1
|
Moyano A, Croce AC, Scolari F. Pathogen-Mediated Alterations of Insect Chemical Communication: From Pheromones to Behavior. Pathogens 2023; 12:1350. [PMID: 38003813 PMCID: PMC10675518 DOI: 10.3390/pathogens12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens can influence the physiology and behavior of both animal and plant hosts in a manner that promotes their own transmission and dispersal. Recent research focusing on insects has revealed that these manipulations can extend to the production of pheromones, which are pivotal in chemical communication. This review provides an overview of the current state of research and available data concerning the impacts of bacterial, viral, fungal, and eukaryotic pathogens on chemical communication across different insect orders. While our understanding of the influence of pathogenic bacteria on host chemical profiles is still limited, viral infections have been shown to induce behavioral changes in the host, such as altered pheromone production, olfaction, and locomotion. Entomopathogenic fungi affect host chemical communication by manipulating cuticular hydrocarbons and pheromone production, while various eukaryotic parasites have been observed to influence insect behavior by affecting the production of pheromones and other chemical cues. The effects induced by these infections are explored in the context of the evolutionary advantages they confer to the pathogen. The molecular mechanisms governing the observed pathogen-mediated behavioral changes, as well as the dynamic and mutually influential relationships between the pathogen and its host, are still poorly understood. A deeper comprehension of these mechanisms will prove invaluable in identifying novel targets in the perspective of practical applications aimed at controlling detrimental insect species.
Collapse
Affiliation(s)
- Andrea Moyano
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Francesca Scolari
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| |
Collapse
|
2
|
Witwicka A, López‐Osorio F, Patterson V, Wurm Y. Expression of subunits of an insecticide target receptor varies across tissues, life stages, castes, and species of social bees. Mol Ecol 2023; 32:1034-1044. [PMID: 36478483 PMCID: PMC10947401 DOI: 10.1111/mec.16811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Global losses of insects jeopardize ecosystem stability and crop pollination. Robust evidence indicates that insecticides have contributed to these losses. Notably, insecticides targeting nicotinic acetylcholine receptors (nAChRs) have neurotoxic effects on beneficial insects. Because each nAChR consists of five subunits, the alternative arrangements of subunits could create a multitude of receptors differing in structure and function. Therefore, understanding whether the use of subunits varies is essential for evaluating and predicting the effects of insecticides targeting such receptors. To better understand how the use and composition of nAChRs differ within and between insect pollinators, we analysed RNA-seq gene expression data from tissues and castes of Apis mellifera honey bees and life stages and castes of the Bombus terrestris bumble bees. We reveal that all analysed tissues express nAChRs and that relative expression levels of nAChR subunits vary widely across almost all comparisons. Our work thus shows fine-tuned spatial and temporal expression of nAChRs. Given that coexpression of subunits underpins the compositional diversity of functional receptors and that the affinities of insecticides depend on nAChR composition, our findings provide a likely mechanism for the various damaging effects of nAChR-targeting insecticides on insects. Furthermore, our results indicate that the appraisal of insecticide risks should carefully consider variation in molecular targets.
Collapse
Affiliation(s)
| | | | | | - Yannick Wurm
- Biology DepartmentQueen Mary University of LondonLondonUK
- Digital Environment Research InstituteQueen Mary University of LondonLondonUK
- Alan Turing InstituteLondonUK
| |
Collapse
|
3
|
Hernández-Fernández A, Torre IG. Compression principle and Zipf's Law of brevity in infochemical communication. Biol Lett 2022; 18:20220162. [PMID: 35892209 PMCID: PMC9326285 DOI: 10.1098/rsbl.2022.0162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Compression has been presented as a general principle of animal communication. Zipf's Law of brevity is a manifestation of this postulate and can be generalized as the tendency of more frequent communicative elements to be shorter. Previous works supported this claim, showing evidence of Zipf's Law of brevity in animal acoustical communication and human language. However, a significant part of the communicative effort in biological systems is carried out in other transmission channels, such as those based on infochemicals. To fill this gap, we seek, for the first time, evidence of this principle in infochemical communication by analysing the statistical tendency of more frequent infochemicals to be chemically shorter and lighter. We analyse data from the largest and most comprehensive open-access infochemical database known as Pherobase, recovering Zipf's Law of brevity in interspecific communication (allelochemicals) but not in intraspecific communication (pheromones). Moreover, these results are robust even when addressing different magnitudes of study or mathematical approaches. Therefore, different dynamics from the compression principle would dominate intraspecific chemical communication, defying the universality of Zipf's Law of brevity. To conclude, we discuss the exception found for pheromones in the light of other potential communicative paradigms such as pressures on successful communication or the Handicap principle.
