1
|
Srivatsav AT, Liang K, Jaworek MW, Dong W, Matsuo T, Grélard A, Peters J, Winter R, Duan M, Kapoor S. Residual Membrane Fluidity in Mycobacterial Cell Envelope Layers under Extreme Conditions Underlines Membrane-Centric Adaptation. J Phys Chem B 2024; 128:6838-6852. [PMID: 38960927 DOI: 10.1021/acs.jpcb.4c02469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
One of the routes for adaptation to extreme environments is via remodeling of cell membrane structure, composition, and biophysical properties rendering a functional membrane. Collective studies suggest some form of membrane feedback in mycobacterial species that harbor complex lipids within the outer and inner cell wall layers. Here, we study the homeostatic membrane landscape of mycobacteria in response to high hydrostatic pressure and temperature triggers using high pressure fluorescence, mass and infrared spectroscopies, NMR, SAXS, and molecular dynamics simulations. Our findings reveal that mycobacterial membrane possesses unique and lipid-specific pressure-induced signatures that attenuate progression to highly ordered phases. Both inner and outer membrane layers exhibit phase coexistence of nearly identical lipid phases keeping residual fluidity over a wide range of temperature and pressure, but with different sensitivities. Lipidomic analysis of bacteria grown under pressure revealed lipidome remodeling in terms of chain length, unsaturation, and specific long-chained characteristic mycobacterial lipids, rendering a fluid bacterial membrane. These findings could help understand how bacteria may adapt to a broad spectrum of harsh environments by modulating their lipidome to select lipids that enable the maintenance of a fluid functional cell envelope.
Collapse
Affiliation(s)
- Aswin T Srivatsav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Kuan Liang
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Michel W Jaworek
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Dortmund D-44227, Germany
| | - Wanqian Dong
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tatsuhito Matsuo
- University of Grenoble Alpes, CNRS, LIPhy, Grenoble 38044, France
- Institut Laue Langevin, Grenoble F-38042, Cedex 9, France
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Axelle Grélard
- Université de Bordeaux, CNRS, Bordeaux INP, Institut de Chimie & Biologie des Membranes & des Nano-objets, UMR5248, Institut Européen de Chimie et Biologie, Pessac F-33607, France
| | - Judith Peters
- University of Grenoble Alpes, CNRS, LIPhy, Grenoble 38044, France
- Institut Laue Langevin, Grenoble F-38042, Cedex 9, France
- Institut Universitaire de France (IUF), UFR de PhITEM, CS 10090, Grenoble 38044, France
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Dortmund D-44227, Germany
| | - Mojie Duan
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
2
|
Cai X, Refaat A, Gan PY, Fan B, Yu H, Thang SH, Drummond CJ, Voelcker NH, Tran N, Zhai J. Angiopep-2-Functionalized Lipid Cubosomes for Blood-Brain Barrier Crossing and Glioblastoma Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12161-12174. [PMID: 38416873 DOI: 10.1021/acsami.3c14709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer with high malignancy and resistance to conventional treatments, resulting in a bleak prognosis. Nanoparticles offer a way to cross the blood-brain barrier (BBB) and deliver precise therapies to tumor sites with reduced side effects. In this study, we developed angiopep-2 (Ang2)-functionalized lipid cubosomes loaded with cisplatin (CDDP) and temozolomide (TMZ) for crossing the BBB and providing targeted glioblastoma therapy. Developed lipid cubosomes showed a particle size of around 300 nm and possessed an internal ordered inverse primitive cubic phase, a high conjugation efficiency of Ang2 to the particle surface, and an encapsulation efficiency of more than 70% of CDDP and TMZ. In vitro models, including BBB hCMEC/D3 cell tight monolayer, 3D BBB cell spheroid, and microfluidic BBB/GBM-on-a-chip models with cocultured BBB and glioblastoma cells, were employed to study the efficiency of the developed cubosomes to cross the BBB and showed that Ang2-functionalized cubosomes can penetrate the BBB more effectively. Furthermore, Ang2-functionalized cubosomes showed significantly higher uptake by U87 glioblastoma cells, with a 3-fold increase observed in the BBB/GBM-on-a-chip model as compared to that of the bare cubosomes. Additionally, the in vivo biodistribution showed that Ang2 modification could significantly enhance the brain accumulation of cubosomes in comparison to that of non-functionalized particles. Moreover, CDDP-loaded Ang2-functionalized cubosomes presented an enhanced toxic effect on U87 spheroids. These findings suggest that the developed Ang2-cubosomes are prospective for improved BBB crossing and enhanced delivery of therapeutics to glioblastoma and are worth pursuing further as a potential application of nanomedicine for GBM treatment.
Collapse
Affiliation(s)
- Xudong Cai
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| | - Ahmed Refaat
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, VIC, Australia
| | - Poh-Yi Gan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, 246 Clayton Rd, Clayton 3168, VIC, Australia
| | - Bo Fan
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| | - Haitao Yu
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| | - San H Thang
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, VIC, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton 3168, Victoria, Australia
- Department of Materials Science & Engineering, Monash University, Clayton 3168, Victoria, Australia
| | - Nhiem Tran
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| |
Collapse
|
3
|
Darmanin C, Babayekhorasani F, Formosa A, Spicer P, Abbey B. Polarisation and rheology characterisation of monoolein/water liquid crystal dynamical behaviour during high-viscosity injector extrusion. J Colloid Interface Sci 2024; 653:1123-1136. [PMID: 37783012 DOI: 10.1016/j.jcis.2023.09.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
HYPOTHESIS The use of monoolein/water mixtures in serial crystallography experiments using high-viscosity injectors (HVI) results in significant departures from equilibrium behaviour. This is expected to include changes in phase, viscosity, and associated flow behaviour. It should be possible to detect these changes, in-situ, using a combination of polarisation and rheology characterisation techniques. EXPERIMENTS A systematic study was performed using monoolein, varying the water content to create a range of mixtures. Injection induced phase changes within the HVI flow were established using real-time cross-polarization measurements. Dynamic flow characteristics and viscosity was characterized by particle tracking and rheology. FINDINGS HVI injection induces deformation and phase changes within monoolein (MO)/water mixtures which can be detected through variations in the transmitted intensity during in-situ polarisation studies. The heterogeneity of the extruded sample results in a highly viscous cubic phase in the central region of the stream and a less viscous lamellar-rich phase at the edges adjacent to the walls. The extent of these variations depends on sample composition and injection conditions. Shear-thinning behaviour and increasing heterogeneity in the vicinity of the capillary walls under dynamic flow conditions. This is the first report observing injection induced dynamical behaviour in MO/water mixtures under realistic flow conditions.
Collapse
Affiliation(s)
- Connie Darmanin
- La Trobe Institute for Molecular Science, Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Science, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Firoozeh Babayekhorasani
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Andrew Formosa
- La Trobe Institute for Molecular Science, Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Science, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Patrick Spicer
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Brian Abbey
- La Trobe Institute for Molecular Science, Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
4
|
Shah S, Joga R, Kolipaka T, Sabnis Dushyantrao C, Khairnar P, Phatale V, Pandey G, Srivastava S, Kumar S. Paradigm of lyotropic liquid crystals in tissue regeneration. Int J Pharm 2023; 634:122633. [PMID: 36690130 DOI: 10.1016/j.ijpharm.2023.122633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
The liquid crystalline phase has attracted tremendous attention from researchers across the globe due to its intriguing properties. In this article, we enumerate the different classes of liquid crystals. Lyotropic liquid crystals (LLCs) exhibit their liquid crystalline nature based on the surrounding solvent media, which opens novel horizons in drug delivery and tissue regeneration. The advantages of LLCs in the said fields and the thermodynamic mechanistic insights responsible for their structural stabilization have been conveyed. Various fabrication and characterization techniques, along with factors influencing the formation of LLCs, have been discussed. Applications in novel therapeutic avenues like bone extracellular matrix, cardiac remodeling, wound management, and implants have been unveiled. Also, regulatory considerations, patent, and clinical portfolios to circumvent the hurdles of clinical translation have been discussed. LLCs could be a promising approach in diverse avenues of tissue regeneration.
Collapse
Affiliation(s)
- Saurabh Shah
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chetan Sabnis Dushyantrao
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
5
|
Pramanik A, Xu Z, Ingram N, Coletta PL, Millner PA, Tyler AII, Hughes TA. Hyaluronic-Acid-Tagged Cubosomes Deliver Cytotoxics Specifically to CD44-Positive Cancer Cells. Mol Pharm 2022; 19:4601-4611. [PMID: 35938983 PMCID: PMC9727730 DOI: 10.1021/acs.molpharmaceut.2c00439] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Delivery of chemotherapy drugs specifically to cancer cells raises local drug doses in tumors and therefore kills more cancer cells while reducing side effects in other tissues, thereby improving oncological and quality of life outcomes. Cubosomes, liquid crystalline lipid nanoparticles, are potential vehicles for delivery of chemotherapy drugs, presenting the advantages of biocompatibility, stable encapsulation, and high drug loading of hydrophobic or hydrophilic drugs. However, active targeting of drug-loaded cubosomes to cancer cells, as opposed to passive accumulation, remains relatively underexplored. We formulated and characterized cubosomes loaded with potential cancer drug copper acetylacetonate and functionalized their surfaces using click chemistry coupling with hyaluronic acid (HA), the ligand for the cell surface receptor CD44. CD44 is overexpressed in many cancer types including breast and colorectal. HA-tagged, copper-acetylacetonate-loaded cubosomes have an average hydrodynamic diameter of 152 nm, with an internal nanostructure based on the space group Im3m. These cubosomes were efficiently taken up by two CD44-expressing cancer cell lines (MDA-MB-231 and HT29, representing breast and colon cancer) but not by two CD44-negative cell lines (MCF-7 breast cancer and HEK-293 kidney cells). HA-tagged cubosomes caused significantly more cell death than untargeted cubosomes in the CD44-positive cells, demonstrating the value of the targeting. CD44-negative cells were equally relatively resistant to both, demonstrating the specificity of the targeting. Cell death was characterized as apoptotic. Specific targeting and cell death were evident in both 2D culture and 3D spheroids. We conclude that HA-tagged, copper-acetylacetonate-loaded cubosomes show great potential as an effective therapeutic for selective targeting of CD44-expressing tumors.
