1
|
Hager TJ, Moore BM, Borengasser QD, Kanaherarachchi AC, Renshaw KT, Radhakrishnan S, Hall GE, Broderick BM. Buffer gas cooled ice chemistry. II. Ice generation and mm-wave detection of molecules desorbed from an ice. J Chem Phys 2024; 161:094201. [PMID: 39225516 DOI: 10.1063/5.0225903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
This second paper in a series of two describes the chirped-pulse ice apparatus that permits the detection of buffer gas cooled molecules desorbed from an energetically processed ice using broadband mm-wave rotational spectroscopy. Here, we detail the lower ice stage developed to generate ices at 4 K, which can then undergo energetic processing via UV/VUV photons or high-energy electrons and which ultimately enter the gas phase via temperature-programmed desorption (TPD). Over the course of TPD, the lower ice stage is interfaced with a buffer gas cooling cell that allows for sensitive detection via chirped-pulse rotational spectroscopy in the 60-90 GHz regime. In addition to a detailed description of the ice component of this apparatus, we show proof-of-principle experiments demonstrating the detection of H2CO products formed through irradiation of neat methanol ices or 1:1 CO + CH4 mixed ices.
Collapse
Affiliation(s)
- T J Hager
- Department of Chemistry, University of Missouri, Columbia, Missouri 65203, USA
| | - B M Moore
- Department of Chemistry, University of Missouri, Columbia, Missouri 65203, USA
| | - Q D Borengasser
- Department of Chemistry, University of Missouri, Columbia, Missouri 65203, USA
| | - A C Kanaherarachchi
- Department of Chemistry, University of Missouri, Columbia, Missouri 65203, USA
| | - K T Renshaw
- Department of Chemistry, University of Missouri, Columbia, Missouri 65203, USA
| | - S Radhakrishnan
- Department of Chemistry, University of Missouri, Columbia, Missouri 65203, USA
| | - G E Hall
- Brookhaven National Laboratory, Chemistry Division, Upton, New York 11973, USA
| | - B M Broderick
- Department of Chemistry, University of Missouri, Columbia, Missouri 65203, USA
| |
Collapse
|
2
|
Yamashita S, Imanishi A, Ueki S, Okamoto S, Kimura S, Kiriyama A. Pharmacokinetic-Pharmacodynamic Analysis of pH-Responsive Doxorubicin-Releasing Micelles with Anticancer Activity. Mol Pharm 2024; 21:3173-3185. [PMID: 38798088 DOI: 10.1021/acs.molpharmaceut.3c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This study aimed to investigate the effect of in vivo pH-responsive doxorubicin (DOX) release and the targetability of pilot molecules in folic acid (FA)-modified micelles using a pharmacokinetic-pharmacodynamic (PK-PD) model. The time profiles of intratumoral DOX concentrations in Walker256 tumor-bearing rats were monitored using a microdialysis probe, followed by compartmental analysis, to evaluate intratumoral tissue pharmacokinetics. Maximal DOX was released from micelles 350 min after the administration of pH-responsive DOX-releasing micelles. However, FA modification of the micelles shortened the time to peak drug concentration to 150 min. Additionally, FA modification resulted in a 27-fold increase in the tumor inflow rate constant. Walker256 tumor-bearing rats were subsequently treated with DOX, pH-responsive DOX-releasing micelles, and pH-responsive DOX-releasing FA-modified micelles to monitor the tumor growth-time profiles. An intratumoral threshold concentration of DOX (55-64 ng/g tumor) was introduced into the drug efficacy compartment to construct a PD model, followed by PK-PD analysis of the tumor growth-time profiles. Similar results of threshold concentration and drug potency of DOX were obtained across all three formulations. Cell proliferation was delayed as the drug delivery ability of DOX was improved. The PK model, which was developed using the microdialysis method, revealed the intratumoral pH-responsive DOX distribution profiles. This facilitated the estimation of intratumoral PK parameters. The PD model with threshold concentrations contributed to the estimation of PD parameters in the three formulations, with consistent mechanisms observed. We believe that our PK-PD model can objectively assess the contributions of pH-responsive release ability and pilot molecule targetability to pharmacological effects.
