1
|
Yusuf LH, Pascoal S, Moran PA, Bailey NW. Testing the genomic overlap between intraspecific mating traits and interspecific mating barriers. Evol Lett 2024; 8:902-915. [PMID: 39677567 PMCID: PMC11637687 DOI: 10.1093/evlett/qrae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 12/17/2024] Open
Abstract
Differences in interspecific mating traits, such as male sexual signals and female preferences, often evolve quickly as initial barriers to gene flow between nascent lineages, and they may also strengthen such barriers during secondary contact via reinforcement. However, it is an open question whether loci contributing to intraspecific variation in sexual traits are co-opted during the formation and strengthening of mating barriers between species. To test this, we used a population genomics approach in natural populations of Australian cricket sister species that overlap in a contact zone: Teleogryllus oceanicus and Teleogryllus commodus. First, we identified loci associated with intraspecific variation in T. oceanicus mating signals: advertisement song and cuticular hydrocarbon (CHC) pheromones. We then separately identified candidate interspecific barrier loci between the species. Genes showing elevated allelic divergence between species were enriched for neurological functions, indicating potential behavioral rewiring. Only two CHC-associated genes overlapped with these interspecific candidate barrier loci, and intraspecific CHC loci showed signatures of being under strong selective constraints between species. In contrast, 10 intraspecific song-associated genes showed high genetic differentiation between T. commodus and T. oceanicus, and 2 had signals of high genomic divergence. The overall lack of shared loci in intra vs. interspecific comparisons of mating trait and candidate barrier loci is consistent with limited co-option of the genetic architecture of interspecific mating signals during the establishment and maintenance of reproductive isolation.
Collapse
Affiliation(s)
- Leeban H Yusuf
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
| | - Sonia Pascoal
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Peter A Moran
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
| |
Collapse
|
2
|
Delclos PJ, Adhikari K, Mai AB, Hassan O, Oderhowho AA, Sriskantharajah V, Trinh T, Meisel R. Trans regulation of an odorant binding protein by a proto-Y chromosome affects male courtship in house fly. eLife 2024; 13:e90349. [PMID: 39422654 PMCID: PMC11488852 DOI: 10.7554/elife.90349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
The male-limited inheritance of Y chromosomes favors alleles that increase male fitness, often at the expense of female fitness. Determining the mechanisms underlying these sexually antagonistic effects is challenging because it can require studying Y-linked alleles while they still segregate as polymorphisms. We used a Y chromosome polymorphism in the house fly, Musca domestica, to address this challenge. Two male determining Y chromosomes (YM and IIIM) segregate as stable polymorphisms in natural populations, and they differentially affect multiple traits, including male courtship performance. We identified differentially expressed genes encoding odorant binding proteins (in the Obp56h family) as candidate agents for the courtship differences. Through network analysis and allele-specific expression measurements, we identified multiple genes on the house fly IIIM chromosome that could serve as trans regulators of Obp56h gene expression. One of those genes is homologous to Drosophila melanogaster CG2120, which encodes a transcription factor that binds near Obp56h. Upregulation of CG2120 in D. melanogaster nervous tissues reduces copulation latency, consistent with this transcription factor acting as a negative regulator of Obp56h expression. The transcription factor gene, which we name speed date, demonstrates a molecular mechanism by which a Y-linked gene can evolve male-beneficial effects.
