1
|
Asiri F, Haque Siddiqui MI, Ali MA, Alam T, Dobrotă D, Chicea R, Dobrotă RD. Mathematical modeling of active contraction of the human cardiac myocyte: A review. Heliyon 2023; 9:e20065. [PMID: 37809539 PMCID: PMC10559823 DOI: 10.1016/j.heliyon.2023.e20065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/26/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023] Open
Abstract
Background and objective In this present research paper, a mathematical model has been developed to study myocyte contraction in the human cardiac muscle, using the Land model. Different parts of the human heart with a focus on the composition of the myocyte cells have been explored numerically to enabling us to determine the interaction of various parameters in the heart muscle. The main objective of the work is to direct the study of the Land model, which has been exploited to simulate the contraction of real human myocytes. Methods Mathematical models has been developed based on the Hill model and Huxley model. Myocyte contraction for different scenarios, such as in isometric tension and isotonic tension have been studied. Results It is found that increase in stretch, the peak active tension increases, in line with well-established length-dependent tension generation. Five parameters are selected: [Ca2+]T50, Tref, TRPN50, β0, and β1, which have been varied in between the range of -50%-100%, to examine the isometric effects of each parameter on the behavior of the tension developed in the intact myocyte cells, with the most sensitive parameter being [Ca2+]T50. Conclusion In conclusion, it is found that the Land model provides a good platform for the analysis of the active contraction of the human cardiac myocyte.
Collapse
Affiliation(s)
- Fisal Asiri
- Department of Mathematics, Taibah University, Medina, 42353, Saudi Arabia
| | | | - Masood Ashraf Ali
- Department of Industrial Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj, 16273, Saudi Arabia
| | - Tabish Alam
- CSIR-Central Building Research Institute, Roorkee, 247667, India
| | - Dan Dobrotă
- Faculty of Engineering, Lucian Blaga University of Sibiu, 550024, Sibiu, Romania
| | - Radu Chicea
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550024, Sibiu, Romania
| | | |
Collapse
|
2
|
Colli Franzone P, Pavarino LF, Scacchi S. Numerical evaluation of cardiac mechanical markers as estimators of the electrical activation time. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3285. [PMID: 31808301 DOI: 10.1002/cnm.3285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 10/11/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Recent advances in the development of noninvasive cardiac imaging technologies have made it possible to measure longitudinal and circumferential strains at a high spatial resolution also at intramural level. Local mechanical activation times derived from these strains can be used as noninvasive estimates of electrical activation, in order to determine, eg, the origin of premature ectopic beats during focal arrhythmias or the pathway of reentrant circuits. The aim of this work is to assess the reliability of mechanical activation time markers derived from longitudinal and circumferential strains, denoted by ATell and ATecc , respectively, by means of three-dimensional cardiac electromechanical simulations. These markers are compared against the electrical activation time (ATv ), computed from the action potential waveform, and the reference mechanical activation markers derived from the active tension and fiber strain waveforms, denoted by ATta and ATeff , respectively. Our numerical simulations are based on a strongly coupled electromechanical model, including bidomain representation of the cardiac tissue, mechanoelectric (ie, stretch-activated channels) and geometric feedbacks, transversely isotropic strain energy function for the description of passive mechanics and detailed membrane and excitation-contraction coupling models. The results have shown that, during endocardial and epicardial ectopic stimulations, all the mechanical markers considered are highly correlated with ATv , exhibiting correlation coefficients larger than 0.8. However, during multiple endocardial stimulations, mimicking the ventricular sinus rhythm, the mechanical markers are less correlated with the electrical activation time, because of the more complex resulting excitation sequence. Moreover, the inspection of the endocardial and epicardial isochrones has shown that the ATell and ATecc mechanical activation sequences reproduce only some qualitative features of the electrical activation sequence, such as the areas of early and late activation, but in some cases, they might yield wrong excitation sources and significantly different isochrones patterns.
Collapse
Affiliation(s)
| | - Luca F Pavarino
- Dipartimento di Matematica, Università di Milano, Milano, Italy
| | - Simone Scacchi
- Dipartimento di Matematica, Università di Milano, Milano, Italy
| |
Collapse
|
3
|
Forouzandehmehr M, Koivumäki JT, Hyttinen J, Paci M. A mathematical model of hiPSC cardiomyocytes electromechanics. Physiol Rep 2021; 9:e15124. [PMID: 34825519 PMCID: PMC8617339 DOI: 10.14814/phy2.15124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 01/21/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are becoming instrumental in cardiac research, human-based cell level cardiotoxicity tests, and developing patient-specific care. As one of the principal functional readouts is contractility, we propose a novel electromechanical hiPSC-CM computational model named the hiPSC-CM-CE. This model comprises a reparametrized version of contractile element (CE) by Rice et al., 2008, with a new passive force formulation, integrated into a hiPSC-CM electrophysiology formalism by Paci et al. in 2020. Our simulated results were validated against in vitro data reported for hiPSC-CMs at matching conditions from different labs. Specifically, key action potential (AP) and calcium transient (CaT) biomarkers simulated by the hiPSC-CM-CE model were within the experimental ranges. On the mechanical side, simulated cell shortening, contraction-relaxation kinetic indices (RT50 and RT25 ), and the amplitude of tension fell within the experimental intervals. Markedly, as an inter-scale analysis, correct classification of the inotropic effects due to non-cardiomyocytes in hiPSC-CM tissues was predicted on account of the passive force expression introduced to the CE. Finally, the physiological inotropic effects caused by Verapamil and Bay-K 8644 and the aftercontractions due to the early afterdepolarizations (EADs) were simulated and validated against experimental data. In the future, the presented model can be readily expanded to take in pharmacological trials and genetic mutations, such as those involved in hypertrophic cardiomyopathy, and study arrhythmia trigger mechanisms.
Collapse
Affiliation(s)
| | - Jussi T. Koivumäki
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Jari Hyttinen
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Michelangelo Paci
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| |
Collapse
|
4
|
Lyon A, Dupuis LJ, Arts T, Crijns HJGM, Prinzen FW, Delhaas T, Heijman J, Lumens J. Differentiating the effects of β-adrenergic stimulation and stretch on calcium and force dynamics using a novel electromechanical cardiomyocyte model. Am J Physiol Heart Circ Physiol 2020; 319:H519-H530. [PMID: 32734816 DOI: 10.1152/ajpheart.00275.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cardiac electrophysiology and mechanics are strongly interconnected. Calcium is crucial in this complex interplay through its role in cellular electrophysiology and sarcomere contraction. We aim to differentiate the effects of acute β-adrenergic stimulation (β-ARS) and cardiomyocyte stretch (increased sarcomere length) on calcium-transient dynamics and force generation, using a novel computational model of cardiac electromechanics. We implemented a bidirectional coupling between the O'Hara-Rudy model of human ventricular electrophysiology and the MechChem model of sarcomere mechanics through the buffering of calcium by troponin. The coupled model was validated using experimental data from large mammals or human samples. Calcium transient and force were simulated for various degrees of β-ARS and initial sarcomere lengths. The model reproduced force-frequency, quick-release, and isotonic contraction experiments, validating the bidirectional electromechanical interactions. An increase in β-ARS increased the amplitudes of force (augmented inotropy) and calcium transient, and shortened both force and calcium-transient duration (lusitropy). An increase in sarcomere length increased force amplitude even more, but decreased calcium-transient amplitude and increased both force and calcium-transient duration. Finally, a gradient in relaxation along the thin filament may explain the nonmonotonic decay in cytosolic calcium observed with high tension. Using a novel coupled human electromechanical model, we identified differential effects of β-ARS and stretch on calcium and force. Stretch mostly contributed to increased force amplitude and β-ARS to the reduction of calcium and force duration. We showed that their combination, rather than individual contributions, is key to ensure force generation, rapid relaxation, and low diastolic calcium levels.NEW & NOTEWORTHY This work identifies the contribution of electrical and mechanical alterations to regulation of calcium and force under exercise-like conditions using a novel human electromechanical model integrating ventricular electrophysiology and sarcomere mechanics. By better understanding their individual and combined effects, this can uncover arrhythmogenic mechanisms in exercise-like situations. This publicly available model is a crucial step toward understanding the complex interplay between cardiac electrophysiology and mechanics to improve arrhythmia risk prediction and treatment.