Collapse
Affiliation(s)
- Shugo Yamashita
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Azusa Imanishi
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Suzuna Ueki
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Serina Okamoto
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Shunsuke Kimura
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Akiko Kiriyama
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| |
Collapse
|
3
|
Piskulich ZA, Borkowski AK, Thompson WH. A Maxwell relation for dynamical timescales with application to the pressure and temperature dependence of water self-diffusion and shear viscosity. Phys Chem Chem Phys 2023; 25:12820-12832. [PMID: 37129891 DOI: 10.1039/d3cp01386c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A Maxwell relation for a reaction rate constant (or other dynamical timescale) obtained under constant pressure, p, and temperature, T, is introduced and discussed. Examination of this relationship in the context of fluctuation theory provides insight into the p and T dependence of the timescale and the underlying molecular origins. This Maxwell relation motivates a suggestion for the general form of the timescale as a function of pressure and temperature. This is illustrated by accurately fitting simulation results and existing experimental data on the self-diffusion coefficient and shear viscosity of liquid water. A key advantage of this approach is that each fitting parameter is physically meaningful.
Collapse
Affiliation(s)
- Zeke A Piskulich
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | | | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
4
|
Solov'yov IA, Sushko G, Friis I, Solov'yov AV. Multiscale modeling of stochastic dynamics processes with MBN Explorer. J Comput Chem 2022; 43:1442-1458. [PMID: 35708151 DOI: 10.1002/jcc.26948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/09/2022]
Abstract
Stochastic dynamics describes processes in complex systems having the probabilistic nature. They can involve very different dynamical systems and occur on very different temporal and spatial scale. This paper discusses the concept of stochastic dynamics and its implementation in the popular program MBN Explorer. Stochastic dynamics in MBN Explorer relies on the Monte Carlo approach and permits simulations of physical, chemical, and biological processes. The paper presents the basic theoretical concepts underlying stochastic dynamics implementation and provides several examples highlighting its applicability to different systems, such as diffusing proteins seeking an anchor point on a cell membrane, deposition of nanoparticles on a surface leading to structures with fractal morphologies, and oscillations of compounds in an autocatalytic reaction. The chosen examples illustrate the diversity of applications that can be modeled by means of stochastic dynamics with MBN Explorer.
Collapse
Affiliation(s)
- Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Center for Nanoscale Dynamics (CENAD), Institut für Physik, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | | | - Ida Friis
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
5
|
Bonechi M, Giurlani W, Innocenti M, Pasini D, Mishra S, Giovanardi R, Fontanesi C. On the Dynamics of the Carbon-Bromine Bond Dissociation in the 1-Bromo-2-Methylnaphthalene Radical Anion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144539. [PMID: 35889412 PMCID: PMC9319363 DOI: 10.3390/molecules27144539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
This paper studies the mechanism of electrochemically induced carbon-bromine dissociation in 1-Br-2-methylnaphalene in the reduction regime. In particular, the bond dissociation of the relevant radical anion is disassembled at a molecular level, exploiting quantum mechanical calculations including steady-state, equilibrium and dissociation dynamics via dynamic reaction coordinate (DRC) calculations. DRC is a molecular-dynamic-based calculation relying on an ab initio potential surface. This is to achieve a detailed picture of the dissociation process in an elementary molecular detail. From a thermodynamic point of view, all the reaction paths examined are energetically feasible. The obtained results suggest that the carbon halogen bond dissociates following the first electron uptake follow a stepwise mechanism. Indeed, the formation of the bromide anion and an organic radical occurs. The latter reacts to form a binaphthalene intrinsically chiral dimer. This paper is respectfully dedicated to Professors Anny Jutand and Christian Amatore for their outstanding contribution in the field of electrochemical catalysis and electrosynthesis.
