were tortuous, characterized by a high disturbance intensity. On the contrary, reduced herbivory initiated a transformation towards the naturally dominant broadleaved species that was associated with an increased forest carbon and a considerably reduced disturbance. The conditions of RCP4.5 combined with high and moderate browsing levels preserved the forest within its reference range of variability, defining the actual boundaries of resilience. The remaining combinations of browsing and climate change led to ecosystem transitions. Under RCP4.5 with browsing effects excluded, the new equilibrium conditions were achieved within 120 years, whereas the stabilization was delayed by 50-100 years under RCP8.5 with higher browsing intensities. We conclude that forests dominated by P. abies are prone to transitions driven by climate change. However, reducing herbivory can set the forest on a stable and predictable trajectory, whereas sustaining the current browsing levels can lead to heightened disturbance activity, extended transition times, and high variability in the target conditions.
Collapse
Affiliation(s)
- Laura Dobor
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Prague 6, Suchdol, Czech Republic
| | - Marco Baldo
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Prague 6, Suchdol, Czech Republic
| | - Lukáš Bílek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Prague 6, Suchdol, Czech Republic
| | - Ivan Barka
- National Forest Centre - Forest Research Institute Zvolen, Zvolen, Slovakia
| | - František Máliš
- National Forest Centre - Forest Research Institute Zvolen, Zvolen, Slovakia
- Faculty of Forestry, Technical University Zvolen, Zvolen, Slovakia
| | - Petr Štěpánek
- Global Change Research Institute, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Hlásny
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Prague 6, Suchdol, Czech Republic
| |
Collapse
|
3
|
Broekman MJE, Hilbers JP, Huijbregts MAJ, Mueller T, Ali AH, Andrén H, Altmann J, Aronsson M, Attias N, Bartlam‐Brooks HLA, van Beest FM, Belant JL, Beyer DE, Bidner L, Blaum N, Boone RB, Boyce MS, Brown MB, Cagnacci F, Černe R, Chamaillé‐Jammes S, Dejid N, Dekker J, L. J. Desbiez A, Díaz‐Muñoz SL, Fennessy J, Fichtel C, Fischer C, Fisher JT, Fischhoff I, Ford AT, Fryxell JM, Gehr B, Goheen JR, Hauptfleisch M, Hewison AJM, Hering R, Heurich M, Isbell LA, Janssen R, Jeltsch F, Kaczensky P, Kappeler PM, Krofel M, LaPoint S, Latham ADM, Linnell JDC, Markham AC, Mattisson J, Medici EP, de Miranda Mourão G, Van Moorter B, Morato RG, Morellet N, Mysterud A, Mwiu S, Odden J, Olson KA, Ornicāns A, Pagon N, Panzacchi M, Persson J, Petroelje T, Rolandsen CM, Roshier D, Rubenstein DI, Saïd S, Salemgareyev AR, Sawyer H, Schmidt NM, Selva N, Sergiel A, Stabach J, Stacy‐Dawes J, Stewart FEC, Stiegler J, Strand O, Sundaresan S, Svoboda NJ, Ullmann W, Voigt U, Wall J, Wikelski M, Wilmers CC, Zięba F, Zwijacz‐Kozica T, Schipper AM, Tucker MA. Evaluating expert-based habitat suitability information of terrestrial mammals with GPS-tracking data. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2022; 31:1526-1541. [PMID: 36247232 PMCID: PMC9544534 DOI: 10.1111/geb.13523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 06/16/2023]
Abstract
Aim Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species. Location Worldwide. Time period 1998-2021. Major taxa studied Forty-nine terrestrial mammal species. Methods Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types. Results IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively. Main conclusions We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data.