Collapse
Affiliation(s)
- Antoni Hernández-Fernández
- Complexity and Quantitative Linguistics Lab, Institut de Ciències de l'Educació, Universitat Politècnica de Catalunya, Av. Doctor Marañón 44-50, Barcelona 08028, Catalonia, Spain
| | - Iván G Torre
- Language and Speech Laboratory, Universidad del País Vasco, Justo Vélez de Elorriaga Kalea, 1, 01006 Vitoria, Spain.,Departamento de Matemática Aplicada, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 2-4, 28040 Madrid, Spain
| |
Collapse
|
4
|
Joshi M, Ellsworth B, Thaker M. Single components of complex chemical signals convey sex identity and individual variation. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
5
|
Oi CA. Honeybee queen mandibular pheromone fails to regulate ovary activation in the common wasp. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:297-302. [PMID: 35028724 DOI: 10.1007/s00359-021-01531-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022]
Abstract
The queen mandibular pheromone (QMP) identified from the honeybee is responsible for maintaining reproductive division of labour in the colony, and affects multiple behaviours. Interestingly, QMP inhibits reproduction not only in honeybee workers, but also in distantly related insect species such as fruit flies and bumblebees. This study examines whether QMP also affects worker reproduction in the common wasp Vespula vulgaris. Wasp workers were exposed to one of the following treatments: QMP, wasp queen pheromone (the hydrocarbon heptacosane n-C27), or acetone (solvent-only control). After dissecting the workers, no evidence that QMP inhibits development in V. vulgaris could be found. However, this study could confirm the inhibitory effect of the hydrocarbon heptacosane on ovary activation. The reason why non-social species such as the fruit fly and social species such as bumblebees and ants respond to the QMP, while the social wasp V. vulgaris does not, is unclear. The investigation of whether olfaction is key to sensing QMP in other insect species, and the detailed study of odorant receptors in other social insects, may provide insights into the mechanisms of response to this pheromone.
Collapse
Affiliation(s)
- Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Oi CA, Ferreira HM, da Silva RC, Bienstman A, do Nascimento FS, Wenseleers T. Effects of juvenile hormone in fertility and fertility-signaling in workers of the common wasp Vespula vulgaris. PLoS One 2021; 16:e0250720. [PMID: 33999926 PMCID: PMC8128253 DOI: 10.1371/journal.pone.0250720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
In the highly eusocial wasp, Vespula vulgaris, queens produce honest signals to alert their subordinate workers of their fertility status, and therefore they are reproductively suppressed and help in the colony. The honesty of the queen signals is likely maintained due to hormonal regulation, which affects fertility and fertility cue expression. Here, we tested if hormonal pleiotropy could support the hypothesis that juvenile hormone controls fertility and fertility signaling in workers. In addition, we aimed to check oocyte size as a proxy of fertility. To do that, we treated V. vulgaris workers with synthetic versions of juvenile hormone (JH) analogue and a JH inhibitor, methoprene and precocene, respectively. We dissected the treated females to check ovary activation and analyzed their chemical profile. Our results showed that juvenile hormone has an influence on the abundance of fertility linked compounds produced by workers, and it also showed to increase oocyte size in workers. Our results corroborate the hypothesis that juvenile hormone controls fertility and fertility signaling in workers, whereby workers are unable to reproduce without alerting other colony members of their fertility. This provides supports the hypothesis that hormonal pleiotropy contributes to keeping the queen fertility signals honest.