Collapse
Affiliation(s)
- Marco Bonechi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; (M.B.); (W.G.)
| | - Walter Giurlani
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; (M.B.); (W.G.)
| | - Massimo Innocenti
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; (M.B.); (W.G.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
- Center for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Correspondence: (M.I.); (C.F.)
| | - Dario Pasini
- Department of Chemistry, University of Pavia, Via Taramelli 10, 27100 Pavia, Italy;
| | - Suryakant Mishra
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;
| | - Roberto Giovanardi
- Department of Engineering “Enzo Ferrari” (DIEF), University of Modena, Via Vivarelli 10, 41125 Modena, Italy;
| | - Claudio Fontanesi
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
- Department of Engineering “Enzo Ferrari” (DIEF), University of Modena, Via Vivarelli 10, 41125 Modena, Italy;
- Correspondence: (M.I.); (C.F.)
| |
Collapse
|
6
|
Zhang L, Li C, Wan S, Zhang X. Nanocatalyst-Mediated Chemodynamic Tumor Therapy. Adv Healthc Mater 2022; 11:e2101971. [PMID: 34751505 DOI: 10.1002/adhm.202101971] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Indexed: 02/06/2023]
Abstract
Traditional tumor treatments, including chemotherapy, radiotherapy, photodynamic therapy, and photothermal therapy, are developed and used to treat different types of cancer. Recently, chemodynamic therapy (CDT) has been emerged as a novel cancer therapeutic strategy. CDT utilizes Fenton or Fenton-like reaction to generate highly cytotoxic hydroxyl radicals (•OH) from endogenous hydrogen peroxide (H2 O2 ) to kill cancer cells, which displays promising therapeutic potentials for tumor treatment. However, the low catalytic efficiency and off-target side effects of Fenton reaction limit the biomedical application of CDT. In this regard, various strategies are implemented to potentiate CDT against tumor, including retrofitting the tumor microenvironment (e.g., increasing H2 O2 level, decreasing reductive substances, and reducing pH), enhancing the catalytic efficiency of nanocatalysts, and other strategies. This review aims to summarize the development of CDT and summarize these recent progresses of nanocatalyst-mediated CDT for antitumor application. The future development trend and challenges of CDT are also discussed.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an 710004 P. R. China
| | - Chu‐Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Shuang‐Shuang Wan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Xian‐Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
7
|
Sanches-Neto FO, Dias-Silva JR, Keng Queiroz Junior LH, Carvalho-Silva VH. " pySiRC": Machine Learning Combined with Molecular Fingerprints to Predict the Reaction Rate Constant of the Radical-Based Oxidation Processes of Aqueous Organic Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12437-12448. [PMID: 34473479 DOI: 10.1021/acs.est.1c04326] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We developed a web application structured in a machine learning and molecular fingerprint algorithm for the automatic calculation of the reaction rate constant of the oxidative processes of organic pollutants by •OH and SO4•- radicals in the aqueous phase-the pySiRC platform. The model development followed the OECD principles: internal and external validation, applicability domain, and mechanistic interpretation. Three machine learning algorithms combined with molecular fingerprints were evaluated, and all the models resulted in high goodness-of-fit for the training set with R2 > 0.931 for the •OH radical and R2 > 0.916 for the SO4•- radical and good predictive capacity for the test set with Rext2 = Qext2 values in the range of 0.639-0.823 and 0.767-0.824 for the •OH and SO4•- radicals. The model was interpreted using the SHAP (SHapley Additive exPlanations) method: the results showed that the model developed made the prediction based on a reasonable understanding of how electron-withdrawing and -donating groups interfere with the reactivity of the •OH and SO4•- radicals. We hope that our models and web interface can stimulate and expand the application and interpretation of kinetic research on contaminants in water treatment units based on advanced oxidative technologies.