Collapse
Affiliation(s)
- Aurore Lyon
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Lauren J Dupuis
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.,Department of Bioinformatics-BiGCaT, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Theo Arts
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Harry J G M Crijns
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frits W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Mullins PD, Bondarenko VE. Mathematical model for β1-adrenergic regulation of the mouse ventricular myocyte contraction. Am J Physiol Heart Circ Physiol 2020; 318:H264-H282. [DOI: 10.1152/ajpheart.00492.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The β1-adrenergic regulation of cardiac myocyte contraction plays an important role in regulating heart function. Activation of this system leads to an increased heart rate and stronger myocyte contraction. However, chronic stimulation of the β1-adrenergic signaling system can lead to cardiac hypertrophy and heart failure. To understand the mechanisms of action of β1-adrenoceptors, a mathematical model of cardiac myocyte contraction that includes the β1-adrenergic system was developed and studied. The model was able to simulate major experimental protocols for measurements of steady-state force-calcium relationships, cross-bridge release rate and force development rate, force-velocity relationship, and force redevelopment rate. It also reproduced quite well frequency and isoproterenol dependencies for intracellular Ca2+ concentration ([Ca2+]i) transients, total contraction force, and sarcomere shortening. The mathematical model suggested the mechanisms of increased contraction force and myocyte shortening on stimulation of β1-adrenergic receptors is due to phosphorylation of troponin I and myosin-binding protein C and increased [Ca2+]i transient resulting from activation of the β1-adrenergic signaling system. The model was used to simulate work-loop contractions and estimate the power during the cardiac cycle as well as the effects of 4-aminopyridine and tedisamil on the myocyte contraction. The developed mathematical model can be used further for simulations of contraction of ventricular myocytes from genetically modified mice and myocytes from mice with chronic cardiac diseases. NEW & NOTEWORTHY A new mathematical model of mouse ventricular myocyte contraction that includes the β1-adrenergic system was developed. The model simulated major experimental protocols for myocyte contraction and predicted the effects of 4-aminopyridine and tedisamil on the myocyte contraction. The model also allowed for simulations of work-loop contractions and estimation of the power during the cardiac cycle.
Collapse
Affiliation(s)
- Paula D. Mullins
- Department of Mathematics, University of North Georgia, Blue Ridge, Georgia
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Vladimir E. Bondarenko
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
6
|
Howarth F, A. Smail M, Qureshi M, Shmygol A, Singh J, Al Kury L. Contraction and intracellular calcium transport in epicardial and endocardial ventricular myocytes from streptozotocin-induced diabetic rat. HAMDAN MEDICAL JOURNAL 2019. [DOI: 10.4103/hmj.hmj_32_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Ni H, Morotti S, Grandi E. A Heart for Diversity: Simulating Variability in Cardiac Arrhythmia Research. Front Physiol 2018; 9:958. [PMID: 30079031 PMCID: PMC6062641 DOI: 10.3389/fphys.2018.00958] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022] Open
Abstract
In cardiac electrophysiology, there exist many sources of inter- and intra-personal variability. These include variability in conditions and environment, and genotypic and molecular diversity, including differences in expression and behavior of ion channels and transporters, which lead to phenotypic diversity (e.g., variable integrated responses at the cell, tissue, and organ levels). These variabilities play an important role in progression of heart disease and arrhythmia syndromes and outcomes of therapeutic interventions. Yet, the traditional in silico framework for investigating cardiac arrhythmias is built upon a parameter/property-averaging approach that typically overlooks the physiological diversity. Inspired by work done in genetics and neuroscience, new modeling frameworks of cardiac electrophysiology have been recently developed that take advantage of modern computational capabilities and approaches, and account for the variance in the biological data they are intended to illuminate. In this review, we outline the recent advances in statistical and computational techniques that take into account physiological variability, and move beyond the traditional cardiac model-building scheme that involves averaging over samples from many individuals in the construction of a highly tuned composite model. We discuss how these advanced methods have harnessed the power of big (simulated) data to study the mechanisms of cardiac arrhythmias, with a special emphasis on atrial fibrillation, and improve the assessment of proarrhythmic risk and drug response. The challenges of using in silico approaches with variability are also addressed and future directions are proposed.
Collapse
Affiliation(s)
| | | | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Morotti S, Grandi E. Quantitative systems models illuminate arrhythmia mechanisms in heart failure: Role of the Na + -Ca 2+ -Ca 2+ /calmodulin-dependent protein kinase II-reactive oxygen species feedback. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1434. [PMID: 30015404 DOI: 10.1002/wsbm.1434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/29/2018] [Accepted: 06/16/2018] [Indexed: 12/22/2022]
Abstract
Quantitative systems modeling aims to integrate knowledge in different research areas with models describing biological mechanisms and dynamics to gain a better understanding of complex clinical syndromes. Heart failure (HF) is a chronic complex cardiac disease that results from structural or functional disorders impairing the ability of the ventricle to fill with or eject blood. Highly interactive and dynamic changes in mechanical, structural, neurohumoral, metabolic, and electrophysiological properties collectively predispose the failing heart to cardiac arrhythmias, which are responsible for about a half of HF deaths. Multiscale cardiac modeling and simulation integrate structural and functional data from HF experimental models and patients to improve our mechanistic understanding of this complex arrhythmia syndrome. In particular, they allow investigating how disease-induced remodeling alters the coupling of electrophysiology, Ca2+ and Na+ handling, contraction, and energetics that lead to rhythm derangements. The Ca2+ /calmodulin-dependent protein kinase II, which expression and activity are enhanced in HF, emerges as a critical hub that modulates the feedbacks between these various subsystems and promotes arrhythmogenesis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Mechanistic Models Models of Systems Properties and Processes > Cellular Models Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
Affiliation(s)
- Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, California
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California
| |
Collapse
|
9
|
Khokhlova A, Balakina-Vikulova N, Katsnelson L, Iribe G, Solovyova O. Transmural cellular heterogeneity in myocardial electromechanics. J Physiol Sci 2018; 68:387-413. [PMID: 28573594 PMCID: PMC10717105 DOI: 10.1007/s12576-017-0541-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/24/2017] [Indexed: 12/22/2022]
Abstract
Myocardial heterogeneity is an attribute of the normal heart. We have developed integrative models of cardiomyocytes from the subendocardial (ENDO) and subepicardial (EPI) ventricular regions that take into account experimental data on specific regional features of intracellular electromechanical coupling in the guinea pig heart. The models adequately simulate experimental data on the differences in the action potential and contraction between the ENDO and EPI cells. The modeling results predict that heterogeneity in the parameters of calcium handling and myofilament mechanics in isolated ENDO and EPI cardiomyocytes are essential to produce the differences in Ca2+ transients and contraction profiles via cooperative mechanisms of mechano-calcium-electric feedback and may further slightly modulate transmural differences in the electrical properties between the cells. Simulation results predict that ENDO cells have greater sensitivity to changes in the mechanical load than EPI cells. These data are important for understanding the behavior of cardiomyocytes in the intact heart.