Collapse
Affiliation(s)
- Maarten J. E. Broekman
- Department of Environmental ScienceInstitute for Wetland and Water Research, Faculty of Science, Radboud UniversityNijmegenThe Netherlands
| | - Jelle P. Hilbers
- Department of Environmental ScienceInstitute for Wetland and Water Research, Faculty of Science, Radboud UniversityNijmegenThe Netherlands
| | - Mark A. J. Huijbregts
- Department of Environmental ScienceInstitute for Wetland and Water Research, Faculty of Science, Radboud UniversityNijmegenThe Netherlands
| | - Thomas Mueller
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für NaturforschungFrankfurt (Main)Germany
- Department of Biological SciencesGoethe UniversityFrankfurt (Main)Germany
| | | | - Henrik Andrén
- Grimsö Wildlife Research Station, Department of EcologySwedish University of Agricultural SciencesRiddarhyttanSweden
| | - Jeanne Altmann
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Malin Aronsson
- Grimsö Wildlife Research Station, Department of EcologySwedish University of Agricultural SciencesRiddarhyttanSweden
- Department of ZoologyStockholm UniversityStockholmSweden
| | - Nina Attias
- Ecology and Conservation Graduate ProgramFederal University of Mato Grosso do SulCampo GrandeMato Grosso do SulBrazil
- Instituto de Conservação de Animais Silvestres (ICAS)Campo GrandeMato Grosso do SulBrazil
| | | | | | - Jerrold L. Belant
- Global Wildlife Conservation CenterState University of New York College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - Dean E. Beyer
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichiganUSA
| | - Laura Bidner
- Department of AnthropologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Niels Blaum
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
| | - Randall B. Boone
- Department of Ecosystem Science and SustainabilityColorado State UniversityFort CollinsColoradoUSA
| | - Mark S. Boyce
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Michael B. Brown
- Giraffe Conservation FoundationErosNamibia
- Conservation Ecology CenterSmithsonian National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Francesca Cagnacci
- Department of Biodiversity and Molecular EcologyResearch and Innovation Centre, Fondazione Edmund MachTrentoItaly
| | - Rok Černe
- Slovenia Forest ServiceLjubljanaSlovenia
| | - Simon Chamaillé‐Jammes
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3MontpellierFrance
| | - Nandintsetseg Dejid
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für NaturforschungFrankfurt (Main)Germany
| | | | - Arnaud L. J. Desbiez
- Instituto de Conservação de Animais Silvestres (ICAS)Campo GrandeMato Grosso do SulBrazil
- IPÊ (Instituto de Pesquisas Ecológicas; Institute for Ecological Research)São PauloBrazil
- Royal Zoological Society of Scotland (RZSS)EdinburghUK
| | - Samuel L. Díaz‐Muñoz
- Department of Microbiology and Molecular GeneticsUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Claudia Fichtel
- German Primate Center, Behavioral Ecology and Sociobiology UnitGöttingenGermany
| | - Christina Fischer
- Faunistics and Wildlife Conservation, Department of Agriculture, Ecotrophology, and Landscape DevelopmentAnhalt University of Applied SciencesBernburgGermany
| | - Jason T. Fisher
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | | | - Adam T. Ford
- Department of Biology, Faculty of ScienceUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| | - John M. Fryxell
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| | - Benedikt Gehr
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Jacob R. Goheen
- Department of Zoology and PhysiologyUniversity of WyomingLaramieWyomingUSA
| | - Morgan Hauptfleisch
- Department of Agriculture And Natural Resources Sciences, Biodiversity Research CentreNamibia University of Science and TechnologyWindhoekNamibia
| | - A. J. Mark Hewison
- Université de Toulouse, INRAE, CEFSCastanet‐TolosanFrance
- LTSER ZA Pyrénées GaronneAuzeville‐TolosaneFrance
| | - Robert Hering
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
| | - Marco Heurich
- Department of Conservation and ResearchBavarian Forest National ParkGrafenauGermany
- Chair of Wildlife Ecology and ManagementAlbert Ludwigs University of FreiburgFreiburgGermany
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| | - Lynne A. Isbell
- Department of AnthropologyUniversity of CaliforniaDavisCaliforniaUSA