Collapse
Affiliation(s)
- Arindam Pramanik
- School
of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom,
| | - Zexi Xu
- School
of Food Science and Nutrition, University
of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicola Ingram
- School
of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Paul A Millner
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Arwen I I Tyler
- School
of Food Science and Nutrition, University
of Leeds, Leeds LS2 9JT, United Kingdom,
| | - Thomas A Hughes
- School
of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom,
| |
Collapse
|
6
|
Zahid NI, Salim M, Liew CY, Boyd BJ, Hashim R. Structural investigation and steric stabilisation of Guerbet glycolipid-based cubosomes and hexosomes using triblock polyethylene oxide-polypropylene oxide-polyethylene oxide copolymers. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Barriga HM, Pence IJ, Holme MN, Doutch JJ, Penders J, Nele V, Thomas MR, Carroni M, Stevens MM. Coupling Lipid Nanoparticle Structure and Automated Single-Particle Composition Analysis to Design Phospholipase-Responsive Nanocarriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200839. [PMID: 35358374 PMCID: PMC7615489 DOI: 10.1002/adma.202200839] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Lipid nanoparticles (LNPs) are versatile structures with tunable physicochemical properties that are ideally suited as a platform for vaccine delivery and RNA therapeutics. A key barrier to LNP rational design is the inability to relate composition and structure to intracellular processing and function. Here Single Particle Automated Raman Trapping Analysis (SPARTA) is combined with small-angle X-ray and neutron scattering (SAXS/SANS) techniques to link LNP composition with internal structure and morphology and to monitor dynamic LNP-phospholipase D (PLD) interactions. This analysis demonstrates that PLD, a key intracellular trafficking mediator, can access the entire LNP lipid membrane to generate stable, anionic LNPs. PLD activity on vesicles with matched amounts of enzyme substrate is an order of magnitude lower, indicating that the LNP lipid membrane structure can be used to control enzyme interactions. This represents an opportunity to design enzyme-responsive LNP solutions for stimuli-responsive delivery and diseases where PLD is dysregulated.
Collapse
Affiliation(s)
- Hanna M.G. Barriga
- Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Isaac J. Pence
- Department of Materials, Department of Bioengineering,and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Margaret N. Holme
- Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - James J. Doutch
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory Didcot OX11 ODE, UK
| | - Jelle Penders
- Department of Materials, Department of Bioengineering,and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Valeria Nele
- Department of Materials, Department of Bioengineering,and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Michael R. Thomas
- Department of Materials, Department of Bioengineering,and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Science for Life Laboratory Stockholm University, Stockholm 171 65, Sweden
| | - Molly M. Stevens
- Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
8
|
Oliveira C, Ferreira CJO, Sousa M, Paris JL, Gaspar R, Silva BFB, Teixeira JA, Ferreira-Santos P, Botelho CM. A Versatile Nanocarrier-Cubosomes, Characterization, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2224. [PMID: 35808060 PMCID: PMC9268278 DOI: 10.3390/nano12132224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023]
Abstract
The impact of nanotechnology on the exponential growth of several research areas, particularly nanomedicine, is undeniable. The ability to deliver active molecules to the desired site could significantly improve the efficiency of medical treatments. One of the nanocarriers developed which has drawn researchers' attention are cubosomes, which are nanosized dispersions of lipid bicontinuous cubic phases in water, consisting of a lipidic interior and aqueous domains folded in a cubic lattice. They stand out due to their ability to incorporate hydrophobic, hydrophilic, and amphiphilic compounds, their tortuous internal configuration that provides a sustained release, and the capacity to protect and safely deliver molecules. Several approaches can be taken to prepare this structure, as well as different lipids like monoolein or phytantriol. This review paper describes the different methods to prepare nanocarriers. As it is known, the physicochemical properties of nanocarriers are very important, as they influence their pharmacokinetics and their ability to incorporate and deliver active molecules. Therefore, an extensive characterization is essential to obtain the desired effect. As a result, we have extensively described the most common techniques to characterize cubosomes, particularly nanocarriers. The exceptional properties of the cubosomes make them suitable to be used in several applications in the biomedical field, from cancer therapeutics to imaging, which will be described. Taking in consideration the outstanding properties of cubosomes, their application in several research fields is envisaged.
Collapse
Affiliation(s)
- Cristiana Oliveira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Celso J. O. Ferreira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (R.G.); (B.F.B.S.)
- CF-UM_UP Department of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Miguel Sousa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Juan L. Paris
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain
| | - Ricardo Gaspar
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (R.G.); (B.F.B.S.)
| | - Bruno F. B. Silva
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (R.G.); (B.F.B.S.)
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Claudia M. Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
9
|
Utterström J, Barriga HMG, Holme MN, Selegård R, Stevens MM, Aili D. Peptide-Folding Triggered Phase Separation and Lipid Membrane Destabilization in Cholesterol-Rich Lipid Vesicles. Bioconjug Chem 2022; 33:736-746. [PMID: 35362952 PMCID: PMC9026255 DOI: 10.1021/acs.bioconjchem.2c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Liposome-based drug
delivery systems are widely used to improve
drug pharmacokinetics but can suffer from slow and unspecific release
of encapsulated drugs. Membrane-active peptides, based on sequences
derived or inspired from antimicrobial peptides (AMPs), could offer
means to trigger and control the release. Cholesterol is used in most
liposomal drug delivery systems (DDS) to improve the stability of
the formulation, but the activity of AMPs on cholesterol-rich membranes
tends to be very low, complicating peptide-triggered release strategies.
Here, we show a de novo designed AMP-mimetic peptide that efficiently
triggers content release from cholesterol-containing lipid vesicles
when covalently conjugated to headgroup-functionalized lipids. Binding
to vesicles induces peptide folding and triggers a lipid phase separation,
which in the presence of cholesterol results in high local peptide
concentrations at the lipid bilayer surface and rapid content release.
We anticipate that these results will facilitate the development of
peptide-based strategies for controlling and triggering drug release
from liposomal drug delivery systems.
Collapse
Affiliation(s)
- Johanna Utterström
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, SE-581 83 Linköping, Sweden
| | - Hanna M G Barriga
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Margaret N Holme
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Robert Selegård
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, SE-581 83 Linköping, Sweden
| | - Molly M Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.,Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Daniel Aili
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, SE-581 83 Linköping, Sweden
| |
Collapse
|
10
|
Berntsen P, Darmanin C, Balaur E, Flueckiger L, Kozlov A, Roque FG, Adams P, Binns J, Wells D, Hadian Jazi M, Saha S, Hawley A, Ryan T, Mudie S, Kirby N, Abbey B, Martin AV. Stability, flow alignment and a phase transition of the lipidic cubic phase during continuous flow injection. J Colloid Interface Sci 2022; 611:588-598. [PMID: 34973655 DOI: 10.1016/j.jcis.2021.12.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Continuous flow injection is a key technology for serial crystallography measurements of protein crystals suspended in the lipidic cubic phase (LCP). To date, there has been little discussion in the literature regarding the impact of the injection process itself on the structure of the lipidic phase. This is despite the fact that the phase of the injection matrix is critical for the flow properties of the stream and potentially for sample stability. Here we report small-angle X-ray scattering measurements of a monoolein:water mixture during continuous delivery using a high viscosity injector. We observe both an alignment and modification of the LCP as a direct result of the injection process. The orientation of the cubic lattice with respect to the beam was estimated based on the anisotropy of the diffraction pattern and does not correspond to a single low order zone axis. The solvent fraction was also observed to impact the stability of the cubic phase during injection. In addition, depending on the distance traveled by the lipid after exiting the needle, the phase is observed to transition from a pure diamond phase (Pn3m) to a mixture containing both gyriod (Ia3d) and lamellar (Lα) phases. Finite element modelling of the observed phase behaviour during injection indicates that the pressure exerted on the lipid stream during extrusion accounts for the variations in the phase composition of the monoolein:water mixture.
Collapse
Affiliation(s)
- Peter Berntsen
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Connie Darmanin
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia.
| | - Eugeniu Balaur
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Leonie Flueckiger
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Alex Kozlov
- ARC Centre of Excellence for Advanced Molecular Imaging, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Francisco G Roque
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Patrick Adams
- School of Science, RMIT University, Melbourne 3000 Australia
| | - Jack Binns
- School of Science, RMIT University, Melbourne 3000 Australia
| | - Daniel Wells
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Marjan Hadian Jazi
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Saumitra Saha
- ARC Centre of Excellence for Advanced Molecular Imaging, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Adrian Hawley
- The Australian Nuclear Science Technology Organisation, The Australian Synchrotron, Clayton, Vic, Australia
| | - Tim Ryan
- The Australian Nuclear Science Technology Organisation, The Australian Synchrotron, Clayton, Vic, Australia
| | - Stephen Mudie
- The Australian Nuclear Science Technology Organisation, The Australian Synchrotron, Clayton, Vic, Australia
| | - Nigel Kirby
- The Australian Nuclear Science Technology Organisation, The Australian Synchrotron, Clayton, Vic, Australia
| | - Brian Abbey
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Andrew V Martin
- School of Science, RMIT University, Melbourne 3000 Australia.
| |
Collapse
|
11
|
Nele V, Holme MN, Rashid MH, Barriga HMG, Le TC, Thomas MR, Doutch JJ, Yarovsky I, Stevens MM. Design of Lipid-Based Nanocarriers via Cation Modulation of Ethanol-Interdigitated Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11909-11921. [PMID: 34581180 DOI: 10.1021/acs.langmuir.1c02076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Short-chain alcohols (i.e., ethanol) can induce membrane interdigitation in saturated-chain phosphatidylcholines (PCs). In this process, alcohol molecules intercalate between phosphate heads, increasing lateral separation and favoring hydrophobic interactions between opposing acyl chains, which interpenetrate forming an interdigitated phase. Unraveling mechanisms underlying the interactions between ethanol and model lipid membranes has implications for cell biology, biochemistry, and for the formulation of lipid-based nanocarriers. However, investigations of ethanol-lipid membrane systems have been carried out in deionized water, which limits their applicability. Here, using a combination of small- and wide-angle X-ray scattering, small-angle neutron scattering, and all-atom molecular dynamics simulations, we analyzed the effect of varying CaCl2 and NaCl concentrations on ethanol-induced interdigitation. We observed that while ethanol addition leads to the interdigitation of bulk phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers in the presence of CaCl2 and NaCl regardless of the salt concentration, the ethanol-induced interdigitation of vesicular DPPC depends on the choice of cation and its concentration. These findings unravel a key role for cations in the ethanol-induced interdigitation of lipid membranes in either bulk phase or vesicular form.