Collapse
Affiliation(s)
- Anastasia Khokhlova
- Ural Federal University, Ekaterinburg, Russia.
- Institute of Immunology and Physiology, Russian Academy of Sciences, 106 Pervomayskaya, Ekaterinburg, 620049, Russia.
| | - Nathalie Balakina-Vikulova
- Ural Federal University, Ekaterinburg, Russia
- Institute of Immunology and Physiology, Russian Academy of Sciences, 106 Pervomayskaya, Ekaterinburg, 620049, Russia
| | - Leonid Katsnelson
- Ural Federal University, Ekaterinburg, Russia
- Institute of Immunology and Physiology, Russian Academy of Sciences, 106 Pervomayskaya, Ekaterinburg, 620049, Russia
| | - Gentaro Iribe
- Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Olga Solovyova
- Ural Federal University, Ekaterinburg, Russia
- Institute of Immunology and Physiology, Russian Academy of Sciences, 106 Pervomayskaya, Ekaterinburg, 620049, Russia
| |
Collapse
|
10
|
Shavik SM, Wall ST, Sundnes J, Burkhoff D, Lee LC. Organ-level validation of a cross-bridge cycling descriptor in a left ventricular finite element model: effects of ventricular loading on myocardial strains. Physiol Rep 2018; 5:5/21/e13392. [PMID: 29122952 PMCID: PMC5688770 DOI: 10.14814/phy2.13392] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 12/22/2022] Open
Abstract
Although detailed cell‐based descriptors of cross‐bridge cycling have been applied in finite element (FE) heart models to describe ventricular mechanics, these multiscale models have never been tested rigorously to determine if these descriptors, when scaled up to the organ‐level, are able to reproduce well‐established organ‐level physiological behaviors. To address this void, we here validate a left ventricular (LV) FE model that is driven by a cell‐based cross‐bridge cycling descriptor against key organ‐level heart physiology. The LV FE model was coupled to a closed‐loop lumped parameter circulatory model to simulate different ventricular loading conditions (preload and afterload) and contractilities. We show that our model is able to reproduce a linear end‐systolic pressure volume relationship, a curvilinear end‐diastolic pressure volume relationship and a linear relationship between myocardial oxygen consumption and pressure–volume area. We also show that the validated model can predict realistic LV strain‐time profiles in the longitudinal, circumferential, and radial directions. The predicted strain‐time profiles display key features that are consistent with those measured in humans, such as having similar peak strains, time‐to‐peak‐strain, and a rapid change in strain during atrial contraction at late‐diastole. Our model shows that the myocardial strains are sensitive to not only LV contractility, but also to the LV loading conditions, especially to a change in afterload. This result suggests that caution must be exercised when associating changes in myocardial strain with changes in LV contractility. The methodically validated multiscale model will be used in future studies to understand human heart diseases.
Collapse
Affiliation(s)
| | | | | | - Daniel Burkhoff
- Cardiovascular Research Foundation and Department of Medicine, Columbia University, New York, New York
| | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan
| |
Collapse
|
11
|
Vaverka J, Burša J, Šumbera J, Pásek M. Effect of Transmural Differences in Excitation-Contraction Delay and Contraction Velocity on Left Ventricle Isovolumic Contraction: A Simulation Study. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4798512. [PMID: 29862273 PMCID: PMC5971307 DOI: 10.1155/2018/4798512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/01/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Abstract
Recent studies have shown that left ventricle (LV) exhibits considerable transmural differences in active mechanical properties induced by transmural differences in electrical activity, excitation-contraction coupling, and contractile properties of individual myocytes. It was shown that the time between electrical and mechanical activation of myocytes (electromechanical delay: EMD) decreases from subendocardium to subepicardium and, on the contrary, the myocyte shortening velocity (MSV) increases in the same direction. To investigate the physiological importance of this inhomogeneity, we developed a new finite element model of LV incorporating the observed transmural gradients in EMD and MSV. Comparative simulations with the model showed that when EMD or MSV or both were set constant across the LV wall, the LV contractility during isovolumic contraction (IVC) decreased significantly ((dp/dt)max was reduced by 2 to 38% and IVC was prolonged by 18 to 73%). This was accompanied by an increase of transmural differences in wall stress. These results suggest that the transmural differences in EMD and MSV play an important role in physiological contractility of LV by synchronising the contraction of individual layers of ventricular wall during the systole. Reduction or enhancement of these differences may therefore impair the function of LV and contribute to heart failure.
Collapse
Affiliation(s)
- J Vaverka
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, University of Technology, Brno, Czech Republic
| | - J Burša
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, University of Technology, Brno, Czech Republic
| | - J Šumbera
- Department of Cardiovascular Diseases, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - M Pásek
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Thermomechanics, Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
12
|
Zhang X, Liu ZQ, Campbell KS, Wenk JF. Evaluation of a Novel Finite Element Model of Active Contraction in the Heart. Front Physiol 2018; 9:425. [PMID: 29740338 PMCID: PMC5924776 DOI: 10.3389/fphys.2018.00425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/05/2018] [Indexed: 12/22/2022] Open
Abstract
Finite element (FE) modeling is becoming a widely used approach for the investigation of global heart function. In the present study, a novel model of cellular-level systolic contraction, which includes both length- and velocity-dependence, was implemented into a 3D non-linear FE code. To validate this new FE implementation, an optimization procedure was used to determine the contractile parameters, associated with sarcomeric function, by comparing FE-predicted pressure and strain to experimental measures collected with magnetic resonance imaging and catheterization in the ventricles of five healthy rats. The pressure-volume relationship generated by the FE models matched well with the experimental data. Additionally, the regional distribution of end-systolic strains and circumferential-longitudinal shear angle exhibited good agreement with experimental results overall, with the main deviation occurring in the septal region. Moreover, the FE model predicted a heterogeneous distribution of sarcomere re-lengthening after ventricular ejection, which is consistent with previous in vivo studies. In conclusion, the new FE active contraction model was able to predict the global performance and regional mechanical behaviors of the LV during the entire cardiac cycle. By including more accurate cellular-level mechanisms, this model could provide a better representation of the LV and enhance cardiac research related to both systolic and diastolic dysfunction.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States
| | - Zhan-Qiu Liu
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Jonathan F Wenk
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States.,Department of Surgery, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
13
|
Smail MMA, Qureshi MA, Shmygol A, Oz M, Singh J, Sydorenko V, Arabi A, Howarth FC, Al Kury L. Regional effects of streptozotocin-induced diabetes on shortening and calcium transport in epicardial and endocardial myocytes from rat left ventricle. Physiol Rep 2017; 4:4/22/e13034. [PMID: 27884956 PMCID: PMC5357996 DOI: 10.14814/phy2.13034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 11/24/2022] Open
Abstract
In the heart, the left ventricle pumps blood at higher pressure than the right ventricle. Within the left ventricle, the electromechanical properties of ventricular cardiac myocytes vary transmurally and this may be related to the gradients of stress and strain experienced in vivo across the ventricular wall. Diabetes is also associated with alterations in hemodynamic function. The aim of this study was to investigate shortening and Ca2+ transport in epicardial (EPI) and endocardial (ENDO) left ventricular myocytes in the streptozotocin (STZ)‐induced diabetic rat. Shortening, intracellular Ca2+ and L‐type Ca2+ current (ICa,L) were measured by video detection, fura‐2 microfluorimetry, and whole‐cell patch clamp techniques, respectively. Time to peak (TPK) shortening was prolonged to similar extents in ENDO and EPI myocytes from STZ‐treated rats compared to ENDO and EPI myocytes from controls. Time to half (THALF) relaxation of shortening was prolonged in ENDO myocytes from STZ‐treated rats compared to ENDO controls. TPK Ca2+ transient was prolonged in ENDO myocytes from STZ‐treated rats compared to ENDO controls. THALF decay of the Ca2+ transient was prolonged in ENDO myocytes from STZ‐treated rats compared to ENDO controls. Sarcoplasmic reticulum (SR) fractional release of Ca2+ was reduced in EPI myocytes from STZ‐treated rats compared to EPI controls. ICa,L activation, inactivation, and recovery from inactivation were not significantly altered in EPI and ENDO myocytes from STZ‐treated rats or controls. Regional differences in Ca2+ transport may partly underlie differences in ventricular myocyte shortening across the wall of the healthy and the STZ‐treated rat left ventricle.