Collapse
Affiliation(s)
- Pablo J Delclos
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Kiran Adhikari
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Alexander B Mai
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Oluwatomi Hassan
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | | | | | - Tammie Trinh
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Richard Meisel
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| |
Collapse
|
3
|
Macit MN, Collin E, Pfenninger M, Foitzik S, Feldmeyer B. Genomic basis of adaptation to climate and parasite prevalence and the importance of odorant perception in the ant Temnothorax longispinosus. Mol Ecol 2024; 33:e17417. [PMID: 38808556 DOI: 10.1111/mec.17417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
A co-evolutionary arms race ensues when parasites exhibit exploitative behaviour, which prompts adaptations in their hosts, in turn triggering counter-adaptations by the parasites. To unravel the genomic basis of this coevolution from the host's perspective, we collected ants of the host species Temnothorax longispinosus, parasitized by the social parasite Temnothorax americanus, from 10 populations in the northeastern United States exhibiting varying levels of parasite prevalence and living under different climatic conditions. We conducted a genome-wide association study (GWAS) to identify single nucleotide polymorphisms (SNPs) associated with both prevalence and climate. Our investigation highlighted a multitude of candidate SNPs associated with parasite prevalence, particularly in genes responsible for sensory perception of smell including odorant receptor genes. We further focused on population-specific compositions of cuticular hydrocarbons, a complex trait important for signalling, communication and protection against desiccation. The relative abundances of n-alkanes were correlated with climate, while there was only a trend between parasite prevalence and the relative abundances of known recognition cues. Furthermore, we identified candidate genes likely involved in the synthesis and recognition of specific hydrocarbons. In addition, we analysed the population-level gene expression in the antennae, the primary organ for odorant reception, and established a strong correlation with parasite prevalence. Our comprehensive study highlights the intricate genomic patterns forged by the interplay of diverse selection factors and how these are manifested in the expression of various phenotypes.
Collapse
Affiliation(s)
- Maide Nesibe Macit
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Erwann Collin
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| |
Collapse
|
4
|
Mitchell C, Wylde Z, Del Castillo E, Rapkin J, House CM, Hunt J. Beauty or function? The opposing effects of natural and sexual selection on cuticular hydrocarbons in male black field crickets. J Evol Biol 2023; 36:1266-1281. [PMID: 37534753 DOI: 10.1111/jeb.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 08/04/2023]
Abstract
Although many theoretical models of male sexual trait evolution assume that sexual selection is countered by natural selection, direct empirical tests of this assumption are relatively uncommon. Cuticular hydrocarbons (CHCs) are known to play an important role not only in restricting evaporative water loss but also in sexual signalling in most terrestrial arthropods. Insects adjusting their CHC layer for optimal desiccation resistance is often thought to come at the expense of successful sexual attraction, suggesting that natural and sexual selection are in opposition for this trait. In this study, we sampled the CHCs of male black field crickets (Teleogryllus commodus) using solid-phase microextraction and then either measured their evaporative water loss or mating success. We then used multivariate selection analysis to quantify the strength and form of natural and sexual selection targeting male CHCs. Both natural and sexual selection imposed significant linear and stabilizing selection on male CHCs, although for very different combinations. Natural selection largely favoured an increase in the total abundance of CHCs, especially those with a longer chain length. In contrast, mating success peaked at a lower total abundance of CHCs and declined as CHC abundance increased. However, mating success did improve with an increase in a number of specific CHC components that also increased evaporative water loss. Importantly, this resulted in the combination of male CHCs favoured by natural selection and sexual selection being strongly opposing. Our findings suggest that the balance between natural and sexual selection is likely to play an important role in the evolution of male CHCs in T. commodus and may help explain why CHCs are so divergent across populations and species.
