1
|
Vizentin-Bugoni J, Maruyama PK. To rewire or not to rewire: To what extent rewiring to surviving partners can avoid extinction? J Anim Ecol 2023; 92:1676-1679. [PMID: 37670422 DOI: 10.1111/1365-2656.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 09/07/2023]
Abstract
Research Highlight: Leimberger, K.G., Hadley, A.S., & Betts, M.G. (2023). Plant-hummingbird pollination networks exhibit minimal rewiring after experimental removal of a locally abundant plant species. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.13935. In this paper, Leimberger, Hadley and Betts (2023) explore the effects of removing a locally abundant plant species on plant-hummingbird pollination networks. They experimentally prevented access of hummingbirds to flowers of Heliconia tortuosa and assessed subsequent changes in the interactions between plants and hummingbirds. Their main hypothesis postulated that the loss of a highly connected species would lead to interaction rewiring and niche expansions by hummingbirds, decreasing individual, species and network specialization. However, they found that the overall structure of the plant-hummingbird networks remains mostly unaltered, with limited rewiring and minimal changes in specialization. The main contributions of this study can be summarized as (i) it adds to a limited number of manipulative studies on the capacity of species to rewire their interactions following the loss of partners, and importantly, it is the first study from the tropics and with vertebrate pollinators, for which experimental studies at appropriate scales is intrinsically more challenging; and (ii) innovates by evaluating change in specialization for the individual level, carried out through pollen sampling on the body of hummingbirds. The limited change in species interactions highlights that network stability through interaction rewiring may have been overestimated in previous studies, calling for further manipulative studies in the field. At the same time, it also indicated that even the loss of a highly abundant plant species has an overall small effect on network structure. Thus, this study contributes timely findings regarding the capacity of ecological communities to respond to species extinctions.
Collapse
Affiliation(s)
- Jeferson Vizentin-Bugoni
- Laboratório de Ecologia de Interações & Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia Zoologia e Genética, Universidade Federal de Pelotas-UFPel, Pelotas, Brazil
| | - Pietro Kiyoshi Maruyama
- Centro de Síntese Ecológica e Conservação, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Vizentin-Bugoni J, Sperry JH, Kelley JP, Foster JT, Drake DR, Case SB, Gleditsch JM, Hruska AM, Wilcox RC, Tarwater CE. Mechanisms underlying interaction frequencies and robustness in a novel seed dispersal network: lessons for restoration. Proc Biol Sci 2022; 289:20221490. [PMID: 36100025 PMCID: PMC9470274 DOI: 10.1098/rspb.2022.1490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/15/2022] [Indexed: 12/25/2022] Open
Abstract
As human-caused extinctions and invasions accumulate across the planet, understanding the processes governing ecological functions mediated by species interactions, and anticipating the effect of species loss on such functions become increasingly urgent. In seed dispersal networks, the mechanisms that influence interaction frequencies may also influence the capacity of a species to switch to alternative partners (rewiring), influencing network robustness. Studying seed dispersal interactions in novel ecosystems on O'ahu island, Hawai'i, we test whether the same mechanisms defining interaction frequencies can regulate rewiring and increase network robustness to simulated species extinctions. We found that spatial and temporal overlaps were the primary mechanisms underlying interaction frequencies, and the loss of the more connected species affected networks to a greater extent. Further, rewiring increased network robustness, and morphological matching and spatial and temporal overlaps between partners were more influential on network robustness than species abundances. We argue that to achieve self-sustaining ecosystems, restoration initiatives can consider optimal morphological matching and spatial and temporal overlaps between consumers and resources to maximize chances of native plant dispersal. Specifically, restoration initiatives may benefit from replacing invasive species with native species possessing characteristics that promote frequent interactions and increase the probability of rewiring (such as long fruiting periods, small seeds and broad distributions).
Collapse
Affiliation(s)
- Jeferson Vizentin-Bugoni
- Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Avenue Bento Gonçalves 9500, Porto Alegre, Rio Grande do Sul 91501-970, Brazil
- US Army Corps of Engineers, Engineer Research Development Center, 2902 Newmark Dr, Champaign, IL 61826, USA
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, IL 61801, USA
- Department of Zoology and Physiology, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071, USA
| | - Jinelle H. Sperry
- US Army Corps of Engineers, Engineer Research Development Center, 2902 Newmark Dr, Champaign, IL 61826, USA
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, IL 61801, USA
| | - J. Patrick Kelley
- Department of Zoology and Physiology, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071, USA
| | - Jeffrey T. Foster
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Donald R. Drake
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Samuel B. Case
- Department of Zoology and Physiology, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071, USA
| | - Jason M. Gleditsch
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, IL 61801, USA
- Integrative Ecology Laboratory, Center for Biodiversity, Temple University, Philadelphia, PA 19122, USA
| | - Amy M. Hruska
- Department of Botany, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
- Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
| | - Rebecca C. Wilcox
- Department of Zoology and Physiology, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071, USA
| | - Corey E. Tarwater
- Department of Zoology and Physiology, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071, USA
| |
Collapse
|