Collapse
Affiliation(s)
- Manal M A Smail
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Muhammad A Qureshi
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Anatoliy Shmygol
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Murat Oz
- Department of Pharmacology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Jaipaul Singh
- School of Forensic & Applied Sciences, University of Central Lancashire, Preston, UK
| | - Vadym Sydorenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Alya Arabi
- College of Natural & Health Sciences, Zayed University, Abu Dhabi, UAE
| | - Frank C Howarth
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Lina Al Kury
- College of Natural & Health Sciences, Zayed University, Abu Dhabi, UAE
| |
Collapse
|
14
|
Khokhlova A, Balakina-Vikulova N, Katsnelson L, Solovyova O. Effects of cellular electromechanical coupling on functional heterogeneity in a one-dimensional tissue model of the myocardium. Comput Biol Med 2017; 84:147-155. [PMID: 28364644 DOI: 10.1016/j.compbiomed.2017.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 11/25/2022]
Abstract
Based on the experimental evidence, we developed a one-dimensional (1D) model of heterogeneous myocardial tissue consisting of in-series connected cardiomyocytes from distant transmural regions using mathematical models of subendocardial and subepicardial cells. The regional deformation patterns produced by our 1D model are consistent with the transmural regional strain patterns obtained experimentally in the normal heart in vivo. The modelling results suggest that the mechanical load may essentially affect the transmural gradients in the electrical and mechanical properties of interacting myocytes within a tissue, thereby regulating global myocardial output.
Collapse
Affiliation(s)
- Anastasia Khokhlova
- Ural Federal University, Ekaterinburg, Russia; Institute of Immunology and Physiology, Russian Academy of Sciences, Ekaterinburg, Russia.
| | - Nathalie Balakina-Vikulova
- Ural Federal University, Ekaterinburg, Russia; Institute of Immunology and Physiology, Russian Academy of Sciences, Ekaterinburg, Russia
| | - Leonid Katsnelson
- Ural Federal University, Ekaterinburg, Russia; Institute of Immunology and Physiology, Russian Academy of Sciences, Ekaterinburg, Russia
| | - Olga Solovyova
- Ural Federal University, Ekaterinburg, Russia; Institute of Immunology and Physiology, Russian Academy of Sciences, Ekaterinburg, Russia
| |
Collapse
|
15
|
Tian J, Tu C, Huang B, Liang Y, Zhou J, Ye X. Study of the union method of microelectrode array and AFM for the recording of electromechanical activities in living cardiomyocytes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:495-507. [PMID: 28012038 DOI: 10.1007/s00249-016-1192-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 10/08/2016] [Accepted: 11/30/2016] [Indexed: 11/28/2022]
Abstract
Electrophysiology and mechanics are two essential components in the functions of cardiomyocytes and skeletal muscle cells. The simultaneous recording of electrophysiological and mechanical activities is important for the understanding of mechanisms underlying cell functions. For example, on the one hand, mechanisms under cardiovascular drug effects will be investigated in a comprehensive way by the simultaneous recording of electrophysiological and mechanical activities. On the other hand, computational models of electromechanics provide a powerful tool for the research of cardiomyocytes. The electrical and mechanical activities are important in cardiomyocyte models. The simultaneous recording of electrophysiological and mechanical activities can provide much experimental data for the models. Therefore, an efficient method for the simultaneous recording of the electrical and mechanical data from cardiomyocytes is required for the improvement of cardiac modeling. However, as far as we know, most of the previous methods were not easy to be implemented in the electromechanical recording. For this reason, in this study, a union method of microelectrode array and atomic force microscope was proposed. With this method, the extracellular field potential and beating force of cardiomyocytes were recorded simultaneously with a low root-mean-square noise level of 11.67 μV and 60 pN. Drug tests were conducted to verify the feasibility of the experimental platform. The experimental results suggested the method would be useful for the cardiovascular drug screening and refinement of the computational cardiomyocyte models. It may be valuable for exploring the functional mechanisms of cardiomyocytes and skeletal muscle cells under physiological or pathological conditions.
Collapse
Affiliation(s)
- Jian Tian
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, 310027, People's Republic of China.,Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Chunlong Tu
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, 310027, People's Republic of China.,Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Bobo Huang
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, 310027, People's Republic of China.,Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yitao Liang
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, 310027, People's Republic of China.,Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jian Zhou
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, 310027, People's Republic of China.,Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, 310027, People's Republic of China. .,Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China. .,State Key Laboratory of CAD and CG, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
16
|
Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention. Ann Biomed Eng 2016; 44:2642-60. [PMID: 27138523 DOI: 10.1007/s10439-016-1628-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/22/2016] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications.
Collapse
|
17
|
Abstract
The heart pumps blood to maintain circulation and ensure the delivery of oxygenated blood to all the organs of the body. Mechanics play a critical role in governing and regulating heart function under both normal and pathological conditions. Biological processes and mechanical stress are coupled together in regulating myocyte function and extracellular matrix structure thus controlling heart function. Here, we offer a brief introduction to the biomechanics of left ventricular function and then summarize recent progress in the study of the effects of mechanical stress on ventricular wall remodeling and cardiac function as well as the effects of wall mechanical properties on cardiac function in normal and dysfunctional hearts. Various mechanical models to determine wall stress and cardiac function in normal and diseased hearts with both systolic and diastolic dysfunction are discussed. The results of these studies have enhanced our understanding of the biomechanical mechanism in the development and remodeling of normal and dysfunctional hearts. Biomechanics provide a tool to understand the mechanism of left ventricular remodeling in diastolic and systolic dysfunction and guidance in designing and developing new treatments.