Collapse
Affiliation(s)
- Christopher Mitchell
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, UK
| | - Zachariah Wylde
- School of Science, Western Sydney University, Hawkesbury Campus, Penrith, New South Wales, Australia
| | - Enrique Del Castillo
- Department of Industrial & Manufacturing Engineering and Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - James Rapkin
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, UK
| | - Clarissa M House
- School of Science, Western Sydney University, Hawkesbury Campus, Penrith, New South Wales, Australia
| | - John Hunt
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, UK
- School of Science, Western Sydney University, Hawkesbury Campus, Penrith, New South Wales, Australia
| |
Collapse
|
5
|
Simmons LW, Lovegrove M, Du X(B, Ren Y, Thomas ML. Humidity stress and its consequences for male pre- and post-copulatory fitness traits in an insect. Ecol Evol 2023; 13:e10244. [PMID: 37404700 PMCID: PMC10316369 DOI: 10.1002/ece3.10244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
Global declines in insect abundance are of significant concern. While there is evidence that climate change is contributing to insect declines, we know little of the direct mechanisms responsible for these declines. Male fertility is compromised by increasing temperatures, and the thermal limit to fertility has been implicated as an important factor in the response of insects to climate change. However, climate change is affecting both temperature and hydric conditions, and the effects of water availability on male fertility have rarely been considered. Here we exposed male crickets Teleogryllus oceanicus to either low or high-humidity environments while holding temperature constant. We measured water loss and the expression of both pre- and postmating reproductive traits. Males exposed to a low-humidity environment lost more water than males exposed to a high-humidity environment. A male's cuticular hydrocarbon profile (CHC) did not affect the amount of water lost, and males did not adjust the composition of their CHC profiles in response to hydric conditions. Males exposed to a low-humidity environment were less likely to produce courtship song or produced songs of low quality. Their spermatophores failed to evacuate and their ejaculates contained sperm of reduced viability. The detrimental effects of low-humidity on male reproductive traits will compromise male fertility and population persistence. We argue that limits to insect fertility based on temperature alone are likely to underestimate the true effects of climate change on insect persistence and that the explicit incorporation of water regulation into our modeling will yield more accurate predictions of the effects of climate change on insect declines.
Collapse
Affiliation(s)
- Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Maxine Lovegrove
- Centre for Evolutionary Biology, School of Biological SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Xin (Bob) Du
- Harry Butler InstituteMurdoch UniversityPerthWestern AustraliaAustralia
| | - Yonglin Ren
- Harry Butler InstituteMurdoch UniversityPerthWestern AustraliaAustralia
| | - Melissa L. Thomas
- Harry Butler InstituteMurdoch UniversityPerthWestern AustraliaAustralia
- CSIRO Health and BiosecurityCSIRO Land and WaterFloreatWestern AustraliaAustralia
| |
Collapse
|
6
|
Simmons LW, Lovegrove M, Du B, Ren Y, Thomas ML. Ontogeny can provide insight into the roles of natural and sexual selection in cricket cuticular hydrocarbon evolution. J Exp Biol 2022; 225:276022. [PMID: 35848820 DOI: 10.1242/jeb.244375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
The often complex cocktails of hydrocarbon compounds found on the cuticles of insects can serve both naturally and sexually selected functions, contributing to an individual's ability to withstand water loss and attract mating partners. However, whether natural and sexual selection act synergistically or antagonistically on a species' cuticular hydrocarbon (CHC) profile remains unclear. Here we examined the ontogeny of the CHC profile in a species of cricket Teleogryllus oceanicus while manipulating humidity during development. We predicted that juvenile crickets should produce only those compounds that contribute to desiccation resistance, while those compounds contributing specifically to male attractiveness should be produced only at sexual maturity. Further, if attractive CHCs come at a cost to desiccation resistance as predicted by some models of sexual selection, then males reared under low humidity should be constrained to invest less in attractive CHCs. Crickets reared under low humidity produced more long chained methyl branched alkanes, alkenes and alkadienes than did crickets reared under high humidity. The abundance of n-alkanes was unaffected by humidity treatment. Sexual dimorphism in the CHC profile was not apparent until adult emergence and became exaggerated 10 days after emergence when crickets were sexually mature. Males produced more of the same compounds that were increased in both sexes under low humidity, but the humidity treatment did not interact with sex in determining CHC abundance. The data suggest that CHC profiles which protect crickets from desiccation might have synergistic effects on male attractiveness, as there was no evidence to suggest males trade-off a CHC profile produced in response to low humidity for one associated with sexual signalling.