Collapse
Affiliation(s)
- Valeria Nele
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Margaret N Holme
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - M Harunur Rashid
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Mathematics and Physics, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Hanna M G Barriga
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Tu C Le
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Michael R Thomas
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
- London Centre for Nanotechnology and Department of Biochemical Engineering, University College London, 17-19 Gordon Street, London WC1H 0AH, U.K
| | - James J Doutch
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Didcot OX11 ODE, U.K
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
12
|
Stability of cubic phase and curvature tuning in the lyotropic system of branched chain galactose-based glycolipid by amphiphilic additives. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Allen ME, Elani Y, Brooks NJ, Seddon JM. The effect of headgroup methylation on polymorphic phase behaviour in hydrated N-methylated phosphoethanolamine:palmitic acid membranes. SOFT MATTER 2021; 17:5763-5771. [PMID: 34019613 DOI: 10.1039/d1sm00178g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mixtures of fatty acids and phospholipids can form hexagonal (HII) and inverse bicontinuous cubic phases, the latter of which are implicated in various cellular processes and have wide-ranging biotechnological applications in protein crystallisation and drug delivery systems. Therefore, it is vitally important to understand the formation conditions of inverse bicontinuous cubic phases and how their properties can be tuned. We have used differential scanning calorimetry and synchrotron-based small angle and wide angle X-ray scattering (SAXS/WAXS) to investigate the polymorphic phase behaviour of palmitic acid/partially-methylated phospholipid mixtures, and how headgroup methylation impacts on inverse bicontinuous cubic phase formation. We find that upon partial methylation of the phospholipid headgroup (1 or 2 methyl substituents) inverse bicontinuous cubic phases are formed (of the Im3m spacegroup), which is not the case with 0 or 3 methyl substituents. This shows how important headgroup methylation is for controlling phase behaviour and how a change in headgroup methylation can be used to controllably tune various inverse bicontinuous phase features such as their lattice parameter and the temperature range of their stability.
Collapse
Affiliation(s)
- Matthew E Allen
- Department of Chemistry, Imperial College London, W12 7SL, UK.
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK
| | | | - John M Seddon
- Department of Chemistry, Imperial College London, W12 7SL, UK.
| |
Collapse
|
14
|
Zhai J, Fan B, Thang SH, Drummond CJ. Novel Amphiphilic Block Copolymers for the Formation of Stimuli-Responsive Non-Lamellar Lipid Nanoparticles. Molecules 2021; 26:3648. [PMID: 34203820 PMCID: PMC8232580 DOI: 10.3390/molecules26123648] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/04/2022] Open
Abstract
Non-lamellar lyotropic liquid crystalline (LLC) lipid nanoparticles contain internal multidimensional nanostructures such as the inverse bicontinuous cubic and the inverse hexagonal mesophases, which can respond to external stimuli and have the potential of controlling drug release. To date, the internal LLC mesophase responsiveness of these lipid nanoparticles is largely achieved by adding ionizable small molecules to the parent lipid such as monoolein (MO), the mixture of which is then dispersed into nanoparticle suspensions by commercially available poly(ethylene oxide)-poly(propylene oxide) block copolymers. In this study, the Reversible Addition-Fragmentation chain Transfer (RAFT) technique was used to synthesize a series of novel amphiphilic block copolymers (ABCs) containing a hydrophilic poly(ethylene glycol) (PEG) block, a hydrophobic block and one or two responsive blocks, i.e., poly(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl acrylate) (PTBA) and/or poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA). High throughput small angle X-ray scattering studies demonstrated that the synthesized ABCs could simultaneously stabilize a range of LLC MO nanoparticles (vesicles, cubosomes, hexosomes, inverse micelles) and provide internal particle nanostructure responsiveness to changes of hydrogen peroxide (H2O2) concentrations, pH and temperature. It was found that the novel functional ABCs can substitute for the commercial polymer stabilizer and the ionizable additive in the formation of next generation non-lamellar lipid nanoparticles. These novel formulations have the potential to control drug release in the tumor microenvironment with endogenous H2O2 and acidic pH conditions.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Bo Fan
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; (B.F.); (S.H.T.)
| | - San H. Thang
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; (B.F.); (S.H.T.)
| | - Calum J. Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
15
|
Chang C, Meikle TG, Drummond CJ, Yang Y, Conn CE. Comparison of cubosomes and liposomes for the encapsulation and delivery of curcumin. SOFT MATTER 2021; 17:3306-3313. [PMID: 33623948 DOI: 10.1039/d0sm01655a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inverse bicontinuous cubic phase nanoparticles (cubosomes) have attracted significant attention in recent years, owing to their potential use as delivery vehicles for chemically fragile or poorly soluble drugs and nutraceuticals. Herein we have investigated the use of lipid nanoparticles as a delivery vehicle for curcumin, a compound with demonstrated anti-cancer properties. Curcumin is encapsulated within cubosomes comprised of several different lipid formulations, as well as phospholipid-based liposomes. The entrapment efficiency of curcumin within cubosomes was observed to vary depending on both the nanoparticle architecture and the curcumin concentration. Fluorescence spectroscopy analysis revealed that penetration of curcumin into the hydrophobic region of the bilayer was dependent on lipid composition. Curcumin was typically associated with the polar headgroup region at low concentrations, but transferred to the lipid bilayer region at higher concentrations, particularly in phytantriol cubosomes. Each nanoparticle formulation was characterized using small angle X-ray scattering and dynamic light scattering to assess the structural stability subsequent to curcumin encapsulation. The structure of the cubosomes was generally robust to the addition of curcumin, while the liposomes displayed a large increase in particle size and PDI at higher curcumin concentrations. Finally, the cytotoxicity of each formulation was assessed against murine fibroblast (NIH3T3) and murine melanoma (B16F10) cell lines in order to investigate improvements in curcumin bioavailability following encapsulation in cubosomes, as well as assess potential anti-cancer applications. Increased cytotoxicity of the cubosome-loaded curcumin against the murine melanoma cell-line demonstrates the potential of these nanoparticles as delivery vehicles for curcumin and other poorly water-soluble drugs.
Collapse
Affiliation(s)
- Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | | | | | | | | |
Collapse
|
16
|
Yalcin D, Drummond CJ, Greaves TL. Lyotropic liquid crystal phase behavior of a cationic amphiphile in aqueous and non-stoichiometric protic ionic liquid mixtures. SOFT MATTER 2020; 16:9456-9470. [PMID: 32966534 DOI: 10.1039/d0sm01298j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protic ionic liquids (PILs) are the largest and most tailorable known class of non-aqueous solvents which possess the ability to support amphiphile self-assembly. However, little is known about the effect of solvent additives on this ability. In this study, the lyotropic liquid crystal phase (LLCP) behavior of the cationic surfactant cetyltrimethylammonium bromide (CTAB) was investigated in the model PILs of ethylammonium nitrate (EAN) and ethanolammonium nitrate (EtAN), and derived multi-component solvent systems containing them to determine phase formation and diversity with changing solvent composition. The solvent systems were composed of water, nitric acid and ethylamine (or ethanolamine), with 26 unique compositions for each PIL covering the apparent pH and ionicity ranges of 0-13.5 and 0-11 M, respectively. The LLCPs were studied using cross polarized optical microscopy (CPOM) and small and wide-angle X-ray scattering (SAXS/WAXS). Partial phase diagrams were constructed for CTAB concentrations of 50 wt% and 70 wt% in the temperature range of 25 °C to 75 °C to characterise the effect of surfactant concentration and temperature on the LLCPs in each solvent environment. Normal micellar (L1), hexagonal (H1) and bicontinuous cubic (V1) phases were identified at both surfactant concentrations, and from temperatures as low as 35 °C, with large variations dependent on the solvent composition. The thermal stability and diversity of phases were greater and broader in solvent compositions with excess precursor amines present compared to those in the neat PILs. In acid-rich solvent combinations, the same phase diversity was found, though with reduced onset temperatures of phase formation; however, some structural changes were observed which were attributed to oxidation/decomposition of CTAB in a nitric acid environment. This study showed that the ability of PIL solutions to support amphiphile self-assembly can readily be tuned, and that the ability of PILs to promote amphiphile self-assembly is robust, even with other solvent species present.
Collapse
Affiliation(s)
- Dilek Yalcin
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| | - Tamar L Greaves
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
17
|
Meikle TG, Keizer DW, Babon JJ, Drummond CJ, Separovic F, Conn CE, Yao S. Physiochemical Characterization and Stability of Lipidic Cubic Phases by Solution NMR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6254-6260. [PMID: 32418433 DOI: 10.1021/acs.langmuir.0c00949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipidic inverse bicontinuous cubic phases (LCPs), formed via the spontaneous self-assembly of lipids such as monoolein, have found increasing applications in the stabilization and crystallization of integral membrane proteins for structural characterization using X-ray crystallography. Their use as effective drug release matrices has also been demonstrated. Nuclear magnetic resonance (NMR) spectroscopy, both solution and solid state, has previously been employed for the characterization of LCPs and related systems. Herein, we report a number of novel features of solution NMR for probing the fundamental composition and structural properties of monoolein-based LCPs. These include (1) more complete assignments of both 1H and 13C chemical shifts, (2) direct quantification of hydration level in LCPs using one-dimensional (1D) 1H NMR, and (3) monitoring longer-term stability of LCPs and evaluating alterations introduced into standard LCPs at the submolecular level.
Collapse
Affiliation(s)
- Thomas G Meikle
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - David W Keizer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, VIC 3010, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Frances Separovic
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
- School of Chemistry, The University of Melbourne, VIC 3010, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| |
Collapse
|
18
|
Sarkar S, Tran N, Soni SK, Conn CE, Drummond CJ. Size-Dependent Encapsulation and Release of dsDNA from Cationic Lyotropic Liquid Crystalline Cubic Phases. ACS Biomater Sci Eng 2020; 6:4401-4413. [DOI: 10.1021/acsbiomaterials.0c00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sampa Sarkar
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Nhiem Tran
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Sarvesh Kumar Soni
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Charlotte E. Conn
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Calum J. Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| |
Collapse
|
19
|
Understanding the assembly of amphiphilic additives in bulk and dispersed non-lamellar lipid-based matrices: Phosphorylation, H-bonding and ionisation. J Colloid Interface Sci 2020; 562:502-510. [DOI: 10.1016/j.jcis.2019.11.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022]
|
20
|
Fong C, Zhai J, Drummond CJ, Tran N. Micellar Fd3m cubosomes from monoolein - long chain unsaturated fatty acid mixtures: Stability on temperature and pH response. J Colloid Interface Sci 2020; 566:98-106. [PMID: 31991369 DOI: 10.1016/j.jcis.2020.01.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/25/2023]
Abstract
HYPOTHESIS Control of the nanostructure of self-assembled systems may be achieved through manipulation of surfactant molecular packing and interfacial curvature. In order to phase engineer the inverse micellar cubosomes in some monoolein-fatty acid systems, lipids with wedge shaped molecular geometry were incorporated to promote the formation of this phase, that is of interest as potential sustained released nanocarriers. EXPERIMENTS Liquid crystalline nanoparticle dispersions of monoolein with some cis unsaturated fatty acids were prepared and their partial temperature-composition phase diagrams and structure were established using high throughput Small Angle X-ray Scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM). The pH responsiveness of these systems was evaluated in the presence of phosphate buffered saline (PBS). FINDINGS The partial temperature-composition phase diagrams of five nanoparticle formulations containing monoolein and unsaturated fatty acids were established and identified the presence of micellar cubosomes in each of these systems. The results indicate that temperature, fatty acid concentration and structure, as well as pH all directly impact the formation and stability of this phase. Low energy inverse micellar cubic to emulsion phase transformations were identified in the monoolein with oleic acid and vaccenic acid systems at physiological temperatures that may be advantageous for staged therapeutic release strategies in nanomedicine.