Collapse
Affiliation(s)
- Andrew P. Voorhees
- Department of Mechanical Engineering, The University of Texas at San Antonio, Biomedical Engineering Program, UTSA-UTHSCSA
| | - Hai-Chao Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, Biomedical Engineering Program, UTSA-UTHSCSA
| |
Collapse
|
18
|
Solovyova O, Katsnelson LB, Konovalov PV, Kursanov AG, Vikulova NA, Kohl P, Markhasin VS. The cardiac muscle duplex as a method to study myocardial heterogeneity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:115-28. [PMID: 25106702 PMCID: PMC4210666 DOI: 10.1016/j.pbiomolbio.2014.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/25/2014] [Indexed: 12/14/2022]
Abstract
This paper reviews the development and application of paired muscle preparations, called duplex, for the investigation of mechanisms and consequences of intra-myocardial electro-mechanical heterogeneity. We illustrate the utility of the underlying combined experimental and computational approach for conceptual development and integration of basic science insight with clinically relevant settings, using previously published and new data. Directions for further study are identified.
Collapse
Affiliation(s)
- O Solovyova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, 106 Pervomayskaya Str, Ekaterinburg 620049, Russia; Ural Federal University, 19 Mira Str, Ekaterinburg 620002, Russia.
| | - L B Katsnelson
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, 106 Pervomayskaya Str, Ekaterinburg 620049, Russia
| | - P V Konovalov
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, 106 Pervomayskaya Str, Ekaterinburg 620049, Russia
| | - A G Kursanov
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, 106 Pervomayskaya Str, Ekaterinburg 620049, Russia; Ural Federal University, 19 Mira Str, Ekaterinburg 620002, Russia
| | - N A Vikulova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, 106 Pervomayskaya Str, Ekaterinburg 620049, Russia
| | - P Kohl
- National Heart and Lung Institute, Imperial College of London, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK; Department of Computer Sciences, University of Oxford, UK
| | - V S Markhasin
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, 106 Pervomayskaya Str, Ekaterinburg 620049, Russia; Ural Federal University, 19 Mira Str, Ekaterinburg 620002, Russia
| |
Collapse
|
19
|
Kuijpers NHL, Hermeling E, Lumens J, ten Eikelder HMM, Delhaas T, Prinzen FW. Mechano-electrical coupling as framework for understanding functional remodeling during LBBB and CRT. Am J Physiol Heart Circ Physiol 2014; 306:H1644-59. [DOI: 10.1152/ajpheart.00689.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is not understood why, after onset of left bundle-branch block (LBBB), acute worsening of cardiac function is followed by a further gradual deterioration of function, whereas most adverse cardiac events lead to compensatory adaptations. We investigated whether mechano-electrical coupling (MEC) can explain long-term remodeling with LBBB and cardiac resynchronization therapy (CRT). To this purpose, we used an integrative modeling approach relating local ventricular electrophysiology, calcium handling, and excitation-contraction coupling to global cardiovascular mechanics and hemodynamics. Each ventricular wall was composed of multiple mechanically and electrically coupled myocardial segments. MEC was incorporated by allowing adaptation of L-type Ca2+ current aiming at minimal dispersion of local external work, an approach that we previously applied to replicate T-wave memory in a synchronous heart after a period of asynchronous activation. LBBB instantaneously decreased left-ventricular stroke work and increased end-diastolic volume. During sustained LBBB, MEC reduced intraventricular dispersion of mechanical workload and repolarization. However, MEC-induced reduction in contractility in late-activated regions was larger than the contractility increase in early-activated regions, resulting in further decrease of stroke work and increase of end-diastolic volume. Upon the start of CRT, stroke work increased despite a wider dispersion of mechanical workload. During sustained CRT, MEC-induced reduction in dispersion of workload and repolarization coincided with a further reduction in end-diastolic volume. In conclusion, MEC may represent a useful framework for better understanding the long-term changes in cardiac electrophysiology and contraction following LBBB as well as CRT.
Collapse
Affiliation(s)
- Nico H. L. Kuijpers
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Evelien Hermeling
- Department of Radiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Huub M. M. ten Eikelder
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Frits W. Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
20
|
de Oliveira BL, Rocha BM, Barra LPS, Toledo EM, Sundnes J, Weber dos Santos R. Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2013; 29:1323-1337. [PMID: 23794390 DOI: 10.1002/cnm.2570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/08/2012] [Indexed: 06/02/2023]
Abstract
Mechanical deformation affects the electrical activity of the heart through multiple feedback loops. The purpose of this work is to study the effect of deformation on transmural dispersion of repolarization and on surface electrograms using an in silico human ventricular wedge. To achieve this purpose, we developed a strongly coupled electromechanical cell model by coupling a human left ventricle electrophysiology model and an active contraction model reparameterized for human cells. This model was then embedded in tissue simulations on the basis of bidomain equations and nonlinear solid mechanics. The coupled model was used to evaluate effects of mechanical deformation on important features of repolarization and electrograms. Our results indicate an increase in the T-wave amplitude of the surface electrograms in simulations that account for the effects of cardiac deformation. This increased T-wave amplitude can be explained by changes to the coupling between neighboring myocytes, also known as electrotonic effect. The thickening of the ventricular wall during repolarization contributes to the decoupling of cells in the transmural direction, enhancing action potential heterogeneity and increasing both transmural repolarization dispersion and T-wave amplitude of surface electrograms. The simulations suggest that a considerable percentage of the T-wave amplitude (15%) may be related to cardiac deformation.
Collapse
Affiliation(s)
- B L de Oliveira
- Simula Research Laboratory, Lysaker, Norway; Graduate Program in Computational Modeling of the Federal University of Juiz de Fora, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Mullins PD, Bondarenko VE. A mathematical model of the mouse ventricular myocyte contraction. PLoS One 2013; 8:e63141. [PMID: 23671664 PMCID: PMC3650013 DOI: 10.1371/journal.pone.0063141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/29/2013] [Indexed: 12/05/2022] Open
Abstract
Mathematical models of cardiac function at the cellular level include three major components, such as electrical activity, Ca2+ dynamics, and cellular shortening. We developed a model for mouse ventricular myocyte contraction which is based on our previously published comprehensive models of action potential and Ca2+ handling mechanisms. The model was verified with extensive experimental data on mouse myocyte contraction at room temperature. In the model, we implemented variable sarcomere length and indirect modulation of the tropomyosin transition rates by Ca2+ and troponin. The resulting model described well steady-state force-calcium relationships, dependence of the contraction force on the sarcomere length, time course of the contraction force and myocyte shortening, frequency dependence of the contraction force and cellular contraction, and experimentally measured derivatives of the myocyte length variation. We emphasized the importance of the inclusion of variable sarcomere length into a model for ventricular myocyte contraction. Differences in contraction force and cell shortening for epicardial and endocardial ventricular myocytes were investigated. Model applicability for the experimental studies and model limitations were discussed.