Collapse
Affiliation(s)
- Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Maxine Lovegrove
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Bob Du
- Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Yonglin Ren
- Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Melissa L Thomas
- Harry Butler Institute, Murdoch University, Perth 6150, Australia.,CSIRO Health and Biosecurity, CSIRO Land and Water, Floreat 6014, Australia
| |
Collapse
|
7
|
Hare RM, Larsdotter-Mellström H, Simmons LW. Sexual dimorphism in cuticular hydrocarbons and their potential use in mating in a bushcricket with dynamic sex roles. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Garlovsky MD, Holman L, Brooks AL, Novicic ZK, Snook RR. Experimental sexual selection affects the evolution of physiological and life-history traits. J Evol Biol 2022; 35:742-751. [PMID: 35384100 PMCID: PMC9322299 DOI: 10.1111/jeb.14003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022]
Abstract
Sexual selection and sexual conflict are expected to affect all aspects of the phenotype, not only traits that are directly involved in reproduction. Here, we show coordinated evolution of multiple physiological and life-history traits in response to long-term experimental manipulation of the mating system in populations of Drosophila pseudoobscura. Development time was extended under polyandry relative to monogamy in both sexes, potentially due to higher investment in traits linked to sexual selection and sexual conflict. Individuals (especially males) evolving under polyandry had higher metabolic rates and locomotor activity than those evolving under monogamy. Polyandry individuals also invested more in metabolites associated with increased endurance capacity and efficient energy metabolism and regulation, namely lipids and glycogen. Finally, polyandry males were less desiccation- and starvation resistant than monogamy males, suggesting trade-offs between resistance and sexually selected traits. Our results provide experimental evidence that mating systems can impose selection that influences the evolution of non-sexual phenotypes such as development, activity, metabolism and nutrient homeostasis.
Collapse
Affiliation(s)
- Martin D Garlovsky
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Luke Holman
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Andrew L Brooks
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Zorana K Novicic
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Holze H, Schrader L, Buellesbach J. Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation. Heredity (Edinb) 2021; 126:219-234. [PMID: 33139902 PMCID: PMC8027674 DOI: 10.1038/s41437-020-00380-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/01/2023] Open
Abstract
Cuticular hydrocarbons (CHCs) have two fundamental functions in insects. They protect terrestrial insects against desiccation and serve as signaling molecules in a wide variety of chemical communication systems. It has been hypothesized that these pivotal dual traits for adaptation to both desiccation and signaling have contributed to the considerable evolutionary success of insects. CHCs have been extensively studied concerning their variation, behavioral impact, physiological properties, and chemical compositions. However, our understanding of the genetic underpinnings of CHC biosynthesis has remained limited and mostly biased towards one particular model organism (Drosophila). This rather narrow focus has hampered the establishment of a comprehensive view of CHC genetics across wider phylogenetic boundaries. This review attempts to integrate new insights and recent knowledge gained in the genetics of CHC biosynthesis, which is just beginning to incorporate work on more insect taxa beyond Drosophila. It is intended to provide a stepping stone towards a wider and more general understanding of the genetic mechanisms that gave rise to the astonishing diversity of CHC compounds across different insect taxa. Further research in this field is encouraged to aim at better discriminating conserved versus taxon-specific genetic elements underlying CHC variation. This will be instrumental in greatly expanding our knowledge of the origins and variation of genes governing the biosynthesis of these crucial phenotypic traits that have greatly impacted insect behavior, physiology, and evolution.
Collapse
Affiliation(s)
- Henrietta Holze
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany
| | - Lukas Schrader
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany
| | - Jan Buellesbach
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany.