Collapse
Affiliation(s)
- Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| | | | - Rafael Carvalho da Silva
- Departamento de Biologia, Universidade de São Paulo – USP/ Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Andreas Bienstman
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| | - Fabio Santos do Nascimento
- Departamento de Biologia, Universidade de São Paulo – USP/ Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Duncan EJ, Leask MP, Dearden PK. Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera). Mol Biol Evol 2021; 37:1964-1978. [PMID: 32134461 PMCID: PMC7306700 DOI: 10.1093/molbev/msaa057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, or how, genomes are structured to ensure these robust responses. Here, we use repression of honeybee worker ovaries as a model of plasticity. We show that the honeybee genome is structured with respect to plasticity; genes that respond to an environmental trigger are colocated in the honeybee genome in a series of gene clusters, many of which have been assembled in the last 80 My during the evolution of the Apidae. These clusters are marked by histone modifications that prefigure the gene expression changes that occur as the ovary activates, suggesting that these genomic regions are poised to respond plastically. That the linear sequence of the honeybee genome is organized to coordinate widespread gene expression changes in response to environmental influences and that the chromatin organization in these regions is prefigured to respond to these influences is perhaps unexpected and has implications for other examples of plasticity in physiology, evolution, and human disease.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand.,School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Megan P Leask
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Kingwell C, Böröczky K, Steitz I, Ayasse M, Wcislo W. Cuticular and Dufour's Gland Chemistry Reflect Reproductive and Social State in the Facultatively Eusocial Sweat Bee Megalopta genalis (Hymenoptera: Halictidae). J Chem Ecol 2021; 47:420-432. [PMID: 33682070 DOI: 10.1007/s10886-021-01262-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 01/18/2023]
Abstract
Queen pheromones evolved independently in multiple eusocial insect lineages, in which they mediate reproductive conflict by inhibiting worker ovarian development. Although fundamentally important for reproductive division of labor - the hallmark of eusociality - their evolutionary origins are enigmatic. Here, we analyze cuticular and Dufour's gland chemistries across alternative social and reproductive phenotypes in Megalopta genalis bees (tribe Augochlorini, family Halictidae) that facultatively express simple eusociality. Reproductive bees have distinct overall glandular and cuticular chemical phenotypes compared with non-reproductive workers. On the cuticle, a likely site of signal transmission, reproductives are enriched for certain alkenes, most linear alkanes, and are heavily enriched for all methyl-branched alkanes. Chemicals belonging to these compound classes are known to function as fertility signals in other eusocial insect taxa. Some macrocyclic lactones, compounds that serve as queen pheromones in the other eusocial halictid tribe (Halictini), are also enriched among reproductives relative to workers. The intra-population facultative eusociality of M. genalis permits direct comparisons between individuals expressing alternative reproductive phenotypes - females that reproduce alone (solitary reproductives) and social queens - to highlight traits in the latter that may be important mediators of eusociality. Compared with solitary reproductives, the cuticular chemistries of queens are more strongly differentiated from those of workers, and furthermore are especially enriched for methyl-branched alkanes. Determining the pheromonal function(s) and information content of the candidate signaling compounds we identify will help illuminate the early evolutionary history of queen pheromones, chemical signals central to the organization of insect eusocial behavior.
Collapse
Affiliation(s)
- Callum Kingwell
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
- Smithsonian Tropical Research Institute, Panama City, Panama.
| | - Katalin Böröczky
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Iris Steitz
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - William Wcislo
- Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
9
|
Oi CA, Brown RL, da Silva RC, Wenseleers T. Reproduction and signals regulating worker policing under identical hormonal control in social wasps. Sci Rep 2020; 10:18971. [PMID: 33149171 PMCID: PMC7643062 DOI: 10.1038/s41598-020-76084-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
In social Hymenoptera, fertility and fertility signalling are often under identical hormonal control, and it has been suggested that such hormonal pleiotropies can help to maintain signal honesty. In the common wasp Vespula vulgaris, for example, fertile queens have much higher juvenile hormone (JH) titers than workers, and JH also controls the production of chemical fertility cues present on the females’ cuticle. To regulate reproductive division of labour, queens use these fertility cues in two distinct ways: as queen pheromones that directly suppress the workers’ reproduction as well as to mark queen eggs and enable the workers to recognize and police eggs laid by other workers. Here, we investigated the hormonal pleiotropy hypothesis by testing if experimental treatment with the JH analogue methoprene could enable the workers to lay eggs that evade policing. In support of this hypothesis, we find that methoprene-treated workers laid more eggs, and that the chemical profiles of their eggs were more queen-like, thereby causing fewer of their eggs to be policed compared to in the control. Overall, our results identify JH as a key regulator of both reproduction and the production of egg marking pheromones that mediate policing behaviour in eusocial wasps.