Collapse
Affiliation(s)
| | | | | | - Valter Henrique Carvalho-Silva
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, Brasília 70904-970, Brazil
- Modeling of Physical and Chemical Transformations Division, Theoretical and Structural Chemistry Group, Goiás State University, Anápolis 75132-903, Brazil
| |
Collapse
|
8
|
Šimonová Baranyaiová T, Mészáros R, Sebechlebská T, Bujdák J. Non-Arrhenius kinetics and slowed-diffusion mechanism of molecular aggregation of a rhodamine dye on colloidal particles. Phys Chem Chem Phys 2021; 23:17177-17185. [PMID: 34346441 DOI: 10.1039/d1cp02762j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The non-covalent association is important for many fields of science, including processes in living systems. This work elucidates the mechanism of rhodamine 123 molecular aggregation in dispersions of a layered silicate and explains the mystery of the slow kinetics of this process. Chemometric analysis of thousands of spectra recorded by stopped-flow visible spectroscopy identified two parallel diffusion processes described by a two-phase exponential function. The slow and fast processes followed the super-Arrhenius kinetics and were assigned to lateral (surface) diffusion and inter-particle diffusion of dye cations, respectively. This work, supported by a large amount of data and their in-depth analysis, provides the first evidence of how these processes coexist together and provides quantitative analysis of their dependence on the reaction conditions. The implications of this work can be crucial for understanding the mechanism of the non-covalent association of adsorbed molecules in nature.
Collapse
Affiliation(s)
- Tímea Šimonová Baranyaiová
- Department of Hydrosilicates, Institute of Inorganic Chemistry, Slovak Academy of Sciences, 845 36 Bratislava, Slovakia.
| | | | | | | |
Collapse
|
9
|
Klinthongchai Y, Prichanont S, Praserthdam P, Jongsomjit B. Study of deactivation in mesocellular foam carbon (MCF-C) catalyst used in gas-phase dehydrogenation of ethanol. Sci Rep 2021; 11:11683. [PMID: 34083667 PMCID: PMC8175389 DOI: 10.1038/s41598-021-91190-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/24/2021] [Indexed: 11/09/2022] Open
Abstract
Mesocellular foam carbon (MCF-C) is one the captivating materials for using in gas phase dehydrogenation of ethanol. Extraordinary, enlarge pore size, high surface area, high acidity, and spherical shape with interconnected pore for high diffusion. In contrary, the occurrence of the coke is a majority causes for inhibiting the active sites on catalyst surface. Thus, this study aims to investigate the occurrence of the coke to optimize the higher catalytic activity, and also to avoid the coke formation. The MCF-C was synthesized and investigated using various techniques. MCF-C was spent in gas-phase dehydrogenation of ethanol under mild conditions. The deactivation of catalyst was investigated toward different conditions. Effects of reaction condition including different reaction temperatures of 300, 350, and 400 °C on the deactivation behaviors were determined. The results indicated that the operating temperature at 400 °C significantly retained the lowest change of ethanol conversion, which favored in the higher temperature. After running reaction, the physical properties as pore size, surface area, and pore volume of spent catalysts were decreased owing to the coke formation, which possibly blocked the pore that directly affected to the difficult diffusion of reactant and caused to be lower in catalytic activity. Furthermore, a slight decrease in either acidity or basicity was observed owing to consumption of reactant at surface of catalyst or chemical change on surface caused by coke formation. Therefore, it can remarkably choose the suitable operating temperature to avoid deactivation of catalyst, and then optimize the ethanol conversion or yield of acetaldehyde.
Collapse
Affiliation(s)
- Yoottapong Klinthongchai
- Center of Excellence On Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Seeroong Prichanont
- Center of Excellence On Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Piyasan Praserthdam
- Center of Excellence On Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Bunjerd Jongsomjit
- Center of Excellence On Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Coutinho ND, Machado HG, Carvalho-Silva VH, da Silva WA. Topography of the free energy landscape of Claisen-Schmidt condensation: solvent and temperature effects on the rate-controlling step. Phys Chem Chem Phys 2021; 23:6738-6745. [PMID: 33710206 DOI: 10.1039/d0cp05659f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent studies have found that hydroxide elimination and the C[double bond, length as m-dash]C bond formation step in base-promoted aldol condensation have a strong influence on the overall rate of the reaction, in contrast to the well-accepted first enolization or C-C bond formation step. Here, applying theoretical models to the prototypical reaction of chalcone formation, the complete free energy profile of Claisen-Schmidt condensation is assessed, revealing how a protic solvent and a slight increase in temperature can induce the second enolization as the rate-controlling step (RCS). It is also observed: i) the nonexistence of a step with a much higher energetic barrier than the others, making the concept of RCS debatable; and ii) that the overall inverse kinetic isotopic effect does not exclude second enolization as a RCS in protic continuum medium. We expect that these results can expand the understanding of the decisive role of physicochemical factors on the choose of the RCS in the aldol condensation.