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall #3114, Berkeley, CA, 94720-3114, USA.
| |
Collapse
|
10
|
Rajpurohit S, Vrkoslav V, Hanus R, Gibbs AG, Cvačka J, Schmidt PS. Post-eclosion temperature effects on insect cuticular hydrocarbon profiles. Ecol Evol 2021; 11:352-364. [PMID: 33437434 PMCID: PMC7790616 DOI: 10.1002/ece3.7050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
The insect cuticle is the interface between internal homeostasis and the often harsh external environment. Cuticular hydrocarbons (CHCs) are key constituents of this hard cuticle and are associated with a variety of functions including stress response and communication. CHC production and deposition on the insect cuticle vary among natural populations and are affected by developmental temperature; however, little is known about CHC plasticity in response to the environment experienced following eclosion, during which time the insect cuticle undergoes several crucial changes. We targeted this crucial to important phase and studied post-eclosion temperature effects on CHC profiles in two natural populations of Drosophila melanogaster. A forty-eight hour post-eclosion exposure to three different temperatures (18, 25, and 30°C) significantly affected CHCs in both ancestral African and more recently derived North American populations of D. melanogaster. A clear shift from shorter to longer CHCs chain length was observed with increasing temperature, and the effects of post-eclosion temperature varied across populations and between sexes. The quantitative differences in CHCs were associated with variation in desiccation tolerance among populations. Surprisingly, we did not detect any significant differences in water loss rate between African and North American populations. Overall, our results demonstrate strong genetic and plasticity effects in CHC profiles in response to environmental temperatures experienced at the adult stage as well as associations with desiccation tolerance, which is crucial in understanding holometabolan responses to stress.
Collapse
Affiliation(s)
- Subhash Rajpurohit
- Division of Biological and Life SciencesSchool of Arts and SciencesAhmedabad UniversityAhmedabadIndia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry AS CRPragueCzech Republic
| | - Robert Hanus
- Institute of Organic Chemistry and Biochemistry AS CRPragueCzech Republic
| | - Allen G. Gibbs
- School of Life SciencesUniversity of NevadaLas VegasNVUSA
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry AS CRPragueCzech Republic
| | - Paul S Schmidt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
11
|
Leeson SA, Kennington WJ, Evans TA, Simmons LW. Phenotypic plasticity but no adaptive divergence in cuticular hydrocarbons and desiccation resistance among translocated populations of dung beetles. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10074-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Gibson Vega A, Kennington WJ, Tomkins JL, Dugand RJ. Experimental evidence for accelerated adaptation to desiccation through sexual selection on males. J Evol Biol 2020; 33:1060-1067. [PMID: 32315476 DOI: 10.1111/jeb.13634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 11/26/2022]
Abstract
The impact of sexual selection on the adaptive process remains unclear. On the one hand, sexual selection might hinder adaptation by favouring costly traits and preferences that reduce nonsexual fitness. On the other hand, condition dependence of success in sexual selection may accelerate adaptation. Here, we used replicate populations of Drosophila melanogaster to artificially select on male desiccation resistance while manipulating the opportunity for precopulatory sexual selection in a factorial design. Following five generations of artificial selection, we measured the desiccation resistance of males and females to test whether the addition of sexual selection accelerated adaptation. We found a significant interaction between the effects of natural selection and sexual selection: desiccation resistance was highest in populations where sexual selection was allowed to operate. Despite only selecting on males, we also found a correlated response in females. These results provide empirical support for the idea that sexual selection can accelerate the rate of adaptation.
Collapse
Affiliation(s)
- Aline Gibson Vega
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - W Jason Kennington
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Joseph L Tomkins
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Robert J Dugand
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
13
|
Walsh J, Pontieri L, d'Ettorre P, Linksvayer TA. Ant cuticular hydrocarbons are heritable and associated with variation in colony productivity. Proc Biol Sci 2020; 287:20201029. [PMID: 32517627 DOI: 10.1098/rspb.2020.1029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In social insects, cuticular hydrocarbons function in nest-mate recognition and also provide a waxy barrier against desiccation, but basic evolutionary features, including the heritability of hydrocarbon profiles and how they are shaped by natural selection are largely unknown. We used a new pharaoh ant (Monomorium pharaonis) laboratory mapping population to estimate the heritability of individual cuticular hydrocarbons, genetic correlations between hydrocarbons, and fitness consequences of phenotypic variation in the hydrocarbons. Individual hydrocarbons had low to moderate estimated heritability, indicating that some compounds provide more information about genetic relatedness and can also better respond to natural selection. Strong genetic correlations between compounds are likely to constrain independent evolutionary trajectories, which is expected, given that many hydrocarbons share biosynthetic pathways. Variation in cuticular hydrocarbons was associated with variation in colony productivity, with some hydrocarbons experiencing strong directional selection. Altogether, this study builds on our knowledge of the genetic architecture of the social insect hydrocarbon profile and indicates that hydrocarbon variation is shaped by natural selection.