- Animal Behavior Graduate GroupUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Florian Jeltsch
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
| | - Petra Kaczensky
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
- Norwegian Institute for Nature ResearchTrondheimNorway
- Research Institute of Wildlife EcologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Peter M. Kappeler
- German Primate Center, Behavioral Ecology and Sociobiology UnitGöttingenGermany
| | - Miha Krofel
- Department of Forestry and Renewable Forest Resources, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Scott LaPoint
- Black Rock ForestCornwallNew YorkUSA
- Lamont‐Doherty Earth ObservatoryColumbia UniversityPalisadesNew YorkUSA
| | - A. David M. Latham
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Wildlife Ecology and ManagementManaaki Whenua – Landcare ResearchLincolnNew Zealand
| | - John D. C. Linnell
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
- Norwegian Institute for Nature ResearchTrondheimNorway
| | | | | | - Emilia Patricia Medici
- IPÊ (Instituto de Pesquisas Ecológicas; Institute for Ecological Research)São PauloBrazil
- International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) Tapir Specialist Group (TSG)Campo GrandeMato Grosso do SulBrazil
| | | | | | - Ronaldo G. Morato
- National Research Center for Carnivores ConservationChico Mendes Institute for the Conservation of BiodiversityAtibaiaBrazil
| | - Nicolas Morellet
- Université de Toulouse, INRAE, CEFSCastanet‐TolosanFrance
- LTSER ZA Pyrénées GaronneAuzeville‐TolosaneFrance
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis, Department of BiosciencesUniversity of OsloOsloNorway
| | - Stephen Mwiu
- Wildlife Research and Training InstituteNaivashaKenya
| | - John Odden
- Norwegian Institute for Nature ResearchOsloNorway
| | - Kirk A. Olson
- Wildlife Conservation Society, Mongolia ProgramUlaanbaatarMongolia
| | - Aivars Ornicāns
- Latvian State Forest Research Institute “Silava”SalaspilsLatvia
| | | | | | - Jens Persson
- Grimsö Wildlife Research Station, Department of EcologySwedish University of Agricultural SciencesRiddarhyttanSweden
| | - Tyler Petroelje
- Global Wildlife Conservation CenterState University of New York College of Environmental Science and ForestrySyracuseNew YorkUSA
| | | | - David Roshier
- Australian Wildlife ConservancySubiacoWestern AustraliaAustralia
| | - Daniel I. Rubenstein
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Sonia Saïd
- Direction de la Recherche et de l'Appui ScientifiqueOffice Français de la BiodiversitéBirieuxFrance
| | - Albert R. Salemgareyev
- Association for the Conservation of Biodiversity of Kazakhstan (ACBK)Nur‐SultanKazakhstan
| | - Hall Sawyer
- Western Ecosystems Technology Inc.LaramieWyomingUSA
| | - Niels Martin Schmidt
- Department of BioscienceAarhus UniversityRoskildeDenmark
- Arctic Research CentreAarhus UniversityAarhusDenmark
| | - Nuria Selva
- Institute of Nature Conservation Polish Academy of SciencesKrakowPoland
| | - Agnieszka Sergiel
- Institute of Nature Conservation Polish Academy of SciencesKrakowPoland
| | - Jared Stabach
- Conservation Ecology CenterSmithsonian National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Jenna Stacy‐Dawes
- Conservation Science and Wildlife HealthSan Diego Zoo Wildlife AllianceEscondidoCaliforniaUSA
| | - Frances E. C. Stewart
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Department of BiologyWilfrid Laurier UniversityWaterlooOntarioCanada
| | - Jonas Stiegler
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
| | - Olav Strand
- Norwegian Institute for Nature ResearchTrondheimNorway
| | | | - Nathan J. Svoboda
- Carnivore Ecology Laboratory, Forest and Wildlife Research CenterMississippi State UniversityMississippi StateMississippiUSA
- Alaska Department of Fish and GameKodiakAlaskaUSA
| | - Wiebke Ullmann
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
| | - Ulrich Voigt
- Institute for Terrestrial and Aquatic Wildlife ResearchUniversity of Veterinary Medicine Hannover FoundationHannoverGermany
| | | | - Martin Wikelski
- Department of MigrationMax Planck Institute of Animal BehaviorRadolfzellGermany
- Centre for the Advanced Study of Collective BehaviourUniversity of KonstanzConstanceGermany
| | - Christopher C. Wilmers
- Center for Integrated Spatial Research, Environmental Studies DepartmentUniversity of CaliforniaSanta CruzCaliforniaUSA
