1
|
Kumar Singh A, Das C, Indra A. Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
2
|
A review on synthesis, modification method, and challenges of light-driven H2 evolution using g-C3N4-based photocatalyst. Adv Colloid Interface Sci 2022; 307:102722. [DOI: 10.1016/j.cis.2022.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022]
|
3
|
Gujral HS, Singh G, Baskar AV, Guan X, Geng X, Kotkondawar AV, Rayalu S, Kumar P, Karakoti A, Vinu A. Metal nitride-based nanostructures for electrochemical and photocatalytic hydrogen production. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:76-119. [PMID: 35309252 PMCID: PMC8928826 DOI: 10.1080/14686996.2022.2029686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 05/19/2023]
Abstract
The over-dependence on fossil fuels is one of the critical issues to be addressed for combating greenhouse gas emissions. Hydrogen, one of the promising alternatives to fossil fuels, is renewable, carbon-free, and non-polluting gas. The complete utilization of hydrogen in every sector ranging from small to large scale could hugely benefit in mitigating climate change. One of the key aspects of the hydrogen sector is its production via cost-effective and safe ways. Electrolysis and photocatalysis are well-known processes for hydrogen production and their efficiency relies on electrocatalysts, which are generally noble metals. The usage of noble metals as catalysts makes these processes costly and their scarcity is also a limiting factor. Metal nitrides and their porous counterparts have drawn considerable attention from researchers due to their good promise for hydrogen production. Their properties such as active metal centres, nitrogen functionalities, and porous features such as surface area, pore-volume, and tunable pore size could play an important role in electrochemical and photocatalytic hydrogen production. This review focuses on the recent developments in metal nitrides from their synthesis methods point of view. Much attention is given to the emergence of new synthesis techniques, methods, and processes of synthesizing the metal nitride nanostructures. The applications of electrochemical and photocatalytic hydrogen production are summarized. Overall, this review will provide useful information to researchers working in the field of metal nitrides and their application for hydrogen production.
Collapse
Affiliation(s)
- Harpreet Singh Gujral
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, 2308, Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, 2308, Australia
| | - Arun V. Baskar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, 2308, Australia
| | - Xun Geng
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, 2308, Australia
| | - Abhay V. Kotkondawar
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
| | - Sadhana Rayalu
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, 2308, Australia
| |
Collapse
|
4
|
Pareek A, Borse PH. Hurdles and recent developments for CdS and chalcogenide‐based electrode in “Solar electro catalytic” hydrogen generation: A review. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Alka Pareek
- Center For Nanomaterials International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) Opp Balapur Village, Airport Road Hyderabad Telangana 500005 India
| | - Pramod H. Borse
- Center For Nanomaterials International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) Opp Balapur Village, Airport Road Hyderabad Telangana 500005 India
| |
Collapse
|
5
|
Bellani S, Antognazza MR, Bonaccorso F. Carbon-Based Photocathode Materials for Solar Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801446. [PMID: 30221413 DOI: 10.1002/adma.201801446] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Hydrogen is considered a promising environmentally friendly energy carrier for replacing traditional fossil fuels. In this context, photoelectrochemical cells effectively convert solar energy directly to H2 fuel by water photoelectrolysis, thereby monolitically combining the functions of both light harvesting and electrolysis. In such devices, photocathodes and photoanodes carry out the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively. Here, the focus is on photocathodes for HER, traditionally based on metal oxides, III-V group and II-VI group semiconductors, silicon, and copper-based chalcogenides as photoactive material. Recently, carbon-based materials have emerged as reliable alternatives to the aforementioned materials. A perspective on carbon-based photocathodes is provided here, critically analyzing recent research progress and outlining the major guidelines for the development of efficient and stable photocathode architectures. In particular, the functional role of charge-selective and protective layers, which enhance both the efficiency and the durability of the photocathodes, is discussed. An in-depth evaluation of the state-of-the-art fabrication of photocathodes through scalable, high-troughput, cost-effective methods is presented. The major aspects on the development of light-trapping nanostructured architectures are also addressed. Finally, the key challenges on future research directions in terms of potential performance and manufacturability of photocathodes are analyzed.