Collapse
Affiliation(s)
- Nayara Dantas Coutinho
- Laboratory of Bioactive Compounds Synthesis N.T.S., University of Brasilia (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil.
| | | | | | | |
Collapse
|
11
|
Temperature effect on water dynamics in tetramer phosphofructokinase matrix and the super-arrhenius respiration rate. Sci Rep 2021; 11:383. [PMID: 33431895 PMCID: PMC7801438 DOI: 10.1038/s41598-020-79271-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/26/2020] [Indexed: 11/08/2022] Open
Abstract
Advances in understanding the temperature effect on water dynamics in cellular respiration are important for the modeling of integrated energy processes and metabolic rates. For more than half a century, experimental studies have contributed to the understanding of the catalytic role of water in respiration combustion, yet the detailed water dynamics remains elusive. We combine a super-Arrhenius model that links the temperature-dependent exponential growth rate of a population of plant cells to respiration, and an experiment on isotope labeled 18O2 uptake to H218O transport role and to a rate-limiting step of cellular respiration. We use Phosphofructokinase (PFK-1) as a prototype because this enzyme is known to be a pacemaker (a rate-limiting enzyme) in the glycolysis process of respiration. The characterization shows that PFK-1 water matrix dynamics are crucial for examining how respiration (PFK-1 tetramer complex breathing) rates respond to temperature change through a water and nano-channel network created by the enzyme folding surfaces, at both short and long (evolutionary) timescales. We not only reveal the nano-channel water network of PFK-1 tetramer hydration topography but also clarify how temperature drives the underlying respiration rates by mapping the channels of water diffusion with distinct dynamics in space and time. The results show that the PFK-1 assembly tetramer possesses a sustainable capacity in the regulation of the water network toward metabolic rates. The implications and limitations of the reciprocal-activation-reciprocal-temperature relationship for interpreting PFK-1 tetramer mechanisms are briefly discussed.
Collapse
|
12
|
Sodre ER, Guido BC, de Souza PEN, Machado DFS, Carvalho-Silva VH, Chaker JA, Gatto CC, Correa JR, Fernandes TDA, Neto BAD. Deciphering the Dynamics of Organic Nanoaggregates with AIEE Effect and Excited States: Lipophilic Benzothiadiazole Derivatives as Selective Cell Imaging Probes. J Org Chem 2020; 85:12614-12634. [PMID: 32876447 DOI: 10.1021/acs.joc.0c01805] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An aggregation-induced emission enhancement (AIEE) effect in fluorescent lipophilic 2,1,3-benzothiadiazole (BTD) derivatives and their organic nanoaggregates were studied. A set of techniques such as single-crystal X-ray, dynamic light scattering (DLS), electron paramagnetic resonance (EPR), UV-vis, fluorescence, and density functional theory (DFT) calculations have been used to decipher the formation/break (kinetics), properties, and dynamics of the organic nanoaggregates of three BTD small organic molecules. An in-depth study of the excited-state also revealed the preferential relaxation emissive pathways for the BTD derivatives and the dynamics associated with it. The results described herein, for the first time, explain the formation of fluorescent BTD nanoaggregate derivatives and allow for the understanding of their dynamics in solution as well as the ruling forces of both aggregation and break processes along with the involved equilibrium. One of the developed dyes could be used at a nanomolar concentration to selectively stain lipid droplets emitting an intense and bright fluorescence at the red channel. The other two BTDs could also stain lipid droplets at very low concentrations and were visualized preferentially at the blue channel.