| | | | | | - Aafke M. Schipper
- Department of Environmental ScienceInstitute for Wetland and Water Research, Faculty of Science, Radboud UniversityNijmegenThe Netherlands
- PBL Netherlands Environmental Assessment AgencyThe HagueThe Netherlands
| | - Marlee A. Tucker
- Department of Environmental ScienceInstitute for Wetland and Water Research, Faculty of Science, Radboud UniversityNijmegenThe Netherlands
| |
Collapse
|
4
|
Joly K, Gunn A, Côté SD, Panzacchi M, Adamczewski J, Suitor MJ, Gurarie E. Caribou and reindeer migrations in the changing Arctic. ANIMAL MIGRATION 2021. [DOI: 10.1515/ami-2020-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Caribou and reindeer, Rangifer tarandus, are the most numerous and socio-ecologically important terrestrial species in the Arctic. Their migrations are directly and indirectly affected by the seasonal nature of the northernmost regions, human development and population size; all of which are impacted by climate change. We review the most critical drivers of Rangifer migration and how a rapidly changing Arctic may affect them. In order to conserve large Rangifer populations, they must be allowed free passage along their migratory routes to reach seasonal ranges. We also provide some pragmatic ideas to help conserve Rangifer migrations into the future.
Collapse
Affiliation(s)
- Kyle Joly
- Gates of the Arctic National Park and Preserve, Arctic Inventory and Monitoring Network, National Park Service , 4175 Geist Road, Fairbanks, Alaska, 99709, USA
| | - Anne Gunn
- Salt Spring Island , British Columbia V8K 1V1 Canada
| | - Steeve D. Côté
- Département de biologie, Caribou Ungava & Centre d’études nordiques , Université Laval , Québec (QC), G1V 0A6 , Canada
| | - Manuela Panzacchi
- Norwegian Institute for Nature Research (NINA) , Høgskoleringen 9, NO-7034 Trondheim , Norway
| | - Jan Adamczewski
- Department of Environment and Natural Resources, Government of the Northwest Territories , Yellowknife, Northwest Territories , Canada
| | - Michael J. Suitor
- Fish and Wildlife Branch, Environment Yukon, Yukon Government , Dawson City , Yukon , Canada
| | - Eliezer Gurarie
- Department of Biology , University of Maryland , College Park, Maryland, 20742, USA , and Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry , Syracuse , NY 13210
| |
Collapse
|
5
|
Zuza EJ, Maseyk K, Bhagwat SA, de Sousa K, Emmott A, Rawes W, Araya YN. Climate suitability predictions for the cultivation of macadamia (Macadamia integrifolia) in Malawi using climate change scenarios. PLoS One 2021; 16:e0257007. [PMID: 34499683 PMCID: PMC8428786 DOI: 10.1371/journal.pone.0257007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Climate change is altering suitable areas of crop species worldwide, with cascading effects on people reliant upon those crop species as food sources and for income generation. Macadamia is one of Malawi’s most important and profitable crop species; however, climate change threatens its production. Thus, this study’s objective is to quantitatively examine the potential impacts of climate change on the climate suitability for macadamia in Malawi. We utilized an ensemble model approach to predict the current and future (2050s) suitability of macadamia under two Representative Concentration Pathways (RCPs). We achieved a good model fit in determining suitability classes for macadamia (AUC = 0.9). The climatic variables that strongly influence macadamia’s climatic suitability in Malawi are suggested to be the precipitation of the driest month (29.1%) and isothermality (17.3%). Under current climatic conditions, 57% (53,925 km2) of Malawi is climatically suitable for macadamia. Future projections suggest that climate change will decrease the suitable areas for macadamia by 18% (17,015 km2) and 21.6% (20,414 km2) based on RCP 4.5 and RCP 8.5, respectively, with the distribution of suitability shifting northwards in the 2050s. The southern and central regions of the country will suffer the greatest losses (≥ 8%), while the northern region will be the least impacted (4%). We conclude that our study provides critical evidence that climate change will reduce the suitable areas for macadamia production in Malawi, depending on climate drivers. Therefore area-specific adaptation strategies are required to build resilience among producers.