Collapse
Affiliation(s)
- Paula D. Mullins
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, United States of America
| | - Vladimir E. Bondarenko
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, United States of America
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
22
|
Land S, Niederer SA, Aronsen JM, Espe EKS, Zhang L, Louch WE, Sjaastad I, Sejersted OM, Smith NP. An analysis of deformation-dependent electromechanical coupling in the mouse heart. J Physiol 2012; 590:4553-69. [PMID: 22615436 PMCID: PMC3477757 DOI: 10.1113/jphysiol.2012.231928] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/17/2012] [Indexed: 01/20/2023] Open
Abstract
To investigate the effects of the coupling between excitation and contraction on whole-organ function, we have developed a novel biophysically based multiscale electromechanical model of the murine heart. Through comparison with a comprehensive in vivo experimental data set, we show good agreement with pressure and volume measurements at both physiological temperatures and physiological pacing frequencies. This whole-organ model was used to investigate the effects of material and haemodynamic properties introduced at the tissue level, as well as emergent function of our novel cell contraction model. Through a comprehensive sensitivity analysis at both the cellular and whole organ level, we demonstrate the sensitivity of the model's results to its parameters and the constraining effect of experimental data. These results demonstrate the fundamental importance of length- and velocity-dependent feedback to the cellular scale for whole-organ function, and we show that a strong velocity dependence of tension is essential for explaining the differences between measured single cell tension and whole-organ pressure transients.
Collapse
Affiliation(s)
- Sander Land
- Department of Computer Science, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The link between experimental data and biophysically based mathematical models is key to computational simulation meeting its potential to provide physiological insight. However, despite the importance of this link, scrutiny and analysis of the processes by which models are parameterised from data are currently lacking. While this situation is common to many areas of physiological modelling, to provide a concrete context, we use examples drawn from detailed models of cardiac electro-mechanics. Using this biophysically detailed cohort of models we highlight the specific issues of model parameterization and propose this process can be separated into three stages: observation, fitting and validation. Finally, future research challenges and directions in this area are discussed.
Collapse
Affiliation(s)
- S A Niederer
- Imaging Sciences & Biomedical Engineering Division, King's College London, London, UK
| | | |
Collapse
|
24
|
Wall ST, Guccione JM, Ratcliffe MB, Sundnes JS. Electromechanical feedback with reduced cellular connectivity alters electrical activity in an infarct injured left ventricle: a finite element model study. Am J Physiol Heart Circ Physiol 2011; 302:H206-14. [PMID: 22058157 DOI: 10.1152/ajpheart.00272.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myocardial infarction (MI) significantly alters the structure and function of the heart. As abnormal strain may drive heart failure and the generation of arrhythmias, we used computational methods to simulate a left ventricle with an MI over the course of a heartbeat to investigate strains and their potential implications to electrophysiology. We created a fully coupled finite element model of myocardial electromechanics consisting of a cellular physiological model, a bidomain electrical diffusion solver, and a nonlinear mechanics solver. A geometric mesh built from magnetic resonance imaging (MRI) measurements of an ovine left ventricle suffering from a surgically induced anteroapical infarct was used in the model, cycled through the cardiac loop of inflation, isovolumic contraction, ejection, and isovolumic relaxation. Stretch-activated currents were added as a mechanism of mechanoelectric feedback. Elevated fiber and cross fiber strains were observed in the area immediately adjacent to the aneurysm throughout the cardiac cycle, with a more dramatic increase in cross fiber strain than fiber strain. Stretch-activated channels decreased action potential (AP) dispersion in the remote myocardium while increasing it in the border zone. Decreases in electrical connectivity dramatically increased the changes in AP dispersion. The role of cross fiber strain in MI-injured hearts should be investigated more closely, since results indicate that these are more highly elevated than fiber strain in the border of the infarct. Decreases in connectivity may play an important role in the development of altered electrophysiology in the high-stretch regions of the heart.
Collapse
Affiliation(s)
- Samuel T Wall
- Center for Biomedical Computing, Simula Research Laboratory, Oslo, Norway.
| | | | | | | |
Collapse
|
25
|
Trayanova NA, Rice JJ. Cardiac electromechanical models: from cell to organ. Front Physiol 2011; 2:43. [PMID: 21886622 PMCID: PMC3154390 DOI: 10.3389/fphys.2011.00043] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 07/12/2011] [Indexed: 11/13/2022] Open
Abstract
The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computational physiology and medicine. This review focuses on electromechanical (EM) models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single-cell models and the second half addresses organ models. At the subcellular level, myofilament models represent actin–myosin interaction and Ca-based activation. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered to be the cellular basis of the Frank–Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of the field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction–diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and defibrillation.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University Baltimore, MD, USA
| | | |
Collapse
|
26
|
Campbell SG, McCulloch AD. Multi-scale computational models of familial hypertrophic cardiomyopathy: genotype to phenotype. J R Soc Interface 2011; 8:1550-61. [PMID: 21831889 DOI: 10.1098/rsif.2011.0184] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Familial hypertrophic cardiomyopathy (FHC) is an inherited disorder affecting roughly one in 500 people. Its hallmark is abnormal thickening of the ventricular wall, leading to serious complications that include heart failure and sudden cardiac death. Treatment is complicated by variation in the severity, symptoms and risks for sudden death within the patient population. Nearly all of the genetic lesions associated with FHC occur in genes encoding sarcomeric proteins, indicating that defects in cardiac muscle contraction underlie the condition. Detailed biophysical data are increasingly available for computational analyses that could be used to predict heart phenotypes based on genotype. These models must integrate the dynamic processes occurring in cardiac cells with properties of myocardial tissue, heart geometry and haemodynamic load in order to predict strain and stress in the ventricular walls and overall pump function. Recent advances have increased the biophysical detail in these models at the myofilament level, which will allow properties of FHC-linked mutant proteins to be accurately represented in simulations of whole heart function. The short-term impact of these models will be detailed descriptions of contractile dysfunction and altered myocardial strain patterns at the earliest stages of the disease-predictions that could be validated in genetically modified animals. Long term, these multi-scale models have the potential to improve clinical management of FHC through genotype-based risk stratification and personalized therapy.
Collapse
Affiliation(s)
- Stuart G Campbell
- Department of Bioengineering, University of California San Diego, , 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | | |
Collapse
|
27
|
Provost J, Lee WN, Fujikura K, Konofagou EE. Imaging the electromechanical activity of the heart in vivo. Proc Natl Acad Sci U S A 2011; 108:8565-70. [PMID: 21571641 PMCID: PMC3102378 DOI: 10.1073/pnas.1011688108] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cardiac conduction abnormalities remain a major cause of death and disability worldwide. However, as of today, there is no standard clinical imaging modality that can noninvasively provide maps of the electrical activation. In this paper, electromechanical wave imaging (EWI), a novel ultrasound-based imaging method, is shown to be capable of mapping the electromechanics of all four cardiac chambers at high temporal and spatial resolutions and a precision previously unobtainable in a full cardiac view in both animals and humans. The transient deformations resulting from the electrical activation of the myocardium were mapped in 2D and combined in 3D biplane ventricular views. EWI maps were acquired during five distinct conduction configurations and were found to be closely correlated to the electrical activation sequences. EWI in humans was shown to be feasible and capable of depicting the normal electromechanical activation sequence of both atria and ventricles. This validation of EWI as a direct, noninvasive, and highly translational approach underlines its potential to serve as a unique imaging tool for the early detection, diagnosis, and treatment monitoring of arrhythmias through ultrasound-based mapping of the transmural electromechanical activation sequence reliably at the point of care, and in real time.