Collapse
Affiliation(s)
- Elaine R Sodre
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Bruna C Guido
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Paulo E N de Souza
- Laboratory of Software and Instrumentation in Applied Physics and Laboratory of Electron Paramagnetic Resonance, Institute of Physics, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-970, Brazil
| | - Daniel F S Machado
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Valter H Carvalho-Silva
- Divisão de Modelagem de Transformações Físicas e Químicas, Grupo de Química Teo'rica e Estrutural de Ana'polis, Centro de Pesquisa e Pos-Graduação, Universidade Estadual de Goia's,, Ana'polis, Goia's 75001-970, Brazil
| | - Juliano A Chaker
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Claudia C Gatto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Jose R Correa
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Talita de A Fernandes
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil
| |
Collapse
|
13
|
Maglinao RL, Wagner TJ, Duff K. Effects of Temperature, Antioxidants, and
High‐Vacuum
Distillation on the Oxidation of Biodiesel Derived from Waste Vegetable Oil. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Randy L. Maglinao
- Advanced Fuels Center Montana State University‐Northern Havre Montana 59501 USA
| | - Torrey J. Wagner
- Department of Systems Engineering and Management Air Force Institute of Technology Wright‐Patterson Air Force Base Ohio 45433 USA
| | - Keegan Duff
- US Department of Agriculture Agricultural Research Service Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center Hilo Hawaii 96720 USA
| |
Collapse
|
14
|
Reaction kinetics: scientific passion or applicative tool? RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2020. [DOI: 10.1007/s12210-020-00884-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
From the Kinetic Theory of Gases to the Kinetics of Rate Processes: On the Verge of the Thermodynamic and Kinetic Limits. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25092098. [PMID: 32365840 PMCID: PMC7248839 DOI: 10.3390/molecules25092098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/24/2022]
Abstract
A variety of current experiments and molecular dynamics computations are expanding our understanding of rate processes occurring in extreme environments, especially at low temperatures, where deviations from linearity of Arrhenius plots are revealed. The thermodynamic behavior of molecular systems is determined at a specific temperature within conditions on large volume and number of particles at a given density (the thermodynamic limit): on the other side, kinetic features are intuitively perceived as defined in a range between the extreme temperatures, which limit the existence of each specific phase. In this paper, extending the statistical mechanics approach due to Fowler and collaborators, ensembles and partition functions are defined to evaluate initial state averages and activation energies involved in the kinetics of rate processes. A key step is delayed access to the thermodynamic limit when conditions on a large volume and number of particles are not fulfilled: the involved mathematical analysis requires consideration of the role of the succession for the exponential function due to Euler, precursor to the Poisson and Boltzmann classical distributions, recently discussed. Arguments are presented to demonstrate that a universal feature emerges: Convex Arrhenius plots (super-Arrhenius behavior) as temperature decreases are amply documented in progressively wider contexts, such as viscosity and glass transitions, biological processes, enzymatic catalysis, plasma catalysis, geochemical fluidity, and chemical reactions involving collective phenomena. The treatment expands the classical Tolman’s theorem formulated quantally by Fowler and Guggenheim: the activation energy of processes is related to the averages of microscopic energies. We previously introduced the concept of “transitivity”, a function that compactly accounts for the development of heuristic formulas and suggests the search for universal behavior. The velocity distribution function far from the thermodynamic limit is illustrated; the fraction of molecules with energy in excess of a certain threshold for the description of the kinetics of low-temperature transitions and of non-equilibrium reaction rates is derived. Uniform extension beyond the classical case to include quantum tunneling (leading to the concavity of plots, sub-Arrhenius behavior) and to Fermi and Bose statistics has been considered elsewhere. A companion paper presents a computational code permitting applications to a variety of phenomena and provides further examples.