Collapse
Affiliation(s)
- Emmanuel Junior Zuza
- Faculty of Science, Technology, Engineering & Mathematics, School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, The United Kingdom
| | - Kadmiel Maseyk
- Faculty of Science, Technology, Engineering & Mathematics, School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, The United Kingdom
| | - Shonil A Bhagwat
- Faculty of Arts & Social Sciences, School of Social Sciences and Global Studies, The Open University, Milton Keynes, The United Kingdom
| | - Kauê de Sousa
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology Inland Norway University of Applied Sciences, Department of Agricultural Sciences, Hamar, Norway.,Digital Inclusion Area, Biodiversity International, Maccarese, Italy
| | - Andrew Emmott
- The Neno Macadamia Trust, Bedford, The United Kingdom
| | - William Rawes
- The Neno Macadamia Trust, Bedford, The United Kingdom
| | - Yoseph Negusse Araya
- Faculty of Science, Technology, Engineering & Mathematics, School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, The United Kingdom
| |
Collapse
|
6
|
Chisholm JD, Hodder DP, Crowley SM, Rea RV, Marshall S. Seasonal movements of migratory and resident female moose (Alces alces) in north-central British Columbia, Canada. MAMMAL RES 2021. [DOI: 10.1007/s13364-021-00575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Rodgers PA, Sawyer H, Mong TW, Stephens S, Kauffman MJ. Sex‐specific migratory behaviors in a temperate ungulate. Ecosphere 2021. [DOI: 10.1002/ecs2.3424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Patrick A. Rodgers
- Wyoming Cooperative Fish and Wildlife Research Unit Department of Zoology and Physiology University of Wyoming Laramie Wyoming82071USA
| | - Hall Sawyer
- Western Ecosystems Technology, Inc. 1610 Reynolds Street Laramie Wyoming82072USA
| | - Tony W. Mong
- Wyoming Game and Fish Department Cody Regional Office 2820 State Highway 120 Cody Wyoming82414USA
| | - Sam Stephens
- Wyoming Game and Fish Department Cheyenne Wyoming82009USA
| | - Matthew J. Kauffman
- U.S. Geological Survey Wyoming Cooperative Fish and Wildlife Research Unit Department of Zoology and Physiology University of Wyoming Laramie Wyoming82071USA
| |
Collapse
|
8
|
Gomo G, Rød‐Eriksen L, Andreassen HP, Mattisson J, Odden M, Devineau O, Eide NE. Scavenger community structure along an environmental gradient from boreal forest to alpine tundra in Scandinavia. Ecol Evol 2020; 10:12860-12869. [PMID: 33304499 PMCID: PMC7713988 DOI: 10.1002/ece3.6834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Scavengers can have strong impacts on food webs, and awareness of their role in ecosystems has increased during the last decades. In our study, we used baited camera traps to quantify the structure of the winter scavenger community in central Scandinavia across a forest-alpine continuum and assess how climatic conditions affected spatial patterns of species occurrences at baits. Canonical correspondence analysis revealed that the main habitat type (forest or alpine tundra) and snow depth was main determinants of the community structure. According to a joint species distribution model within the HMSC framework, species richness tended to be higher in forest than in alpine tundra habitat, but was only weakly associated with temperature and snow depth. However, we observed stronger and more diverse impacts of these covariates on individual species. Occurrence at baits by habitat generalists (red fox, golden eagle, and common raven) typically increased at low temperatures and high snow depth, probably due to increased energetic demands and lower abundance of natural prey in harsh winter conditions. On the contrary, occurrence at baits by forest specialists (e.g., Eurasian jay) tended to decrease in deep snow, which is possibly a consequence of reduced bait detectability and accessibility. In general, the influence of environmental covariates on species richness and occurrence at baits was lower in alpine tundra than in forests, and habitat generalists dominated the scavenger communities in both forest and alpine tundra. Following forecasted climate change, altered environmental conditions are likely to cause range expansion of boreal species and range contraction of typical alpine species such as the arctic fox. Our results suggest that altered snow conditions will possibly be a main driver of changes in species community structure.