Collapse
Affiliation(s)
- Jean Provost
- Department of Biomedical Engineering, Columbia University, New York, NY 10027; and
| | - Wei-Ning Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027; and
| | - Kana Fujikura
- Department of Radiology, Columbia University, New York, NY 10032
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY 10027; and
- Department of Radiology, Columbia University, New York, NY 10032
| |
Collapse
|
28
|
Land S, Niederer SA, Smith NP. Efficient computational methods for strongly coupled cardiac electromechanics. IEEE Trans Biomed Eng 2011; 59:1219-28. [PMID: 21303740 DOI: 10.1109/tbme.2011.2112359] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Strongly coupled cardiac electromechanical models can further our understanding of the relative importance of feedback mechanisms in the heart, but computational challenges currently remain a major obstacle, which limit their widespread use. To address this issue, we present a set of efficient computational methods including an efficient adaptive cell model integration scheme and a solution method for the monodomain equations that maintains high conduction velocity for time steps greater than 0.1 ms. We also present a novel method for increasing the efficiency of simulating electromechanical coupling, which shows a significant reduction in computational cost of the mechanical component on a personalized left ventricular geometry with an active contraction cell model reparametrized for human cells.
Collapse
Affiliation(s)
- Sander Land
- Computing Laboratory, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
29
|
Abstract
Cardiovascular diseases are among the leading causes of death in the developed world. Developing novel therapies for diseases like heart failure is crucial, but this is hampered by the high attrition rate in drug development. The withdrawal of drugs at the final hurdle of approval is mostly because of their unpredictable effects on normal cardiac rhythm. The advent of cardiac computational modeling in the last 5 decades has aided the understanding of heart function significantly. Recently, these models increasingly have been applied toward designing and understanding therapies for cardiac disease. This article will discuss how cellular models of electrophysiology, cell signaling, and metabolism have been used to investigate pharmacologic therapies for cardiac diseases including arrhythmia, ischemia, and heart failure.
Collapse
Affiliation(s)
- Robert K. Amanfu
- Department of Biomedical Engineering, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
30
|
Winslow RL, Cortassa S, O'Rourke B, Hashambhoy YL, Rice JJ, Greenstein JL. Integrative modeling of the cardiac ventricular myocyte. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:392-413. [PMID: 20865780 DOI: 10.1002/wsbm.122] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiac electrophysiology is a discipline with a rich 50-year history of experimental research coupled with integrative modeling which has enabled us to achieve a quantitative understanding of the relationships between molecular function and the integrated behavior of the cardiac myocyte in health and disease. In this paper, we review the development of integrative computational models of the cardiac myocyte. We begin with a historical overview of key cardiac cell models that helped shape the field. We then narrow our focus to models of the cardiac ventricular myocyte and describe these models in the context of their subcellular functional systems including dynamic models of voltage-gated ion channels, mitochondrial energy production, ATP-dependent and electrogenic membrane transporters, intracellular Ca dynamics, mechanical contraction, and regulatory signal transduction pathways. We describe key advances and limitations of the models as well as point to new directions for future modeling research. WIREs Syst Biol Med 2011 3 392-413 DOI: 10.1002/wsbm.122
Collapse
Affiliation(s)
- Raimond L Winslow
- Institute of Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Kerckhoffs RCP, Campbell SG, Flaim SN, Howard EJ, Sierra-Aguado J, Mulligan LJ, McCulloch AD. Multi-scale modeling of excitation-contraction coupling in the normal and failing heart. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:4281-2. [PMID: 19963818 DOI: 10.1109/iembs.2009.5332708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Here we describe new computational models of cardiac electromechanics starting from the cellular scale and building to the tissue, organ and system scales. We summarize application to human genetic diseases (LQT1 and LQT3) and to modeling of congestive heart failure.
Collapse
Affiliation(s)
- Roy C P Kerckhoffs
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Fink M, Niederer SA, Cherry EM, Fenton FH, Koivumäki JT, Seemann G, Thul R, Zhang H, Sachse FB, Beard D, Crampin EJ, Smith NP. Cardiac cell modelling: observations from the heart of the cardiac physiome project. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 104:2-21. [PMID: 20303361 DOI: 10.1016/j.pbiomolbio.2010.03.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/06/2009] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
Abstract
In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field.
Collapse
Affiliation(s)
- Martin Fink
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3JP, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Obrzut S, Jamshidi N, Karimi A, Birgersdotter-Green U, Hoh C. Imaging and modeling of myocardial metabolism. J Cardiovasc Transl Res 2010; 3:384-96. [PMID: 20559785 PMCID: PMC2899022 DOI: 10.1007/s12265-010-9170-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/25/2010] [Indexed: 11/29/2022]
Abstract
Current imaging methods have focused on evaluation of myocardial anatomy and function. However, since myocardial metabolism and function are interrelated, metabolic myocardial imaging techniques, such as positron emission tomography, single photon emission tomography, and magnetic resonance spectroscopy present novel opportunities for probing myocardial pathology and developing new therapeutic approaches. Potential clinical applications of metabolic imaging include hypertensive and ischemic heart disease, heart failure, cardiac transplantation, as well as cardiomyopathies. Furthermore, response to therapeutic intervention can be monitored using metabolic imaging. Analysis of metabolic data in the past has been limited, focusing primarily on isolated metabolites. Models of myocardial metabolism, however, such as the oxygen transport and cellular energetics model and constraint-based metabolic network modeling, offer opportunities for evaluation interactions between greater numbers of metabolites in the heart. In this review, the roles of metabolic myocardial imaging and analysis of metabolic data using modeling methods for expanding our understanding of cardiac pathology are discussed.
Collapse
Affiliation(s)
- Sebastian Obrzut
- Department of Radiology, University of California San Diego, San Diego, CA, USA.
| | | | | | | | | |
Collapse
|
34
|
Hopenfeld B, Ashikaga H. Origin of the electrocardiographic U wave: effects of M cells and dynamic gap junction coupling. Ann Biomed Eng 2010; 38:1060-70. [PMID: 20127511 DOI: 10.1007/s10439-010-9941-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 01/19/2010] [Indexed: 11/28/2022]
Abstract
The electrophysiological basis underlying the genesis of the U wave remains uncertain. Previous U wave modeling studies have generally been restricted to 1-D or 2-D geometries, and it is not clear whether the U waves generated by these models would match clinically observed U wave body surface potential distributions (BSPDs). We investigated the role of M cells and transmural dispersion of repolarization (TDR) in a 2-D, fully ionic heart tissue slice model and a realistic 3-D heart/torso model. In the 2-D model, while a U wave was present in the ECG with dynamic gap junction conductivity, the ECG with static gap junctions did not exhibit a U wave. In the 3-D model, TDR was necessary to account for the clinically observed potential minimum in the right shoulder area during the U wave peak. Peak T wave simulations were also run. Consistent with at least some clinical findings, the U wave body surface maximum was shifted to the right compared to the T wave maximum. We conclude that TDR can account for the clinically observed U wave BSPD, and that dynamic gap junction conductivity can result in realistic U waves generated by M cells.