Collapse
|
16
|
Veloso AC, Rodrigues N, Ouarouer Y, Zaghdoudi K, Pereira JA, Peres AM. A Kinetic‐Thermodynamic Study of the Effect of the Cultivar/Total Phenols on the Oxidative Stability of Olive Oils. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ana C.A. Veloso
- Instituto Politécnico de CoimbraISEC, DEQB Rua Pedro Nunes, Quinta da Nora 3030‐199 Coimbra Portugal
- CEB—Centre of Biological EngineeringUniversity of Minho Campus de Gualtar 4710‐057 Braga Portugal
| | - Nuno Rodrigues
- Centro de Investigação de Montanha (CIMO), ESAInstituto Politécnico de Bragança Campus Santa Apolónia 5300‐253 Bragança Portugal
| | - Yosra Ouarouer
- Centro de Investigação de Montanha (CIMO), ESAInstituto Politécnico de Bragança Campus Santa Apolónia 5300‐253 Bragança Portugal
- Département Génie Chimique, Université Libre de Tunis Avenue Khéreddine—Pacha Tunis, 30, 1002 Tunis Tunisia
| | - Khalil Zaghdoudi
- Département Génie Chimique, Université Libre de Tunis Avenue Khéreddine—Pacha Tunis, 30, 1002 Tunis Tunisia
| | - José A. Pereira
- Centro de Investigação de Montanha (CIMO), ESAInstituto Politécnico de Bragança Campus Santa Apolónia 5300‐253 Bragança Portugal
| | - António M. Peres
- Centro de Investigação de Montanha (CIMO), ESAInstituto Politécnico de Bragança Campus Santa Apolónia 5300‐253 Bragança Portugal
| |
Collapse
|
17
|
Román-Ramírez LA, McKeown P, Jones MD, Wood J. Kinetics of Methyl Lactate Formation from the Transesterification of Polylactic Acid Catalyzed by Zn(II) Complexes. ACS OMEGA 2020; 5:5556-5564. [PMID: 32201849 PMCID: PMC7081642 DOI: 10.1021/acsomega.0c00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 05/21/2023]
Abstract
The kinetics of the transesterification of polylactic acid (PLA) with methanol to form methyl lactate catalyzed by Zn(II) complexes was studied experimentally and numerically. The complexes, Zn(1 Et )2 and Zn(2 Pr )2, were synthesized from ethylenediamine and propylenediamine Schiff bases, respectively. The temperature range covered was 313.2-383.2 K. An increase in the reaction rate with the increase in temperature was observed for the Zn(1 Et )2-catalyzed reaction. The temperature relationship of the rate coefficients can be explained by a linear Arrhenius dependency with constant activation energy. The kinetics of Zn(2 Pr )2, on the other hand, is only explained by non-Arrhenius kinetics with convex variable activation energy, resulting in faster methyl lactate production rates at 323.2 and 343.2 K. The formation of a new catalyst species, likely through reaction with protic reagents, appears to promote the formation of intermediate complexes, resulting in the nonlinear behavior. Stirring speed induced the stability of the intermediate complexes. Contrary to Zn(1 Et )2, Zn(2 Pr )2 was susceptible to the presence of air/moisture in solution. The kinetic parameters were obtained by fitting the experimental data to the mass and energy balance of a consecutive second step reversible reaction taking place in a jacketed stirred batch reactor. For the case of Zn(2 Pr )2, the activation energy was fitted to a four-parameter equation. The kinetic parameters presented in this work are valuable for the design of processes involving the chemical recycling of PLA into green solvents.
Collapse
Affiliation(s)
- Luis A. Román-Ramírez
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Paul McKeown
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Matthew D. Jones
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
- E-mail: . Phone: +44 (0)1225 384908. Fax: +44 (0)1225
386231 (M.D.J.)
| | - Joseph Wood
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- E-mail: . Phone: +44 (0) 121
414 5295. Fax: +44 (0) 121
414 5324 (J.W.)