Collapse
Affiliation(s)
- Gjermund Gomo
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology (Fac. Appl. Ecol.)Inland Norway University of Applied Sciences (INN)KoppangNorway
| | - Lars Rød‐Eriksen
- Norwegian Institute for Nature Research (NINA)TrondheimNorway
- Department of BiologyCentre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Harry P. Andreassen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology (Fac. Appl. Ecol.)Inland Norway University of Applied Sciences (INN)KoppangNorway
| | - Jenny Mattisson
- Norwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Morten Odden
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology (Fac. Appl. Ecol.)Inland Norway University of Applied Sciences (INN)KoppangNorway
| | - Olivier Devineau
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology (Fac. Appl. Ecol.)Inland Norway University of Applied Sciences (INN)KoppangNorway
| | - Nina E. Eide
- Norwegian Institute for Nature Research (NINA)TrondheimNorway
| |
Collapse
|
9
|
Van Moorter B, Engen S, Fryxell JM, Panzacchi M, Nilsen EB, Mysterud A. Consequences of barriers and changing seasonality on population dynamics and harvest of migratory ungulates. THEOR ECOL-NETH 2020. [DOI: 10.1007/s12080-020-00471-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractMany animal populations providing ecosystem services, including harvest, live in seasonal environments and migrate between seasonally distinct ranges. Unfortunately, two major sources of human-induced global change threaten these populations: climate change and anthropogenic barriers. Anthropogenic infrastructure developments present a global threat to animal migrations through increased migration mortality or behavioral avoidance. Climate change alters the seasonal and spatial dynamics of resources and therefore the effects of migration on population performance. We formulated a population model with ideal-free migration to investigate changes in population size and harvest yield due to barriers and seasonal dynamics. The model predicted an increasing proportion of migrants when the difference between areas in seasonality or carrying capacity increased. Both migration cost and behavioral avoidance of barriers substantially reduced population size and harvest yields. Not surprisingly, the negative effects of barriers were largest when the population benefited most from migration. Despite the overall decline in harvest yield from a migratory population due to barriers, barriers could result in locally increased yield from the resident population following reduced competition from migrants. Our approach and results enhance the understanding of how global warming and infrastructure development worldwide may change population dynamics and harvest offtake affecting livelihoods and rural economies.
Collapse
|
10
|
Pérez-Barbería FJ, García AJ, Cappelli J, Landete-Castillejos T, Serrano MP, Gallego L. Heat stress reduces growth rate of red deer calf: Climate warming implications. PLoS One 2020; 15:e0233809. [PMID: 32480402 PMCID: PMC7263848 DOI: 10.1371/journal.pone.0233809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/12/2020] [Indexed: 11/19/2022] Open
Abstract
Climate models agree in predicting scenarios of global warming. In endothermic species heat stress takes place when they are upper their thermal neutral zone. Any physiological or behavioural mechanism to mitigate heat stress is at the cost of diverting energy from other physiological functions, with negative repercussions for individual fitness. Tolerance to heat stress differs between species, age classes and sexes, those with the highest metabolic rates being the most sensitive to stressing thermal environments. This is especially important during the first months of life, when most growth takes place. Red deer (Cervus elaphus) is supposedly well adapted to a wide range of thermal environments, based on its worldwide distribution range, but little is known about the direct effect that heat stress may have on calf growth. We assessed the effect that heat stress, measured by heat stress indices and physical environment variables (air temperature, relative air humidity, wind speed and solar radiation), have on calf and mother body weights from calf´s birth to weaning. We used 9265 longitudinal weekly body weight records of calf and mother across 19 years in captive Iberian red deer. We hypothesised that (i) heat stress in hot environments has a negative effect on calf growth, especially in males, as they are more energetically demanding to produce than females; and that (ii) the body weight of the mother through lactation should be negatively affected by heat stress. Our results supported hypothesis (i) but not so clearly hypothesis (ii). By weaning (day 143) calves growing under low heat stress environment grew up to 1.2 kg heavier than those growing in high heat stress environment, and males were more affected by heat stress than females. The results have implications in animal welfare, geographical clines in body size and adaptation to climate change.