Collapse
Affiliation(s)
- Bruce Hopenfeld
- Angel Medical Systems, Inc., 1163 Shrewsbury Avenue, Shrewsbury, NJ 07702, USA.
| | | |
Collapse
|
35
|
Tracqui P, Ohayon J. An integrated formulation of anisotropic force-calcium relations driving spatio-temporal contractions of cardiac myocytes. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:4887-4905. [PMID: 19884185 DOI: 10.1098/rsta.2009.0149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Isolated cardiac myocytes exhibit spontaneous patterns of rhythmic contraction, driven by intracellular calcium waves. In order to study the coupling between spatio-temporal calcium dynamics and cell contraction in large deformation regimes, a new strain-energy function, describing the influence of sarcomere length on the calcium-dependent generation of active intracellular stresses, is proposed. This strain-energy function includes anisotropic passive and active contributions that were first validated separately from experimental stress-strain curves and stress-sarcomere length curves, respectively. An extended validation of this formulation was then conducted by considering this strain-energy function as the core of an integrated mechano-chemical three-dimensional model of cardiac myocyte contraction, where autocatalytic intracellular calcium dynamics were described by a representative two-variable model able to generate realistic intracellular calcium waves similar to those observed experimentally. Finite-element simulations of the three-dimensional cell model, conducted for different intracellular locations of triggering calcium sparks, explained very satisfactorily, both qualitatively and quantitatively, the contraction patterns of cardiac myocytes observed by time-lapse videomicroscopy. This integrative approach of the mechano-chemical couplings driving cardiac myocyte contraction provides a comprehensive framework for analysing active stress regulation and associated mechano-transduction processes that contribute to the efficiency of cardiac cell contractility in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Philippe Tracqui
- Laboratoire Techniques de l'Ingéniere Médicale et da Complexité - Informatique, Mathématiques et Applications de Grenoble, Equipe DynaCell, Unité Mixte de Recherche, Centre National de Recherche Scientifique 5525, Institut d'Ingénierie et de l'Information de Santé (In3S), Université Joseph Fourier, Faculté de Médecine de Grenoble, 38706 La Tronche Cedex, France.
| | | |
Collapse
|
36
|
Campbell SG, Howard E, Aguado-Sierra J, Coppola BA, Omens JH, Mulligan LJ, McCulloch AD, Kerckhoffs RCP. Effect of transmurally heterogeneous myocyte excitation-contraction coupling on canine left ventricular electromechanics. Exp Physiol 2009; 94:541-52. [PMID: 19251984 DOI: 10.1113/expphysiol.2008.044057] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The excitation-contraction coupling properties of cardiac myocytes isolated from different regions of the mammalian left ventricular wall have been shown to vary considerably, with uncertain effects on ventricular function. We embedded a cell-level excitation-contraction coupling model with region-dependent parameters within a simple finite element model of left ventricular geometry to study effects of electromechanical heterogeneity on local myocardial mechanics and global haemodynamics. This model was compared with one in which heterogeneous myocyte parameters were assigned randomly throughout the mesh while preserving the total amount of each cell subtype. The two models displayed nearly identical transmural patterns of fibre and cross-fibre strains at end-systole, but showed clear differences in fibre strains at earlier points during systole. Haemodynamic function, including peak left ventricular pressure, maximal rate of left ventricular pressure development and stroke volume, were essentially identical in the two models. These results suggest that in the intact ventricle heterogeneously distributed myocyte subtypes primarily impact local deformation of the myocardium, and that these effects are greatest during early systole.
Collapse
Affiliation(s)
- Stuart G Campbell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kohl P, Coveney P, Clapworthy G, Viceconti M. The virtual physiological human. Editorial. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:3223-3224. [PMID: 18593665 DOI: 10.1098/rsta.2008.0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
38
|
Stelzer JE, Norman HS, Chen PP, Patel JR, Moss RL. Transmural variation in myosin heavy chain isoform expression modulates the timing of myocardial force generation in porcine left ventricle. J Physiol 2008; 586:5203-14. [PMID: 18787035 DOI: 10.1113/jphysiol.2008.160390] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recent studies have shown that the sequence and timing of mechanical activation of myocardium vary across the ventricular wall. However, the contributions of variable expression of myofilament protein isoforms in mediating the timing of myocardial activation in ventricular systole are not well understood. To assess the functional consequences of transmural differences in myofilament protein expression, we studied the dynamic mechanical properties of multicellular skinned preparations isolated from the sub-endocardial and sub-epicardial regions of the porcine ventricular midwall. Compared to endocardial fibres, epicardial fibres exhibited significantly faster rates of stretch activation and force redevelopment (k(tr)), although the amount of force produced at a given [Ca2+] was not significantly different. Consistent with these results, SDS-PAGE analysis revealed significantly elevated expression of alpha myosin heavy chain (MHC) isoform in epicardial fibres (13 +/- 1%) versus endocardial fibres (3 +/- 1%). Linear regression analysis revealed that the apparent rates of delayed force development and force decay following stretch correlated with MHC isoform expression (r2 = 0.80 and r2 = 0.73, respectively, P < 0.05). No differences in the relative abundance or phosphorylation status of other myofilament proteins were detected. These data show that transmural differences in MHC isoform expression contribute to regional differences in dynamic mechanical function of porcine left ventricles, which in turn modulate the timing of force generation across the ventricular wall and work production during systole.
Collapse
Affiliation(s)
- Julian E Stelzer
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, 601 Science Drive, Madison, WI 53711, USA.
| | | | | | | | | |
Collapse
|
39
|
Kerckhoffs RCP, McCulloch AD, Omens JH, Mulligan LJ. Effects of biventricular pacing and scar size in a computational model of the failing heart with left bundle branch block. Med Image Anal 2008; 13:362-9. [PMID: 18675578 DOI: 10.1016/j.media.2008.06.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/21/2008] [Accepted: 06/16/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To study the impact of biventricular pacing (BiV) and scar size on left ventricular (LV) regional and global function using a detailed finite element model of three-dimensional electromechanics in the failing canine heart. BACKGROUND Cardiac resynchronization therapy (CRT) clinical trials have demonstrated that up to 30% of patients may be classified as non-responders. The presence of a scar appears to contribute to those that do not respond to CRT. A recent study in patients with myocardial scar showed that LV dyssynchrony was the sole independent predictor of reverse remodeling, and not scar location or size. METHODS Two activation sequences were simulated: left bundle branch block (LBBB) and acute simultaneous BiV (with leads in the left and right ventricle) in hearts with chronic scars of various sizes. The dependence of regional function (mean fiber ejection strain, variance of fiber isovolumic strain and fraction of tissue stretched during ejection) and global function (left ventricular dP/dt(max), ejection fraction, stroke work) on scar size and pacing protocol was tested. RESULTS Global function and regional function averaged over the whole LV during LBBB and BiV decreased as a function of scar size. In the non-scarred regions, however, regional function was largely independent of scar size for a fixed pacing site. CONCLUSIONS The model results suggest that uniformity of mechanical contraction in non-scarred regions in the failing heart during biventricular pacing is independent of scar size for a fixed pacing site.
Collapse
Affiliation(s)
- Roy C P Kerckhoffs
- Department of Bioengineering, The Whitaker Institute for Biomedical Engineering, University of California, San Diego, La Jolla, CA 92093-0412, USA.
| | | | | | | |
Collapse
|