Collapse
Affiliation(s)
- Celesta Fong
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; CSIRO Manufacturing, Clayton, VIC 3169, Australia
| | - Jiali Zhai
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - Calum John Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| | - Nhiem Tran
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
21
|
Barriga HMG, Ces O, Law RV, Seddon JM, Brooks NJ. Engineering Swollen Cubosomes Using Cholesterol and Anionic Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16521-16527. [PMID: 31702159 DOI: 10.1021/acs.langmuir.9b02336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dispersions of nonlamellar lipid membrane assemblies are gaining increasing interest for drug delivery and protein therapeutic application. A key bottleneck has been the lack of rational design rules for these systems linking different lipid species and conditions to defined lattice parameters and structures. We have developed robust methods to form cubosomes (nanoparticles with porous internal structures) with water channel diameters of up to 171 Å, which are over 4 times larger than archetypal cubosome structures. The water channel diameter can be tuned via the incorporation of cholesterol and the charged lipid DOPA, DOPG, or DOPS. We have found that large molecules can be incorporated into the porous cubosome structure and that these molecules can interact with the internal cubosome membrane. This offers huge potential for accessible encapsulation and protection of biomolecules and development of confined interfacial reaction environments.
Collapse
Affiliation(s)
- Hanna M G Barriga
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus, Wood Lane , London W12 0BZ , U.K
| | - Oscar Ces
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus, Wood Lane , London W12 0BZ , U.K
| | - Robert V Law
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus, Wood Lane , London W12 0BZ , U.K
| | - John M Seddon
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus, Wood Lane , London W12 0BZ , U.K
| | - Nicholas J Brooks
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus, Wood Lane , London W12 0BZ , U.K
| |
Collapse
|
22
|
Tyler AII, Greenfield JL, Seddon JM, Brooks NJ, Purushothaman S. Coupling Phase Behavior of Fatty Acid Containing Membranes to Membrane Bio-Mechanics. Front Cell Dev Biol 2019; 7:187. [PMID: 31616666 PMCID: PMC6763698 DOI: 10.3389/fcell.2019.00187] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
Biological membranes constantly modulate their fluidity for proper functioning of the cell. Modulation of membrane properties via regulation of fatty acid composition has gained a renewed interest owing to its relevance in endocytosis, endoplasmic reticulum membrane homeostasis, and adaptation mechanisms in the deep sea. Endowed with significant degrees of freedom, the presence of free fatty acids can alter the curvature of membranes which in turn can alter the response of curvature sensing proteins, thus defining adaptive ways to reconfigure membranes. Most significantly, recent experiments demonstrated that polyunsaturated lipids facilitate membrane bending and fission by endocytic proteins – the first step in the biogenesis of synaptic vesicles. Despite the vital roles of fatty acids, a systematic study relating the interactions between fatty acids and membrane and the consequent effect on the bio-mechanics of membranes under the influence of fatty acids has been sparse. Of specific interest is the vast disparity in the properties of cis and trans fatty acids, that only differ in the orientation of the double bond and yet have entirely unique and opposing chemical properties. Here we demonstrate a combined X-ray diffraction and membrane fluctuation analysis method to couple the structural properties to the biophysical properties of fatty acid-laden membranes to address current gaps in our understanding. By systematically doping pure dioleoyl phosphatidylcholine (DOPC) membranes with cis fatty acid and trans fatty acid we demonstrate that the presence of fatty acids doesn’t always fluidize the membrane. Rather, an intricate balance between the curvature, molecular interactions, as well as the amount of specific fatty acid dictates the fluidity of membranes. Lower concentrations are dominated by the nature of interactions between the phospholipid and the fatty acids. Trans fatty acid increases the rigidity while decreasing the area per lipid similar to the properties depicted by the addition of saturated fatty acids to lipidic membranes. Cis fatty acid however displays the accepted view of having a fluidizing effect at small concentrations. At higher concentrations curvature frustration dominates, leading to increased rigidity irrespective of the type of fatty acid. These results are consistent with theoretical predictions as detailed in the manuscript.
Collapse
Affiliation(s)
- Arwen I I Tyler
- Department of Chemistry, Imperial College London, London, United Kingdom.,School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Jake L Greenfield
- Department of Chemistry, Imperial College London, London, United Kingdom.,Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - John M Seddon
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Sowmya Purushothaman
- Department of Material Science, University of California, Davis, Davis, CA, United States.,Cavendish Laboratory, Cambridge, United Kingdom
| |
Collapse
|
23
|
Klatt MA, Lovrić J, Chen D, Kapfer SC, Schaller FM, Schönhöfer PWA, Gardiner BS, Smith AS, Schröder-Turk GE, Torquato S. Universal hidden order in amorphous cellular geometries. Nat Commun 2019; 10:811. [PMID: 30778054 PMCID: PMC6379405 DOI: 10.1038/s41467-019-08360-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/03/2019] [Indexed: 12/04/2022] Open
Abstract
Partitioning space into cells with certain extreme geometrical properties is a central problem in many fields of science and technology. Here we investigate the Quantizer problem, defined as the optimisation of the moment of inertia of Voronoi cells, i.e., similarly-sized ‘sphere-like’ polyhedra that tile space are preferred. We employ Lloyd’s centroidal Voronoi diagram algorithm to solve this problem and find that it converges to disordered states associated with deep local minima. These states are universal in the sense that their structure factors are characterised by a complete independence of a wide class of initial conditions they evolved from. They moreover exhibit an anomalous suppression of long-wavelength density fluctuations and quickly become effectively hyperuniform. Our findings warrant the search for novel amorphous hyperuniform phases and cellular materials with unique physical properties. Disordered hyperuniformity implies a hidden order on length scales that can be found in various amorphous materials. Klatt et al. analyse the evolution of random point patterns using Llyod’s algorithm and show that they converge to an effectively hyperuniform state regardless of the initial conditions.
Collapse
Affiliation(s)
- Michael A Klatt
- Institute of Stochastics, Karlsruhe Institute of Technology (KIT), Englerstr. 2, 76131, Karlsruhe, Germany.,Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Jakov Lovrić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10 000 Zagreb, Croatia.,School of Engineering and Information Technology, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia.,PULS Group, Department of Physics and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Duyu Chen
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Sebastian C Kapfer
- Institut für Theoretische Physik I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058, Erlangen, Germany
| | - Fabian M Schaller
- Institute of Stochastics, Karlsruhe Institute of Technology (KIT), Englerstr. 2, 76131, Karlsruhe, Germany.,Institut für Theoretische Physik I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058, Erlangen, Germany
| | - Philipp W A Schönhöfer
- School of Engineering and Information Technology, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia.,Institut für Theoretische Physik I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058, Erlangen, Germany
| | - Bruce S Gardiner
- School of Engineering and Information Technology, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia.,School of Computer Science and Software Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Ana-Sunčana Smith
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10 000 Zagreb, Croatia.,PULS Group, Department of Physics and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Gerd E Schröder-Turk
- School of Engineering and Information Technology, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia.,Institut für Theoretische Physik I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058, Erlangen, Germany.,Department of Applied Mathematics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT, 0200, Australia
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
24
|
Zhai J, Luwor RB, Ahmed N, Escalona R, Tan FH, Fong C, Ratcliffe J, Scoble JA, Drummond CJ, Tran N. Paclitaxel-Loaded Self-Assembled Lipid Nanoparticles as Targeted Drug Delivery Systems for the Treatment of Aggressive Ovarian Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25174-25185. [PMID: 29963859 DOI: 10.1021/acsami.8b08125] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chemotherapy using cytotoxic agents, such as paclitaxel (PTX), is one of the most effective treatments for advanced ovarian cancer. However, due to nonspecific targeting of the drug and the presence of toxic solvents required for dissolving PTX prior to injection, there are several serious side effects associated with this treatment. In this study, we explored self-assembled lipid-based nanoparticles as PTX carriers, which were able to improve its antitumour efficacy against ovarian cancer. The nanoparticles were also functionalized with epidermal growth factor receptor (EGFR) antibody fragments to explore the benefit of tumor active targeting. The formulated bicontinuous cubic- and sponge-phase nanoparticles, which were stabilized by Pluronic F127 and a lipid poly(ethylene glycol) stabilizer, showed a high capacity of PTX loading. These PTX-loaded nanoparticles also showed significantly higher cytotoxicity than a free drug formulation against HEY ovarian cancer cell lines in vitro. More importantly, the nanoparticle-based PTX treatments, with or without EGFR targeting, reduced the tumor burden by 50% compared to PTX or nondrug control in an ovarian cancer mouse xenograft model. In addition, the PTX-loaded nanoparticles were able to extend the survival of the treatment groups by up to 10 days compared to groups receiving free PTX or nondrug control. This proof-of-concept study has demonstrated the potential of these self-assembled lipid nanomaterials as effective drug delivery nanocarriers for poorly soluble chemotherapeutics, such as PTX.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , VIC 3000 , Australia
| | - Rodney B Luwor
- Department of Surgery, Royal Melbourne Hospital , University of Melbourne , Melbourne , VIC 3052 , Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute , Ballarat , VIC 3353 , Australia
- Federation University Australia , Ballarat , VIC 3010 , Australia
- The Hudson Institute of Medical Research , Clayton , VIC 3168 , Australia
- Department of Obstetrics and Gynaecology , University of Melbourne , Parkville , VIC 3052 , Australia
| | - Ruth Escalona
- Fiona Elsey Cancer Research Institute , Ballarat , VIC 3353 , Australia
- The Hudson Institute of Medical Research , Clayton , VIC 3168 , Australia
- Department of Obstetrics and Gynaecology , University of Melbourne , Parkville , VIC 3052 , Australia
| | - Fiona H Tan
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , VIC 3000 , Australia
- Department of Surgery, Royal Melbourne Hospital , University of Melbourne , Melbourne , VIC 3052 , Australia
| | - Celesta Fong
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , VIC 3000 , Australia
- CSIRO Manufacturing , Clayton , VIC 3168 , Australia
| | | | - Judith A Scoble
- CSIRO Manufacturing , 343 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , VIC 3000 , Australia
| | - Nhiem Tran
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , VIC 3000 , Australia
| |
Collapse
|
25
|
Tran N, Zhai J, Conn CE, Mulet X, Waddington LJ, Drummond CJ. Direct Visualization of the Structural Transformation between the Lyotropic Liquid Crystalline Lamellar and Bicontinuous Cubic Mesophase. J Phys Chem Lett 2018; 9:3397-3402. [PMID: 29809009 DOI: 10.1021/acs.jpclett.8b01110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The transition between the lyotropic liquid crystalline lamellar and the bicontinuous cubic mesophase drives multiple fundamental cellular processes involving changes in cell membrane topology, including endocytosis and membrane budding. While several theoretical models have been proposed to explain this dynamic transformation, experimental validation of these models has been challenging because of the short-lived nature of the intermediates present during the phase transition. Herein, we report the direct observation of a lamellar-to-bicontinuous cubic phase transition in nanoscale dispersions using a combination of cryogenic transmission electron microscopy and static small-angle X-ray scattering. The results represent the first experimental confirmation of a theoretical model which proposed that the bicontinuous cubic phase originates from the center of a lamellar vesicle then propagates outward via the formation of interlamellar attachments and stalks. The observation was possible because of the precise control of the lipid composition to place the dispersion systems at the phase boundary of a lamellar and a cubic phase, allowing for the creation of long-lived structural intermediates. By the surveying of the nanoparticles using cryogenic transmission electron microscopy, a complete phase transition sequence was established.