Collapse
Affiliation(s)
- F. J. Pérez-Barbería
- Game and Livestock Resources Unit, University of Castilla-La Mancha, IDR, IREC, Albacete, Spain
| | - A. J. García
- Game and Livestock Resources Unit, University of Castilla-La Mancha, IDR, IREC, Albacete, Spain
| | - J. Cappelli
- Game and Livestock Resources Unit, University of Castilla-La Mancha, IDR, IREC, Albacete, Spain
| | - T. Landete-Castillejos
- Game and Livestock Resources Unit, University of Castilla-La Mancha, IDR, IREC, Albacete, Spain
| | - M. P. Serrano
- Game and Livestock Resources Unit, University of Castilla-La Mancha, IDR, IREC, Albacete, Spain
| | - L. Gallego
- Game and Livestock Resources Unit, University of Castilla-La Mancha, IDR, IREC, Albacete, Spain
| |
Collapse
|
11
|
Beumer LT, van Beest FM, Stelvig M, Schmidt NM. Spatiotemporal dynamics in habitat suitability of a large Arctic herbivore: Environmental heterogeneity is key to a sedentary lifestyle. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Rivrud IM, Meisingset EL, Loe LE, Mysterud A. Future suitability of habitat in a migratory ungulate under climate change. Proc Biol Sci 2019; 286:20190442. [PMID: 30890094 DOI: 10.1098/rspb.2019.0442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
With climate change, the effect of global warming on snow cover is expected to cause range expansion and enhance habitat suitability for species at their northern distribution limits. However, how this depends on landscape topography and sex in size-dimorphic species remains uncertain, and is further complicated for migratory animals following climate-driven seasonal resource fluctuations across vast landscapes. Using 11 years of data from a partially migratory ungulate at their northern distribution ranges, the red deer ( Cervus elaphus), we predicted sex-specific summer and winter habitat suitability in diverse landscapes under medium and severe global warming. We found large increases in future winter habitat suitability, resulting in expansion of winter ranges as currently unsuitable habitat became suitable. Even moderate warming decreased snow cover substantially, with no suitability difference between warming scenarios. Winter ranges will hence not expand linearly with warming, even for species at their northern distribution limits. Although less pronounced than in winter, summer ranges also expanded and more so under severe warming. Summer habitat suitability was positively correlated with landscape topography and ranges expanded more for females than males. Our study highlights the complexity of predicting future habitat suitability for conservation and management of size-dimorphic, migratory species under global warming.
Collapse
Affiliation(s)
- Inger Maren Rivrud
- 1 Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo , PO Box 1066, Blindern, 0316 Oslo , Norway
| | - Erling L Meisingset
- 2 Department of Forestry and Forestry Resources, Norwegian Institute of Bioeconomy Research , Tingvoll gard, 6630 Tingvoll , Norway
| | - Leif Egil Loe
- 3 Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences , PO Box 5003, 1432 Aas , Norway
| | - Atle Mysterud
- 1 Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo , PO Box 1066, Blindern, 0316 Oslo , Norway
| |
Collapse
|