Collapse
Affiliation(s)
- Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium.
| | - Robert L Brown
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Rafael Carvalho da Silva
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Lovegrove MR, Knapp RA, Duncan EJ, Dearden PK. Drosophila melanogaster and worker honeybees (Apis mellifera) do not require olfaction to be susceptible to honeybee queen mandibular pheromone. JOURNAL OF INSECT PHYSIOLOGY 2020; 127:104154. [PMID: 33039409 DOI: 10.1016/j.jinsphys.2020.104154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/23/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Eusociality is characterised by the reproductive division of labour; a dominant female (queen) or females are responsible for the majority of reproduction, and subordinate females are reproductively constrained. Reproductive constraint can be due to behavioural aggression and/or chemical cues, so-called queen pheromones, produced by the dominant females. In the honeybee, Apis mellifera, this repressive queen pheromone is queen mandibular pheromone (QMP). The mechanism by which honeybee workers are susceptible to QMP is not yet completely understood, however it is thought to be through olfaction via the antennae and/or gustation via trophallaxis. We have investigated whether olfaction is key to sensing of QMP, using both Drosophila melanogaster- a tractable non-eusocial insect which is also reproductively repressed by QMP- and the target species, A. mellifera worker honeybees. D. melanogaster are still capable of sensing and responding to QMP without their antenna and maxillary palps, and therefore without olfactory receptors. When worker honeybees were exposed to QMP but unable to physically interact with it, therefore required to use olfaction, they were similarly not reproductively repressed. Combined, these findings support either a non-olfactory based mechanism for the repression of reproduction via QMP, or redundancy via non-olfactory mechanisms in both D. melanogaster and A. mellifera. This study furthers our understanding of how species are susceptible to QMP, and provides insight into the mechanisms governing QMP responsiveness in these diverse species.
Collapse
Affiliation(s)
- M R Lovegrove
- Genomics Aotearoa and Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, Dunedin, New Zealand; School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - R A Knapp
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - E J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - P K Dearden
- Genomics Aotearoa and Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
11
|
Oliveira RC, Warson J, Sillam-Dussès D, Herrera-Malaver B, Verstrepen K, Millar JG, Wenseleers T. Identification of a queen pheromone mediating the rearing of adult sexuals in the pharaoh ant Monomorium pharaonis. Biol Lett 2020; 16:20200348. [PMID: 32810428 DOI: 10.1098/rsbl.2020.0348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The division of labour between reproductive queens and mostly sterile workers is among the defining characteristics of social insects. Queen-produced chemical signals advertising her presence and fertility status, i.e. queen pheromones, are normally used to assert the queen's reproductive dominance in the colony. Most queen pheromones identified to date are chemicals that stop the daughter workers from reproducing. Nevertheless, it has long been suggested that queen pheromones could also regulate reproduction in different ways. In some multiple-queen ants with obligately sterile workers, for example-such as fire ants and pharaoh ants-queen pheromones are thought to regulate reproduction by inhibiting the rearing of new sexuals. Here, we identify the first such queen pheromone in the pharaoh ant Monomorium pharaonis and demonstrate its mode of action via bioassays with the pure biosynthesized compound. In particular, we show that the monocyclic diterpene neocembrene, which in different Monomorium species is produced solely by fertile, egg-laying queens, strongly inhibits the rearing of new sexuals (queens and males) and also exerts a weakly attractive 'queen retinue' effect on the workers. This is the first time that a queen pheromone with such a dual function has been identified in a social insect species with obligately sterile workers.