Collapse
Affiliation(s)
- Nhiem Tran
- School of Science , RMIT University , Melbourne , Victoria 3000 , Australia
- CSIRO Manufacturing, Clayton , Victoria 3168 , Australia
- Australian Synchrotron, ANSTO, Clayton , Victoria 3168 , Australia
| | - Jiali Zhai
- School of Science , RMIT University , Melbourne , Victoria 3000 , Australia
- CSIRO Manufacturing, Clayton , Victoria 3168 , Australia
| | - Charlotte E Conn
- School of Science , RMIT University , Melbourne , Victoria 3000 , Australia
| | - Xavier Mulet
- CSIRO Manufacturing, Clayton , Victoria 3168 , Australia
| | | | - Calum J Drummond
- School of Science , RMIT University , Melbourne , Victoria 3000 , Australia
| |
Collapse
|
26
|
Slatter DA, Percy CL, Allen-Redpath K, Gajsiewicz JM, Brooks NJ, Clayton A, Tyrrell VJ, Rosas M, Lauder SN, Watson A, Dul M, Garcia-Diaz Y, Aldrovandi M, Heurich M, Hall J, Morrissey JH, Lacroix-Desmazes S, Delignat S, Jenkins PV, Collins PW, O'Donnell VB. Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies. JCI Insight 2018; 3:98459. [PMID: 29563336 PMCID: PMC5926910 DOI: 10.1172/jci.insight.98459] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
Hemostatic defects are treated using coagulation factors; however, clot formation also requires a procoagulant phospholipid (PL) surface. Here, we show that innate immune cell–derived enzymatically oxidized phospholipids (eoxPL) termed hydroxyeicosatetraenoic acid–phospholipids (HETE-PLs) restore hemostasis in human and murine conditions of pathological bleeding. HETE-PLs abolished blood loss in murine hemophilia A and enhanced coagulation in factor VIII- (FVIII-), FIX-, and FX-deficient human plasma . HETE-PLs were decreased in platelets from patients after cardiopulmonary bypass (CPB). To explore molecular mechanisms, the ability of eoxPL to stimulate individual isolated coagulation factor/cofactor complexes was tested in vitro. Extrinsic tenase (FVIIa/tissue factor [TF]), intrinsic tenase (FVIIIa/FIXa), and prothrombinase (FVa/FXa) all were enhanced by both HETE-PEs and HETE-PCs, suggesting a common mechanism involving the fatty acid moiety. In plasma, 9-, 15-, and 12-HETE-PLs were more effective than 5-, 11-, or 8-HETE-PLs, indicating positional isomer specificity. Coagulation was enhanced at lower lipid/factor ratios, consistent with a more concentrated area for protein binding. Surface plasmon resonance confirmed binding of FII and FX to HETE-PEs. HETE-PEs increased membrane curvature and thickness, but not surface charge or homogeneity, possibly suggesting increased accessibility to cations/factors. In summary, innate immune-derived eoxPL enhance calcium-dependent coagulation factor function, and their potential utility in bleeding disorders is proposed. Innate immune-derived enzymatically oxidized phospholipids enhance calcium-dependent coagulation factor function.
Collapse
Affiliation(s)
- David A Slatter
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Charles L Percy
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Keith Allen-Redpath
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Joshua M Gajsiewicz
- Departments of Biological Chemistry and Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nick J Brooks
- Faculty of Natural Science, Department of Chemistry, Imperial College London, London, United Kingdom
| | - Aled Clayton
- Institute of Cancer and Genetics, Velindre Cancer Centre, School of Medicine, and
| | - Victoria J Tyrrell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Marcela Rosas
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Sarah N Lauder
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Andrew Watson
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Maria Dul
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Yoel Garcia-Diaz
- School of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Maceler Aldrovandi
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Meike Heurich
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Judith Hall
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - James H Morrissey
- Departments of Biological Chemistry and Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | - P Vincent Jenkins
- Haematology Department, University Hospital of Wales, Cardiff, United Kingdom
| | - Peter W Collins
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
27
|
Tran N, Mulet X, Hawley AM, Fong C, Zhai J, Le TC, Ratcliffe J, Drummond CJ. Manipulating the Ordered Nanostructure of Self-Assembled Monoolein and Phytantriol Nanoparticles with Unsaturated Fatty Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2764-2773. [PMID: 29381863 DOI: 10.1021/acs.langmuir.7b03541] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mesophase structures of self-assembled lyotropic liquid crystalline nanoparticles are important factors that directly influence their ability to encapsulate and release drugs and their biological activities. However, it is difficult to predict and precisely control the mesophase behavior of these materials, especially in complex systems with several components. In this study, we report the controlled manipulation of mesophase structures of monoolein (MO) and phytantriol (PHYT) nanoparticles by adding unsaturated fatty acids (FAs). By using high throughput formulation and small-angle X-ray scattering characterization methods, the effects of FAs chain length, cis-trans isomerism, double bond location, and level of chain unsaturation on self-assembled systems are determined. Additionally, the influence of temperature on the phase behavior of these nanoparticles is analyzed. We found that in general, the addition of unsaturated FAs to MO and PHYT induces the formation of mesophases with higher Gaussian surface curvatures. As a result, a rich variety of lipid polymorphs are found to correspond with the increasing amounts of FAs. These phases include inverse bicontinuous cubic, inverse hexagonal, and discrete micellar cubic phases and microemulsion. However, there are substantial differences between the phase behavior of nanoparticles with trans FA, cis FAs with one double bond, and cis FAs with multiple double bonds. Therefore, the material library produced in this study will assist the selection and development of nanoparticle-based drug delivery systems with desired mesophase.
Collapse
Affiliation(s)
- Nhiem Tran
- CSIRO Manufacturing , Clayton, Victoria 3149, Australia
| | - Xavier Mulet
- CSIRO Manufacturing , Clayton, Victoria 3149, Australia
| | - Adrian M Hawley
- Australian Synchrotron, ANSTO , Clayton, Victoria 3149, Australia
| | - Celesta Fong
- CSIRO Manufacturing , Clayton, Victoria 3149, Australia
| | | | | | | | | |
Collapse
|
28
|
Tran N, Hocquet M, Eon B, Sangwan P, Ratcliffe J, Hinton TM, White J, Ozcelik B, Reynolds NP, Muir BW. Non-lamellar lyotropic liquid crystalline nanoparticles enhance the antibacterial effects of rifampicin against Staphylococcus aureus. J Colloid Interface Sci 2018; 519:107-118. [PMID: 29486430 DOI: 10.1016/j.jcis.2018.02.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023]
Abstract
The fight against infection in an era of emerging antibiotic resistant bacteria is one of the grandest scientific challenges facing society today. Nano-carriers show great promise in improving the antibacterial activity of antibiotics as they are able to enhance their solubility, provide sustained release and reduce toxic side effects via specifically targeting infection sites. Here, we investigate the antibacterial effect of two lipidic nano-carriers that contain the poorly soluble antibiotic rifampicin in their bilayers. One nanoparticle is assembled solely from the lipid monoolein, thus is neutral at physiological pH and the other contains a mixture of monoolein and the cationic lipid N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate (DOTAP), thus is positively charged. Our results show that rifampicin-loaded nanoparticles reduce the minimum inhibitory concentration against Staphylococcus aureus compared to rifampicin alone, however this reduction was most pronounced for the positively charged nanoparticles. Fluorescent microscopy revealed binding of all nanoparticles to the bacteria and enhanced binding was observed for the charged nanoparticles. This suggests that the cationic lipids promote electrostatic interactions with the negatively charged bacterial membrane. Förster resonance energy transfer demonstrated that the cationic charged nanoparticles were able to fuse with bacterial membranes whilst atomic force microscopy and transmission electron microscopy revealed structural damage to the bacterial membranes caused by the nanoparticles. Significantly, we identified a concentration window in which the nanoparticles exhibited antibacterial activity while not affecting HeLa and CHO cell viability. This ability to improve the efficacy of antibiotics without affecting their eukaryotic cytotoxicity is of significant importance for future development of nanomedicine based strategies to combat infections.