Collapse
Affiliation(s)
- Sebastiano Bellani
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133, Milan, Italy
| | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- BeDimensional Srl, via Albisola 121, 16163, Genova, Italy
| |
Collapse
|
6
|
Caux M, Menard H, AlSalik YM, Irvine JTS, Idriss H. Photo-catalytic hydrogen production over Au/g-C 3N 4: effect of gold particle dispersion and morphology. Phys Chem Chem Phys 2019; 21:15974-15987. [PMID: 31294442 DOI: 10.1039/c9cp02241d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Metal/semiconductor interactions affect electron transfer rates and this is central to photocatalytic hydrogen ion reduction. While this interaction has been studied in great detail on metal oxide semiconductors, not much is known of Au particles on top of polymeric semiconductors. The effects of gold nanoparticle size and dispersion on top of g-C3N4 were studied by core and valence level spectroscopy and transmission electron microscopy in addition to catalytic tests. The as-prepared, non-calcined catalysts displayed Au particles with uniform dimension (mean particle size = 1.8 nm) and multiple electronic states: XPS Au 4f7/2 lines at 84.9 and 87.1 eV (each with a spin-orbit splitting of 3.6-3.7 eV). These particles, which did not show localized surface plasmon resonance (LSPR), before the reaction, doubled in size after the reaction giving a pronounced LSPR at about 550 nm. The effect of the heating environment on these particles (in air or in H2) was further investigated. While heating in H2 gave Au nanoparticles of different shapes, heating under O2 gave exclusively spherical particles. Similar activity towards photocatalytic hydrogen ion reduction under UV excitation was seen in both cases, however. XPS Au 4f analyses indicated that an increase in deposition time, during catalyst preparation, resulted in an increase in the initial fraction of oxidized gold particles, which were easily reduced under hydrogen. The valence band region for Au/gC3N4 was further studied in an effort to compare it to what is already known for Au/metal oxide semiconductors. A shift of over 2 eV for the Au 5d doublets was noticed between reduced and oxidized gold particles with mean particle sizes between 2 and 6 nm, which is consistent with the final state effect. A narrow range of gold loading for optimal catalytic performance was seen, where it seems that a density of one Au particle per 10 × 10 nm2 is the most suitable. Particle size and shape had a minor effect on performance, which may indicate the absence of a plasmonic effect on the reaction rate.
Collapse
Affiliation(s)
- M Caux
- School of Chemistry, University of St Andrews, St Andrews, UK.
| | - H Menard
- Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee, UK
| | - Y M AlSalik
- SABIC-Corporate Research and Development (CRD), KAUST, Thuwal, Saudi Arabia.
| | - J T S Irvine
- School of Chemistry, University of St Andrews, St Andrews, UK.
| | - H Idriss
- SABIC-Corporate Research and Development (CRD), KAUST, Thuwal, Saudi Arabia.
| |
Collapse
|
7
|
Le L, Wu Y, Zhou Z, Wang H, Xiong R, Shi J. Cu2O clusters decorated on flower-like TiO2 nanorod array film for enhanced hydrogen production under solar light irradiation. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.08.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Ganesh RS, Durgadevi E, Navaneethan M, Sharma SK, Binitha H, Ponnusamy S, Muthamizhchelvan C, Hayakawa Y. Visible light induced photocatalytic degradation of methylene blue and rhodamine B from the catalyst of CdS nanowire. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.06.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Impact of the annealing temperature on Pt/g-C 3 N 4 structure, activity and selectivity between photodegradation and water splitting. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.11.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Li X, Tang C, Zheng Q, Shao Y, Li D. Amorphous MoSx on CdS nanorods for highly efficient photocatalytic hydrogen evolution. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2016.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
BANICA R, LINUL P, MOSOARCA C. Synthesis of PdS/ZnS--CdS-type photocatalysts using ZnS as sulphide source. Turk J Chem 2017. [DOI: 10.3906/kim-1702-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
12
|
King N, Boltersdorf J, Maggard PA, Wong-Ng W. Polymorphism and Structural Distortions of Mixed-Metal Oxide Photocatalysts Constructed with α-U 3O 8 Types of Layers. CRYSTALS 2017; 7:10.3390/cryst7050145. [PMID: 39439762 PMCID: PMC11494910 DOI: 10.3390/cryst7050145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of mixed-metal oxide structures based on the stacking of α-U3O8 type pentagonal bipyramid layers have been investigated for symmetry lowering distortions and photocatalytic activity. The family of structures contains the general compositionA m + ( ( n + 1 ) / m ) B ( 3 n + 1 ) O ( 8 n + 3 ) (e.g., A = Ag, Bi, Ca, Cu, Ce, Dy, Eu, Gd K, La, Nd, Pb, Pr, Sr, Y; B = Nb, Ta; m = 1 - 3 ; n = 1 , 1.5, 2), and the edge-shared BO7 pentagonal pyramid single, double, and/or triple layers are differentiated by the average thickness, (i.e., 1 ≤ n ≤ 2), of the BO7 layers and the local coordination environment of the "A" site cations. Temperature dependent polymorphism has been investigated for structures containing single layered ( n = 1 ) monovalent ( m = 1 ) "A" site cations (e.g., Ag2Nb4O11, Na2Nb4O11, and Cu2Ta4O11). Furthermore, symmetry lowering distortions were observed for the Pb ion-exchange synthesis of Ag2Ta4O11 to yield PbTa4O11. Several members within the subset of the family have been constructed with optical and electronic properties that are suitable for the conversion of solar energy to chemical fuels via water splitting.