Collapse
Affiliation(s)
- Ricardo Caliari Oliveira
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Jonas Warson
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology UR 4443, University Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Beatriz Herrera-Malaver
- Laboratory of Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Heverlee, Belgium
| | - Kevin Verstrepen
- Laboratory of Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Heverlee, Belgium
| | - Jocelyn G Millar
- Department of Entomology, University of California, Riverside, CA 92521, USA.,Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| |
Collapse
|
12
|
Princen SA, Van Oystaeyen A, van Zweden JS, Wenseleers T. Worker dominance and reproduction in the bumblebee Bombus terrestris: when does it pay to bare one's mandibles? Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
da Silva RC, Togni OC, Giannotti E, do Nascimento FS. Cues of dominance hierarchy, fertility and nestmate recognition in the primitively eusocial wasp Mischocyttarus parallelogrammus (Vespidae: Polistinae: Mischocyttarini). CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00316-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Walsh EM, Sweet S, Knap A, Ing N, Rangel J. Queen honey bee (Apis mellifera) pheromone and reproductive behavior are affected by pesticide exposure during development. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-2810-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Princen SA, Van Oystaeyen A, Petit C, van Zweden JS, Wenseleers T. Cross-activity of honeybee queen mandibular pheromone in bumblebees provides evidence for sensory exploitation. Behav Ecol 2019. [DOI: 10.1093/beheco/arz191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AbstractThe evolutionary origin of queen pheromones (QPs), which regulate reproductive division of labor in insect societies, has been explained by two evolutionary scenarios: the sender-precursor hypothesis and the sensory exploitation hypothesis. These scenarios differ in terms of whether the signaling system was built on preadaptations on the part of either the sender queens or the receiver workers. While some social insect QPs—such as cuticular hydrocarbons—were likely derived from ancestral fertility cues and evolved according to the former theory, the honeybee’s queen mandibular pheromone (QMP) has been suggested to act directly on preexisting gene-regulatory networks linked with reproduction. This is evidenced by the fact that QMP has been shown to also inhibit ovary activation in fruit flies, thereby implying exploitation of conserved physiological pathways. To verify whether QMP has similar effects on more closely related eusocial species, we here tested for QMP cross-activity in the bumblebee Bombus terrestris. Interestingly, we found that the non-native QMP blend significantly inhibited egg laying in both worker and queen bumblebees and caused accompanying shifts in ovary activation. The native bumblebee QP pentacosane, by contrast, only inhibited the reproduction of the workers. Overall, these findings support the hypothesis that honeybee QMP likely evolved via a route of sensory exploitation. We argue that such exploitation could allow social insect queens to produce compounds that manipulate the workers to remain sterile, but that a major hurdle would be that the queens themselves would have to be immune to such compounds.
Collapse
Affiliation(s)
- Sarah A Princen
- Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution, Naamsestraat, Leuven, Belgium
| | - Annette Van Oystaeyen
- Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution, Naamsestraat, Leuven, Belgium
- Biobest Group NV, Westerlo, Belgium
| | - Clément Petit
- Biobest Group NV, Westerlo, Belgium
- Montpellier SupAgro, Montpellier, France
| | - Jelle S van Zweden
- Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution, Naamsestraat, Leuven, Belgium
| | - Tom Wenseleers
- Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution, Naamsestraat, Leuven, Belgium
| |
Collapse
|
16
|
Princen SA, Oliveira RC, Ernst UR, Millar JG, van Zweden JS, Wenseleers T. Honeybees possess a structurally diverse and functionally redundant set of queen pheromones. Proc Biol Sci 2019; 286:20190517. [PMID: 31213188 DOI: 10.1098/rspb.2019.0517] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Queen pheromones, which signal the presence of a fertile queen and induce workers to remain sterile, play a key role in regulating reproductive division of labour in insect societies. In the honeybee, volatiles produced by the queen's mandibular glands have been argued to act as the primary sterility-inducing pheromones. This contrasts with evidence from other groups of social insects, where specific queen-characteristic hydrocarbons present on the cuticle act as conserved queen signals. This led us to hypothesize that honeybee queens might also employ cuticular pheromones to stop workers from reproducing. Here, we support this hypothesis with the results of bioassays with synthetic blends of queen-characteristic alkenes, esters and carboxylic acids. We show that all these compound classes suppress worker ovary development, and that one of the blends of esters that we used was as effective as the queen mandibular pheromone (QMP) mix. Furthermore, we demonstrate that the two main QMP compounds 9-ODA and 9-HDA tested individually were as effective as the blend of all four major QMP compounds, suggesting considerable signal redundancy. Possible adaptive reasons for the observed complexity of the honeybee queen signal mix are discussed.
Collapse
Affiliation(s)
- Sarah A Princen
- 1 Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution , Leuven , Belgium
| | - Ricardo Caliari Oliveira
- 1 Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution , Leuven , Belgium
| | - Ulrich R Ernst
- 1 Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution , Leuven , Belgium.,2 Department of Biology, KU Leuven, Functional Genomics and Proteomics Group , Leuven , Belgium.,3 Institute for Evolution and Biodiversity, University of Münster, Molecular Evolution and Sociobiology Group , Münster , Germany
| | - Jocelyn G Millar
- 4 Departments of Entomology and Chemistry, University of California , Riverside, CA 92521 , USA
| | - Jelle S van Zweden
- 1 Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution , Leuven , Belgium
| | - Tom Wenseleers
- 1 Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution , Leuven , Belgium
| |
Collapse
|