Collapse
Affiliation(s)
- Nhiem Tran
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Marion Hocquet
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia; Chimie Paris Tech, Paris, France
| | - Blandine Eon
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia; Chimie Paris Tech, Paris, France
| | | | | | | | - Jacinta White
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | | | - Nicholas P Reynolds
- Swinburne University of Technology, ARC Training Centre for Biodevices, Faculty of Science, Engineering and Technology, Victoria 3122, Australia
| | | |
Collapse
|
29
|
Huang Y, Gui S. Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC Adv 2018; 8:6978-6987. [PMID: 35540315 PMCID: PMC9078419 DOI: 10.1039/c7ra12008g] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
Lyotropic liquid crystals (LLCs) formed by the self-assembly of amphiphilic molecules in a solvent (usually water) have attracted increasingly greater attention in the last few decades, especially the lamellar phase (Lα), the reversed bicontinuous cubic phase (Q2) and the reversed hexagonal phase (H2). Such phases offer promising prospects for encapsulation of a wide range of target molecules with various sizes and polarities owing to the unique internal structures. Also, different structures of mesophases can give rise to different diffusion coefficients. The bicontinuous cubic phase and the hexagonal phase have been demonstrated to control and sustain the release of active molecules. Furthermore, the structures are susceptible to many factors such as water content, temperature, pH, the presence of additives etc. Many researchers have been studying these influencing factors in order to accurately fabricate the desired phase. In this paper, we give a review of the characteristics of different structures of liquid crystalline phases, the influencing factors on the phase transition of liquid crystals and the relationship between structures of LLC and drug diffusion. We hope our review will provide some insights into how to manipulate in a controlled manner the rate of incorporating and transferring molecules by altering the structure of lyotropic mesophases. Factors such as amphiphilic molecules , water content, temperature, pressure, light and magnetic field on the structures of LLCs.![]()
Collapse
Affiliation(s)
- Yiming Huang
- Department of Pharmacy
- Anhui University of Chinese Medicine
- Hefei
- China
| | - Shuangying Gui
- Department of Pharmacy
- Anhui University of Chinese Medicine
- Hefei
- China
- Institute of Pharmaceutics
| |
Collapse
|
30
|
Kluzek M, Tyler AII, Wang S, Chen R, Marques CM, Thalmann F, Seddon JM, Schmutz M. Influence of a pH-sensitive polymer on the structure of monoolein cubosomes. SOFT MATTER 2017; 13:7571-7577. [PMID: 28994440 DOI: 10.1039/c7sm01620d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cubosomes consist in submicron size particles of lipid bicontinuous cubic phases stabilized by surfactant polymers. They provide an appealing road towards the practical use of lipid cubic phases for pharmaceutical and cosmetic applications, and efforts are currently being made to control the encapsulation and release properties of these colloidal objects. We overcome in this work the lack of sensitivity of monoolein cubosomes to pH conditions by using a pH sensitive polymer designed to strongly interact with the lipid structure at low pH. Our cryo-transmission electron microscope (cryo-TEM) and small-angle X-ray scattering (SAXS) results show that in the presence of the polymer the cubic phase structure is preserved at neutral pH, albeit with a larger cell size. At pH 5.5, in the presence of the polymer, the nanostructure of the cubosome particles is significantly altered, providing a pathway to design pH-responsive cubosomes for applications in drug delivery.
Collapse
Affiliation(s)
- Monika Kluzek
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR022, 23 rue du Loess, 67034 Strasbourg Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Levashov VA. Crystalline structures of particles interacting through the harmonic-repulsive pair potential. J Chem Phys 2017; 147:114503. [DOI: 10.1063/1.5002536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
32
|
Sizes of lipid domains: What do we know from artificial lipid membranes? What are the possible shared features with membrane rafts in cells? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:789-802. [DOI: 10.1016/j.bbamem.2017.01.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/21/2017] [Accepted: 01/26/2017] [Indexed: 12/13/2022]
|
33
|
Meikle TG, Zabara A, Waddington LJ, Separovic F, Drummond CJ, Conn CE. Incorporation of antimicrobial peptides in nanostructured lipid membrane mimetic bilayer cubosomes. Colloids Surf B Biointerfaces 2017; 152:143-151. [DOI: 10.1016/j.colsurfb.2017.01.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/27/2016] [Accepted: 01/03/2017] [Indexed: 11/28/2022]
|
34
|
Meikle TG, Yao S, Zabara A, Conn CE, Drummond CJ, Separovic F. Predicting the release profile of small molecules from within the ordered nanostructured lipidic bicontinuous cubic phase using translational diffusion coefficients determined by PFG-NMR. NANOSCALE 2017; 9:2471-2478. [PMID: 28045170 DOI: 10.1039/c6nr07382d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ordered nanostructured lipidic bicontinuous cubic phase has demonstrated potential as a drug release material, due to its ability to encapsulate a wide variety of compounds, which may undergo sustained, diffusion controlled release over time. Control of drug release has been shown to depend on the nanostructural parameters of the lipid mesophase. Herein, the diffusion and release of two amino acids, encapsulated within a range of different lipidic cubic mesophases are investigated. Pulsed-field gradient NMR was used to determine the diffusion coefficient of the encapsulated amino acid, which was found to be correlated with the nanoscale diameter of the water channels within the cubic mesophase. This information was used to predict the release profiles of encapsulated compounds from within the cubic mesophase, which was verified by directly measuring the release of each amino acid in vitro. Predicted release profiles tracked reasonably close to the measured release profiles, indicating that NMR determined diffusion measurements can be used to predict release profiles.
Collapse
Affiliation(s)
- Thomas G Meikle
- School of Chemistry, University of Melbourne, VIC 3010, Australia and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - Shenggen Yao
- Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - Alexandru Zabara
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | - Frances Separovic
- School of Chemistry, University of Melbourne, VIC 3010, Australia and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
35
|
van 't Hag L, Anandan A, Seabrook SA, Gras SL, Drummond CJ, Vrielink A, Conn CE. Direct demonstration of lipid phosphorylation in the lipid bilayer of the biomimetic bicontinuous cubic phase using the confined enzyme lipid A phosphoethanolamine transferase. SOFT MATTER 2017; 13:1493-1504. [PMID: 28125111 DOI: 10.1039/c6sm02487d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Retention of amphiphilic protein activity within the lipid bilayer membrane of the nanostructured biomimetic bicontinuous cubic phase is crucial for applications utilizing these hybrid protein-lipid self-assembly materials, such as in meso membrane protein crystallization and drug delivery. Previous work, mainly on soluble and membrane-associated enzymes, has shown that enzyme activity may be modified when immobilized, including membrane bound enzymes. The effect on activity may be even greater for amphiphilic enzymes with a large hydrophilic domain, such as the Neisserial enzyme lipid A phosphoethanolamine transferase (EptA). Encapsulation within the biomimetic but non-endogenous lipid bilayer membrane environment may modify the enzyme conformation, while confinement of the large hydrophilic domain with the nanoscale water channels of a continuous lipid bilayer structure may prevent full function of this enzyme. Herein we show that NmEptA remains active despite encapsulation within a nanostructured bicontinuous cubic phase. Full transfer of the phosphoethanolamine (PEA) group from a 1,2-dioleoyl-glycero-phosphoethanolamine (DOPE) doped lipid to monoolein (MO), which makes up the bicontinuous cubic phase, is shown. The reaction was found to be non-specific to the alkyl chain identity. The observed rate of enzyme activity is similar to other membrane bound enzymes, with complete transfer of the PEA group occurring in vitro, under the conditions studied, over a 24 hour timescale.
Collapse
Affiliation(s)
- Leonie van 't Hag
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia and CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Anandhi Anandan
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia.
| | | | - Sally L Gras
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia and The ARC Dairy Innovation Hub, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Calum J Drummond
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia and School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
36
|
Fong WK, Sánchez-Ferrer A, Ortelli FG, Sun W, Boyd BJ, Mezzenga R. Dynamic formation of nanostructured particles from vesicles via invertase hydrolysis for on-demand delivery. RSC Adv 2017. [DOI: 10.1039/c6ra26688f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Controlled hydrolysis via invertase action alters molecular shape and therefore lipid curvature, consequently triggering the release of encapsulated drug.
Collapse
Affiliation(s)
- Wye-Khay Fong
- ETH Zürich
- Department of Health Sciences & Technology
- 8092 Zürich
- Switzerland
- Drug Delivery, Disposition & Dynamics
| | | | | | - Wenjie Sun
- ETH Zürich
- Department of Health Sciences & Technology
- 8092 Zürich
- Switzerland
| | - Ben J. Boyd
- Drug Delivery, Disposition & Dynamics
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Raffaele Mezzenga
- ETH Zürich
- Department of Health Sciences & Technology
- 8092 Zürich
- Switzerland
| |
Collapse
|
37
|
Meikle T, Drummond C, Separovic F, Conn C. Membrane-Mimetic Inverse Bicontinuous Cubic Phase Systems for Encapsulation of Peptides and Proteins. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.abl.2017.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
38
|
Kulkarni CV, Yaghmur A, Steinhart M, Kriechbaum M, Rappolt M. Effects of High Pressure on Internally Self-Assembled Lipid Nanoparticles: A Synchrotron Small-Angle X-ray Scattering (SAXS) Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11907-11917. [PMID: 27782407 DOI: 10.1021/acs.langmuir.6b03300] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present the first report on the effects of hydrostatic pressure on colloidally stabilized lipid nanoparticles enveloping inverse nonlamellar self-assemblies in their interiors. These internal self-assemblies were systematically tuned into bicontinuous cubic (Pn3m and Im3m), micellar cubic (Fd3m), hexagonal (H2), and inverse micellar (L2) phases by regulating the lipid/oil ratio as the hydrostatic pressure was varied from atmospheric pressure to 1200 bar and back to atmospheric pressure. The effects of pressure on these lipid nanoparticles were compared with those on their equilibrium bulk, nondispersed counterparts, namely, inverse nonlamellar liquid-crystalline phases and micellar solutions under excess-water conditions, using the synchrotron small-angle X-ray scattering (SAXS) technique. In the applied pressure range, induced phase transitions were observed solely in fully hydrated bulk samples, whereas the internal self-assemblies of the corresponding lipid nanoparticles displayed only pressure-modulated single phases. Interestingly, both the lattice parameters and the linear pressure expansion coefficients were larger for the self-assemblies enveloped inside the lipid nanoparticles as compared to the bulk states. This behavior can, in part, be attributed to enhanced lipid layer undulations in the lipid particles in addition to induced swelling effects in the presence of the triblock copolymer F127. The bicontinuous cubic phases both in the bulk state and inside lipid cubosome nanoparticles swell on compression, even as both keep swelling further upon decompression at relatively high pressures before shrinking again at ambient pressures. The pressure dependence of the phases is also modulated by the concentration of the solubilized oil (tetradecane). These studies demonstrate the tolerance of lipid nanoparticles [cubosomes, hexosomes, micellar cubosomes, and emulsified microemulsions (EMEs)] for high pressures, confirming their robustness for various technological applications.