Collapse
Affiliation(s)
- Nacole King
- National Institute for Standards and Technology, Materials Measurement Science Division, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Jonathan Boltersdorf
- United States Army Research Laboratory, Sensors and Electron Devices Directorate, Adelphi, MD 20783, USA
| | - Paul A. Maggard
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695, USA
| | - Winnie Wong-Ng
- National Institute for Standards and Technology, Materials Measurement Science Division, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
13
|
Lv Z, Mahmood N, Tahir M, Pan L, Zhang X, Zou JJ. Fabrication of zero to three dimensional nanostructured molybdenum sulfides and their electrochemical and photocatalytic applications. NANOSCALE 2016; 8:18250-18269. [PMID: 27761550 DOI: 10.1039/c6nr06836g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Transition metal dichalcogenides (TMDs) are emerging as promising materials, particularly for electrochemical and photochemical catalytic applications, and among them molybdenum sulfides have received tremendous attention due to their novel electronic and optoelectronic characteristics. Several review articles have summarized the recent progress on TMDs but no critical and systematic summary exists about the nanoscale fabrication of MoS2 with different dimensional morphologies. In this review article, first we will summarize the recent progress on the morphological tuning and structural evolution of MoS2 from zero-dimension (0D) to 3D. Then the different engineering methods and the effect of synthesis conditions on structure and morphology of MoS2 will be discussed. Moreover, the corresponding change in the electronic and physicochemical properties of MoS2 induced by structure tuning will also be presented. Further, the applications of MoS2 in various electrochemical systems e.g. hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and supercapacitors as well as photocatalytic hydrogen evolution will be highlighted. The review article will also critically focus on challenges faced by researchers to tune the MoS2 nanostructures and the resulting electrochemical mechanism to enhance their performances. At the end, concluding remarks and future prospects for the development of better MoS2 based nanostructured materials for the aforementioned applications will be presented.
Collapse
Affiliation(s)
- Zhe Lv
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Nasir Mahmood
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China. and Center of Micro-Nano Functional Materials and Devices, School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Muhammad Tahir
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China. and Department of Physics, The University of Lahore, 53700, Pakistan
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| |
Collapse
|
14
|
Ma X, He D, Jones AM, Collins RN, Waite TD. Reductive reactivity of borohydride- and dithionite-synthesized iron-based nanoparticles: A comparative study. JOURNAL OF HAZARDOUS MATERIALS 2016; 303:101-110. [PMID: 26513569 DOI: 10.1016/j.jhazmat.2015.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
In this study sodium dithionite (NaS2O4) and sodium borohydride (NaBH4) were employed as reducing agents for the synthesis of nanosized iron-based particles. The particles formed using NaBH4 (denoted nFe(BH4)) principally contained (as expected) Fe(0) according to XAS and XRD analyses while the particles synthesized using NaS2O4, (denoted nFe(S2O4)) were dominated by the mixed Fe(II)/Fe(III) mineral magnetite (Fe3O4) though with possible presence of Fe(0). The ability of both particles to reduce trichloroethylene (TCE) under analogous conditions demonstrated remarkable differences with nFe(BH4) resulting in complete reduction of 1.5mM of TCE in 2h while nFe(S2O4) were unable to effect complete reduction of TCE in 120 h. Moreover, acetylene was the major reaction product formed in the presence of nFe(S2O4) while the major reaction product formed following reaction with nFe(BH4) was ethylene, which was further reduced to ethane as the reaction proceeded. Considering that effective Pd reduction to Pd(0) requires the presence of Fe(0), this is consistent with our finding that Fe(0) is not the dominant phase formed when employing dithionite as a reducing agent under the conditions employed in this study.