Collapse
Affiliation(s)
- Justin Walsh
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luigi Pontieri
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology (LEEC), University of Paris 13, Sorbonne Paris Cité, France
| | | |
Collapse
|
14
|
Berson JD, Zuk M, Simmons LW. Natural and sexual selection on cuticular hydrocarbons: a quantitative genetic analysis. Proc Biol Sci 2020; 286:20190677. [PMID: 31064302 DOI: 10.1098/rspb.2019.0677] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While the reproductive benefits of sexual displays have been widely studied, we have relatively limited evidence of the fitness costs associated with most display traits. Insect cuticular hydrocarbon (CHC) profiles are sexually selected traits that also protect against desiccation. These two functions are thought to oppose each other, with investment in particular compounds believed to increase attractiveness at the expense of compounds that protect against water loss. We investigated this potential trade-off in a quantitative genetic framework using the Australian field cricket, Teleogryllus oceanicus. Several compounds were significantly genetically correlated with either attractiveness or desiccation resistance. Of these compounds, one was negatively genetically correlated with attractiveness but positively genetically correlated with desiccation resistance. Furthermore, scoring each individual's overall CHC profile for its level of attractiveness and desiccation resistance indicated a negative genetic correlation between these multivariate phenotypes. Together, our results provide evidence for a genetic trade-off between sexually and naturally selected functions of the CHC profile. We suggest that the production of an attractive CHC profile may be costly for males, but highlight the need for further work to support this finding experimentally. Genetic covariation between the CHC profile and attractiveness suggests that females can gain attractive sons through female choice.
Collapse
Affiliation(s)
- Jacob D Berson
- 1 Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia , Crawley, Western Australia 6009 , Australia
| | - Marlene Zuk
- 2 Department of Ecology, Evolution and Behavior, and Minnesota Center for Philosophy of Science, University of Minnesota , Twin Cities, St Paul, MN 55108 , USA
| | - Leigh W Simmons
- 1 Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia , Crawley, Western Australia 6009 , Australia
| |
Collapse
|
15
|
Berson JD, Garcia-Gonzalez F, Simmons LW. Experimental evidence for the role of sexual selection in the evolution of cuticular hydrocarbons in the dung beetle, Onthophagus taurus. J Evol Biol 2019; 32:1186-1193. [PMID: 31420906 DOI: 10.1111/jeb.13519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/08/2019] [Accepted: 08/12/2019] [Indexed: 11/28/2022]
Abstract
A role for sexual selection in the evolution of insect cuticular hydrocarbons (CHCs) is suggested by observations of selection acting on male CHCs during female mate choice. However, evidence that CHCs evolve in response to sexual selection is generally lacking, and there is a need to extend our understanding beyond well-studied taxa. Experimental evolution offers a powerful approach to investigate the effect of sexual selection on the evolution of insect CHCs. We conducted such an experiment using the dung beetle, Onthophagus taurus. After six, 12 and 21 generations of experimental evolution, we measured the CHCs of beetles from three populations subject to sexual selection and three populations within which sexual selection had been removed via enforced monogamy. We found that the male CHC profile responded to the experimental removal of sexual selection. Conversely, the CHC profile of females responded to the presence of sexual selection but not to its removal. These results show that sexual selection can be an important mechanism affecting the evolution of insect CHCs and that male and female CHCs can evolve independently.
Collapse
Affiliation(s)
- Jacob D Berson
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Doñana Biological Station, Spanish Research Council CSIC, Sevilla, Spain
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|