Collapse
Affiliation(s)
- Chandrashekhar V Kulkarni
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Centre for Materials Science, School of Physical Sciences and Computing, University of Central Lancashire , Preston PR1 2HE, United Kingdom
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , DK-2100 Copenhagen, Denmark
| | - Milos Steinhart
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , 162 06 Prague, Czech Republic
| | - Manfred Kriechbaum
- Institute of Inorganic Chemistry, Graz University of Technology , A-8010 Graz, Austria
| | - Michael Rappolt
- Institute of Inorganic Chemistry, Graz University of Technology , A-8010 Graz, Austria
- School of Food Science & Nutrition, University of Leeds , Leeds LS2 9JT, U.K
| |
Collapse
|
39
|
Furse S, Brooks NJ, Woscholski R, Gaffney PR, Templer RH. Pressure-dependent inverse bicontinuous cubic phase formation in a phosphatidylinositol 4-phosphate/phosphatidylcholine system. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cdc.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
van 't Hag L, Knoblich K, Seabrook SA, Kirby NM, Mudie ST, Lau D, Li X, Gras SL, Mulet X, Call ME, Call MJ, Drummond CJ, Conn CE. Exploring the in meso crystallization mechanism by characterizing the lipid mesophase microenvironment during the growth of single transmembrane α-helical peptide crystals. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0125. [PMID: 27298442 PMCID: PMC4920275 DOI: 10.1098/rsta.2015.0125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 05/19/2023]
Abstract
The proposed mechanism for in meso crystallization of transmembrane proteins suggests that a protein or peptide is initially uniformly dispersed in the lipid self-assembly cubic phase but that crystals grow from a local lamellar phase, which acts as a conduit between the crystal and the bulk cubic phase. However, there is very limited experimental evidence for this theory. We have developed protocols to investigate the lipid mesophase microenvironment during crystal growth using standard procedures readily available in crystallography laboratories. This technique was used to characterize the microenvironment during crystal growth of the DAP12-TM peptide using synchrotron small angle X-ray scattering (SAXS) with a micro-sized X-ray beam. Crystal growth was found to occur from the gyroid cubic mesophase. For one in four crystals, a highly oriented local lamellar phase was observed, providing supporting evidence for the proposed mechanism for in meso crystallization. A new observation of this study was that we can differentiate diffraction peaks from crystals grown in meso, from peaks originating from the surrounding lipid matrix, potentially opening up the possibility of high-throughput SAXS analysis of in meso grown crystals.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.
Collapse
Affiliation(s)
- Leonie van 't Hag
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3052, Australia Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia CSIRO Manufacturing Flagship, Private Bag 10, Clayton, Victoria 3169, Australia
| | - Konstantin Knoblich
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Shane A Seabrook
- CSIRO Manufacturing Flagship, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Nigel M Kirby
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Stephen T Mudie
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Deborah Lau
- CSIRO Manufacturing Flagship, Private Bag 10, Clayton, Victoria 3169, Australia
| | - Xu Li
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3052, Australia Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia
| | - Sally L Gras
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3052, Australia Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia The ARC Dairy Innovation Hub, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xavier Mulet
- CSIRO Manufacturing Flagship, Private Bag 10, Clayton, Victoria 3169, Australia
| | - Matthew E Call
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Melissa J Call
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Calum J Drummond
- CSIRO Manufacturing Flagship, Private Bag 10, Clayton, Victoria 3169, Australia School of Applied Sciences, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Charlotte E Conn
- School of Applied Sciences, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
41
|
Zhai J, Suryadinata R, Luan B, Tran N, Hinton TM, Ratcliffe J, Hao X, Drummond CJ. Amphiphilic brush polymers produced using the RAFT polymerisation method stabilise and reduce the cell cytotoxicity of lipid lyotropic liquid crystalline nanoparticles. Faraday Discuss 2016; 191:545-563. [PMID: 27453499 DOI: 10.1039/c6fd00039h] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Self-assembled lipid lyotropic liquid crystalline nanoparticles such as hexosomes and cubosomes contain internal anisotropic and isotropic nanostructures, respectively. Despite the remarkable potential of such nanoparticles in various biomedical applications, the stabilisers used in formulating the nanoparticles are often limited to commercially available polymers such as the Pluronic block copolymers. This study explored the potential of using Reversible Addition-Fragmentation chain Transfer (RAFT) technology to design amphiphilic brush-type polymers for the purpose of stabilising phytantriol and monoolein-based lipid dispersions. The synthesised brush-type polymers consisted of a hydrophobic C12 short chain and a hydrophilic poly(ethylene glycol)methyl ether acrylate (PEGA) long chain with multiple 9-unit poly(ethylene oxide) (PEO) brushes with various molecular weights. It was observed that increasing the PEO brush density and thus the length of the hydrophilic component improved the stabilisation effectiveness for phytantriol and monoolein-based cubosomes. Synchrotron small-angle X-ray scattering (SAXS) experiments confirmed that the RAFT polymer-stabilised cubosomes had an internal double-diamond cubic phase with tunable water channel sizes. These properties were dependent on the molecular weight of the polymers, which were considered in some cases to be anisotropically distributed within the cubosomes. The in vitro toxicity of the cubosomes was assessed by cell viability of two human adenocarcinoma cell lines and haemolytic activities to mouse erythrocytes. The results showed that phytantriol cubosomes stabilised by the RAFT polymers were less toxic compared to their Pluronic F127-stabilised analogues. This study provides valuable insight into designing non-linear amphiphilic polymers for the effective stabilisation and cellular toxicity improvement of self-assembled lipid lyotropic liquid crystalline nanoparticles.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Science, College of Science, Engineering and Health, RMIT University, PO Box 2476, Melbourne, Victoria, 3001 Australia.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
van 't Hag L, de Campo L, Garvey CJ, Feast GC, Leung AE, Yepuri NR, Knott R, Greaves TL, Tran N, Gras SL, Drummond CJ, Conn CE. Using SANS with Contrast-Matched Lipid Bicontinuous Cubic Phases To Determine the Location of Encapsulated Peptides, Proteins, and Other Biomolecules. J Phys Chem Lett 2016; 7:2862-2866. [PMID: 27414483 DOI: 10.1021/acs.jpclett.6b01173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An understanding of the location of peptides, proteins, and other biomolecules within the bicontinuous cubic phase is crucial for understanding and evolving biological and biomedical applications of these hybrid biomolecule-lipid materials, including during in meso crystallization and drug delivery. While theoretical modeling has indicated that proteins and additive lipids might phase separate locally and adopt a preferred location in the cubic phase, this has never been experimentally confirmed. We have demonstrated that perfectly contrast-matched cubic phases in D2O can be studied using small-angle neutron scattering by mixing fully deuterated and hydrogenated lipid at an appropriate ratio. The model transmembrane peptide WALP21 showed no preferential location in the membrane of the diamond cubic phase of phytanoyl monoethanolamide and was not incorporated in the gyroid cubic phase. While deuteration had a small effect on the phase behavior of the cubic phase forming lipids, the changes did not significantly affect our results.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tamar L Greaves
- School of Science, College of Science, Engineering and Health, RMIT University , Melbourne, Victoria 3001, Australia
| | - Nhiem Tran
- School of Science, College of Science, Engineering and Health, RMIT University , Melbourne, Victoria 3001, Australia
| | - Sally L Gras
- The ARC Dairy Innovation Hub, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Calum J Drummond
- CSIRO Manufacturing , Clayton, Victoria 3168, Australia
- School of Science, College of Science, Engineering and Health, RMIT University , Melbourne, Victoria 3001, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University , Melbourne, Victoria 3001, Australia
| |
Collapse
|
43
|
van 't Hag L, Li X, Meikle TG, Hoffmann SV, Jones NC, Pedersen JS, Hawley AM, Gras SL, Conn CE, Drummond CJ. How Peptide Molecular Structure and Charge Influence the Nanostructure of Lipid Bicontinuous Cubic Mesophases: Model Synthetic WALP Peptides Provide Insights. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6882-6894. [PMID: 27315326 DOI: 10.1021/acs.langmuir.6b01058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanostructured bicontinuous lipidic cubic phases are used for the encapsulation of proteins in a range of applications such as in meso crystallization of transmembrane proteins and as drug delivery vehicles. The retention of the nanoscale order of the cubic phases subsequent to protein incorporation, as well as retention of the protein structure and function, is essential for all of these applications. Herein synthetic peptides (WALP21, WALPS53, and WALPS73) with a common α-helical hydrophobic domain, but varying hydrophilic loop size, were designed to systematically examine the effect of peptide structure and charge on bicontinuous cubic phases. The effect of the cubic phases on the secondary structure of the peptides was also investigated. The incorporation of the WALP peptides in cubic phases formed by a range of lipids showed that hydrophobic mismatch of the peptides with the lipid bilayers, the hydrophilic domain size, and peptide charge were all significant factors determining the response of the lipid nanomaterial to protein insertion. As charge repulsion had the most significant effect on the phase transitions observed, we suggest that buffer pH and salt concentration must be carefully considered to ensure cubic mesophase retention. Importantly, the WALP peptides were found to have a different conformation depending on the local lipid environment. Such structural changes could potentially affect membrane protein function, which is crucial for both current and prospective applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University , Melbourne, Victoria 3001, Australia
| | - Calum J Drummond
- CSIRO Manufacturing , Clayton, Victoria 3168, Australia
- School of Science, College of Science, Engineering and Health, RMIT University , Melbourne, Victoria 3001, Australia
| |
Collapse
|
44
|
Tran N, Hawley AM, Zhai J, Muir BW, Fong C, Drummond CJ, Mulet X. High-Throughput Screening of Saturated Fatty Acid Influence on Nanostructure of Lyotropic Liquid Crystalline Lipid Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4509-4520. [PMID: 27023315 DOI: 10.1021/acs.langmuir.5b03769] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Self-assembled lyotropic liquid crystalline lipid nanoparticles have been developed for a wide range of biomedical applications with an emerging focus for use as delivery vehicles for drugs, genes, and in vivo imaging agents. In this study, we report the generation of lipid nanoparticle libraries with information regarding mesophase and lattice parameter, which can aid the selection of formulation for a particular end-use application. In this study we elucidate the phase composition parameters that influence the internal structure of lipid nanoparticles produced from monoolein, monopalmitolein and phytantriol incorporating a variety of saturated fatty acids (FA) with different chain lengths at varying concentrations and temperatures. The material libraries were established using high throughput formulation and screening techniques, including synchrotron small-angle X-ray scattering. The results demonstrate the rich polymorphism of lipid nanoparticles with nonlamellar mesophases in the presence of saturated FAs. The inclusion of saturated FAs within the lipid nanoparticles promotes a gradual phase transition at all temperatures studied toward structures with higher negative surface curvatures (e.g., from inverse bicontinuous cubic phase to hexagonal phase and then emulsified microemulsion). The three partial phase diagrams produced are discussed in terms of the influence of FA chain length and concentration on nanoparticle internal mesophase structure and lattice parameters. The study also highlights a compositionally dependent coexistence of multiple mesophases, which may indicate the presence of multicompartment nanoparticles containing cubic/cubic and cubic/hexagonal mesophases.