Collapse
Affiliation(s)
- Xiaoming Ma
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Di He
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Adele M Jones
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard N Collins
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
15
|
Gong H, Ma R, Mao F, Liu K, Cao H, Yan H. Light-induced spatial separation of charges toward different crystal facets of square-like WO3. Chem Commun (Camb) 2016; 52:11979-11982. [DOI: 10.1039/c6cc06363b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light-induced preferential migration of electrons and holes to the minor (200) and (020) facets and the dominant (002) facets of square-like WO3, respectively, resulted in the square-like WO3 nanoplates with Pt loaded mainly on dominant (002) facets shows higher photocatalytic activity than that Pt loaded on the minor facets.
Collapse
Affiliation(s)
- Huihua Gong
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ruirui Ma
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Fang Mao
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Kewei Liu
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Hongmei Cao
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Hongjian Yan
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
16
|
Wang F, Shifa TA, Zhan X, Huang Y, Liu K, Cheng Z, Jiang C, He J. Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. NANOSCALE 2015; 7:19764-88. [PMID: 26578154 DOI: 10.1039/c5nr06718a] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The desire for sustainable and clean energy future continues to be the concern of the scientific community. Researchers are incessantly targeting the development of scalable and abundant electro- or photo-catalysts for water splitting. Owing to their suitable band-gap and excellent stability, an enormous amount of transition-metal dichalcogenides (TMDs) with hierarchical nanostructures have been extensively explored. Herein, we present an overview of the recent research progresses in the design, characterization and applications of the TMD-based electro- or photo-catalysts for hydrogen and oxygen evolution. Emphasis is given to the layered and pyrite-phase structured TMDs encompassing semiconducting and metallic nanomaterials. Illustrative results and the future prospects are pointed out. This review will provide the readers with insight into the state-of-the-art research progresses in TMD based nanomaterials for water splitting.
Collapse
Affiliation(s)
- Fengmei Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Highfield J. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals. Molecules 2015; 20:6739-93. [PMID: 25884553 PMCID: PMC6272640 DOI: 10.3390/molecules20046739] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 01/13/2023] Open
Abstract
In the context of a future renewable energy system based on hydrogen storage as energy-dense liquid alcohols co-synthesized from recycled CO2, this article reviews advances in photocatalysis and photoelectrocatalysis that exploit solar (photonic) primary energy in relevant endergonic processes, viz., H2 generation by water splitting, bio-oxygenate photoreforming, and artificial photosynthesis (CO2 reduction). Attainment of the efficiency (>10%) mandated for viable techno-economics (USD 2.00-4.00 per kg H2) and implementation on a global scale hinges on the development of photo(electro)catalysts and co-catalysts composed of earth-abundant elements offering visible-light-driven charge separation and surface redox chemistry in high quantum yield, while retaining the chemical and photo-stability typical of titanium dioxide, a ubiquitous oxide semiconductor and performance "benchmark". The dye-sensitized TiO2 solar cell and multi-junction Si are key "voltage-biasing" components in hybrid photovoltaic/photoelectrochemical (PV/PEC) devices that currently lead the field in performance. Prospects and limitations of visible-absorbing particulates, e.g., nanotextured crystalline α-Fe2O3, g-C3N4, and TiO2 sensitized by C/N-based dopants, multilayer composites, and plasmonic metals, are also considered. An interesting trend in water splitting is towards hydrogen peroxide as a solar fuel and value-added green reagent. Fundamental and technical hurdles impeding the advance towards pre-commercial solar fuels demonstration units are considered.
Collapse
Affiliation(s)
- James Highfield
- Heterogeneous Catalysis, Institute of Chemical & Engineering Sciences (ICES, A * Star), 1 Pesek Road, Jurong Island, 627833, Singapore.
| |
Collapse
|