Collapse
Affiliation(s)
- Nhiem Tran
- CSIRO Manufacturing , Clayton, Victoria 3168 Australia
- SAXS/WAXS Beamline, Australian Synchrotron , Clayton, Victoria 3168 Australia
| | - Adrian M Hawley
- SAXS/WAXS Beamline, Australian Synchrotron , Clayton, Victoria 3168 Australia
| | - Jiali Zhai
- CSIRO Manufacturing , Clayton, Victoria 3168 Australia
| | | | - Celesta Fong
- CSIRO Manufacturing , Clayton, Victoria 3168 Australia
| | - Calum J Drummond
- CSIRO Manufacturing , Clayton, Victoria 3168 Australia
- School of Applied Sciences, College of Science, Engineering and Health, RMIT University , Melbourne, Victoria 3000 Australia
| | - Xavier Mulet
- CSIRO Manufacturing , Clayton, Victoria 3168 Australia
| |
Collapse
|
45
|
Ali MA, Noguchi S, Iwao Y, Oka T, Itai S. Preparation and Characterization of SN-38-Encapsulated Phytantriol Cubosomes Containing α-Monoglyceride Additives. Chem Pharm Bull (Tokyo) 2016; 64:577-84. [DOI: 10.1248/cpb.c15-00984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Md Ashraf Ali
- Laboratory of Pharmaceutical Engineering & Drug Delivery Science, Graduate School of Integrated Pharmaceutical & Nutritional Sciences, University of Shizuoka
- Department of Pharmacy, Faculty of Life Science, Mawlana Bhashani Science and Technology University
| | - Shuji Noguchi
- Laboratory of Pharmaceutical Engineering & Drug Delivery Science, Graduate School of Integrated Pharmaceutical & Nutritional Sciences, University of Shizuoka
| | - Yasunori Iwao
- Laboratory of Pharmaceutical Engineering & Drug Delivery Science, Graduate School of Integrated Pharmaceutical & Nutritional Sciences, University of Shizuoka
| | - Toshihiko Oka
- Department of Physics, Faculty of Science and Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University
| | - Shigeru Itai
- Laboratory of Pharmaceutical Engineering & Drug Delivery Science, Graduate School of Integrated Pharmaceutical & Nutritional Sciences, University of Shizuoka
| |
Collapse
|
46
|
Meikle TG, Conn CE, Separovic F, Drummond CJ. Exploring the structural relationship between encapsulated antimicrobial peptides and the bilayer membrane mimetic lipidic cubic phase: studies with gramicidin A′. RSC Adv 2016. [DOI: 10.1039/c6ra13658c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lipid based bicontinuous cubic mesophases provide a low-cost, robust membrane mimetic nanomaterial which allows for the incorporation of membrane peptides and proteins.
Collapse
Affiliation(s)
- Thomas G. Meikle
- School of Chemistry
- Bio21 Institute
- University of Melbourne
- Australia
- CSIRO Manufacturing Flagship
| | - Charlotte E. Conn
- School of Science
- College of Science, Engineering and Health
- RMIT University
- Melbourne
- Australia
| | | | - Calum J. Drummond
- CSIRO Manufacturing Flagship
- Clayton
- Australia
- School of Science
- College of Science, Engineering and Health
| |
Collapse
|
47
|
Barriga HMG, Law RV, Seddon JM, Ces O, Brooks NJ. The effect of hydrostatic pressure on model membrane domain composition and lateral compressibility. Phys Chem Chem Phys 2016; 18:149-55. [DOI: 10.1039/c5cp04239a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We distinguish the liquid ordered and liquid disordered phases in diffraction patterns of biphasic mixtures, comparing their lateral compressibility and report the variations in the two phase region with increasing hydrostatic pressure.
Collapse
Affiliation(s)
| | - R. V. Law
- Department of Chemistry
- Imperial College London
- UK
| | - J. M. Seddon
- Department of Chemistry
- Imperial College London
- UK
| | - O. Ces
- Department of Chemistry
- Imperial College London
- UK
| | - N. J. Brooks
- Department of Chemistry
- Imperial College London
- UK
| |
Collapse
|
48
|
Bulpett JM, Snow T, Quignon B, Beddoes CM, Tang TYD, Mann S, Shebanova O, Pizzey CL, Terrill NJ, Davis SA, Briscoe WH. Hydrophobic nanoparticles promote lamellar to inverted hexagonal transition in phospholipid mesophases. SOFT MATTER 2015; 11:8789-8800. [PMID: 26391613 DOI: 10.1039/c5sm01705j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study focuses on how the mesophase transition behaviour of the phospholipid dioleoyl phosphatidylethanolamine (DOPE) is altered by the presence of 10 nm hydrophobic and 14 nm hydrophilic silica nanoparticles (NPs) at different concentrations. The lamellar to inverted hexagonal phase transition (Lα-HII) of phospholipids is energetically analogous to the membrane fusion process, therefore understanding the Lα-HII transition with nanoparticulate additives is relevant to how membrane fusion may be affected by these additives, in this case the silica NPs. The overriding observation is that the HII/Lα boundaries in the DOPE p-T phase diagram were shifted by the presence of NPs: the hydrophobic NPs enlarged the HII phase region and thus encouraged the inverted hexagonal (HII) phase to occur at lower temperatures, whilst hydrophilic NPs appeared to stabilise the Lα phase region. This effect was also NP-concentration dependent, with a more pronounced effect for higher concentration of the hydrophobic NPs, but the trend was less clear cut for the hydrophilic NPs. There was no evidence that the NPs were intercalated into the mesophases, and as such it was likely that they might have undergone microphase separation and resided at the mesophase domain boundaries. Whilst the loci and exact roles of the NPs invite further investigation, we tentatively discuss these results in terms of both the surface chemistry of the NPs and the effect of their curvature on the elastic bending energy considerations during the mesophase transition.
Collapse
Affiliation(s)
- Jennifer M Bulpett
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Tim Snow
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Benoit Quignon
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Charlotte M Beddoes
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - T-Y D Tang
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Stephen Mann
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Olga Shebanova
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Claire L Pizzey
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Nicholas J Terrill
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Sean A Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
49
|
van 't Hag L, Shen HH, Lu J, Hawley AM, Gras SL, Drummond CJ, Conn CE. Deconvoluting the Effect of the Hydrophobic and Hydrophilic Domains of an Amphiphilic Integral Membrane Protein in Lipid Bicontinuous Cubic Mesophases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12025-12034. [PMID: 26488819 DOI: 10.1021/acs.langmuir.5b03256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lipidic bicontinuous cubic mesophases with encapsulated amphiphilic proteins are widely used in a range of biological and biomedical applications, including in meso crystallization, as drug delivery vehicles for therapeutic proteins, and as biosensors and biofuel cells. However, the effect of amphiphilic protein encapsulation on the cubic phase nanostructure is not well-understood. In this study, we illustrate the effect of incorporating the bacterial amphiphilic membrane protein Ag43, and its individual hydrophobic β(43) and hydrophilic α(43) domains, in bicontinuous cubic mesophases. For the monoolein, monoalmitolein, and phytantriol cubic phases with and without 8% w/w cholesterol, the effect of the full length amphiphilic protein Ag43 on the cubic phase nanostructure was more significant than the sum of the individual hydrophobic β(43) and hydrophilic α(43) domains. Several factors were found to potentially influence the impact of the hydrophobic β(43) domain on the cubic phase internal nanostructure. These include the size of the hydrophobic β(43) domain relative to the thickness of the lipid bilayer, as well as its charge and diameter. The size of the hydrophilic α(43) domain relative to the water channel radius of the cubic mesophase was also found to be important. The secondary structure of the Ag43 proteins was affected by the hydrophobic thickness and physicochemical properties of the lipid bilayer and the water channel diameter of the cubic phase. Such structural changes may be small but could potentially affect membrane protein function.
Collapse
Affiliation(s)
| | | | | | | | | | - Calum J Drummond
- CSIRO Manufacturing Flagship , Clayton, Victoria 3169, Australia
- School of Applied Sciences, College of Science, Engineering and Health, RMIT University , Melbourne, Victoria 3001, Australia
| | - Charlotte E Conn
- School of Applied Sciences, College of Science, Engineering and Health, RMIT University , Melbourne, Victoria 3001, Australia
| |
Collapse
|
50
|
Zhai J, Hinton TM, Waddington LJ, Fong C, Tran N, Mulet X, Drummond CJ, Muir BW. Lipid-PEG conjugates sterically stabilize and reduce the toxicity of phytantriol-based lyotropic liquid crystalline nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10871-10880. [PMID: 26362479 DOI: 10.1021/acs.langmuir.5b02797] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lyotropic liquid crystalline nanoparticle dispersions are of interest as delivery vectors for biomedicine. Aqueous dispersions of liposomes, cubosomes, and hexosomes are commonly stabilized by nonionic amphiphilic block copolymers to prevent flocculation and phase separation. Pluronic stabilizers such as F127 are commonly used; however, there is increasing interest in using chemically reactive stabilizers for enhanced functionalization and specificity in therapeutic delivery applications. This study has explored the ability of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine conjugated with poly(ethylene glycol) (DSPE-PEGMW) (2000 Da ≤ MW ≤ 5000 Da) to engineer and stabilize phytantriol-based lyotropic liquid crystalline dispersions. The poly(ethylene glycol) (PEG) moiety provides a tunable handle to the headgroup hydrophilicity/hydrophobicity to allow access to a range of nanoarchitectures in these systems. Specifically, it was observed that increasing PEG molecular weight promotes greater interfacial curvature of the dispersions, with liposomes (Lα) present at lower PEG molecular weight (MW 2000 Da), and a propensity for cubosomes (QII(P) or QII(D) phase) at MW 3400 Da or 5000 Da. In comparison to Pluronic F127-stabilized cubosomes, those made using DSPE-PEG3400 or DSPE-PEG5000 had enlarged internal water channels. The toxicity of these cubosomes was assessed in vitro using A549 and CHO cell lines, with cubosomes prepared using DSPE-PEG5000 having reduced cytotoxicity relative to their Pluronic F127-stabilized analogues.
Collapse
Affiliation(s)
- Jiali Zhai
- CSIRO Manufacturing Flagship, Private Bag 10, Clayton, VIC 3169, Australia
| | - Tracey M Hinton
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, 5 Portarlington Road, East Geelong, VIC 3219, Australia
| | - Lynne J Waddington
- CSIRO Manufacturing Flagship, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Celesta Fong
- CSIRO Manufacturing Flagship, Private Bag 10, Clayton, VIC 3169, Australia
- School of Applied Sciences, College of Science, Engineering and Health, RMIT University , GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Nhiem Tran
- CSIRO Manufacturing Flagship, Private Bag 10, Clayton, VIC 3169, Australia
| | - Xavier Mulet
- CSIRO Manufacturing Flagship, Private Bag 10, Clayton, VIC 3169, Australia
| | - Calum J Drummond
- School of Applied Sciences, College of Science, Engineering and Health, RMIT University , GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Benjamin W Muir
- CSIRO Manufacturing Flagship, Private Bag 10, Clayton, VIC 3169, Australia
| |
Collapse
|