| |
Collapse
|
18
|
A contribution to neuromorphic engineering: neuromodulation implemented through photochromic compounds maintained out of equilibrium by UV–visible radiation. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2020. [DOI: 10.1007/s12210-020-00869-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Simulation Study to Investigate the Effects of Operational Conditions on Methylcyclohexane Dehydrogenation for Hydrogen Production. ENERGIES 2020. [DOI: 10.3390/en13010206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the recent era, hydrogen has gained immense consideration as a clean-energy carrier. Its storage is, however, still the main hurdle in the implementation of a hydrogen-based clean economy. Liquid organic hydrogen carriers (LOHCs) are a potential option for hydrogen storage in ambient conditions, and can contribute to the clean-fuel concept in the future. In the present work, a parametric and simulation study was carried out for the storage and release of hydrogen for the methylcyclohexane toluene system. In particular, the methylcyclohexane dehydrogenation reaction is investigated over six potential catalysts for the temperature range of 300–450 °C and a pressure range of 1–3 bar to select the best catalyst under optimum operating conditions. Moreover, the effects of hydrogen addition in the feed mixture, and byproduct yield, are also studied as functions of operating conditions. The best catalyst selected for the process is 1 wt. % Pt/γ-Al2O3. The optimum operating conditions selected for the dehydrogenation process are 360 °C and 1.8 bar. Hydrogen addition in the feed reduces the percentage of methylcyclohexane conversion but is required to enhance the catalyst’s stability. Aspen HYSYS v. 9.0 (AspenTech, Lahore, Pakistan) has been used to carry out the simulation study.
Collapse
|
20
|
El-gendy AT, Youssef AA, Rizk SA. Which energetically favorable sustainable synthesis of 4-amino-8-azacoumarin ester or 4-hydroxy-3-cyano derivative based on new exact kinetic Arrhenius and DFT stimulation. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01838-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Sanches-Neto FO, Coutinho ND, Palazzetti F, Carvalho-Silva VH. Temperature dependence of rate constants for the H(D) + CH4 reaction in gas and aqueous phase: deformed Transition-State Theory study including quantum tunneling and diffusion effects. Struct Chem 2019. [DOI: 10.1007/s11224-019-01437-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
de Castro DG, Poveda LA, Crispim LWS, Ballester MY. Quasi-Classical Trajectory Study of NH( 3∑ -) + NH( 3∑ -) Reactive Collisions. J Phys Chem A 2019; 123:9113-9122. [PMID: 31573199 DOI: 10.1021/acs.jpca.9b08278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A full-dimension quasi-classical trajectory study of collisions between two NH radicals is presented. Interatomic interactions are represented by a previously reported global six-dimensional potential energy surface for singlet electronic state of the N2H2 system. This study suggests that the formation of N2 from the collision of two NH radicals may occur via a one-step (NH + NH → N2 + H + H) or two-step (NH + NH → N2H + H → N2 + H + H) microscopic reaction mechanism. A fast vibrational energy redistribution is observed in the four-body complex in the latter mechanism. Excitation functions are presented and discussed. A variant of the vibrational energy quantum mechanical threshold method was used to correct the zero-point energy leakage in the classical calculations. The influence of reactant's rotational and vibrational energy on reactivity was investigated by state-specific calculations with one or both reactants excited. Reaction rate constants for the ground and some rotationally excited states are presented using an Arrhenius-Kooij-like functional form.
Collapse
Affiliation(s)
| | - Luis A Poveda
- Centro Federal de Educação Tecnológica de Minas Gerais , Belo Horizonte 36700-000 , MG , Brazil
| | | | | |
Collapse
|
23
|
Rosa Junior ACP, Cruz C, Santana WS, Moret MA. Characterization of the non-Arrhenius behavior of supercooled liquids by modeling nonadditive stochastic systems. Phys Rev E 2019; 100:022139. [PMID: 31574742 DOI: 10.1103/physreve.100.022139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 11/07/2022]
Abstract
The characterization of the formation mechanisms of amorphous solids is a large avenue for research, since understanding its non-Arrhenius behavior is challenging to overcome. In this context, we present one path toward modeling the diffusive processes in supercooled liquids near glass transition through a class of nonhomogeneous continuity equations, providing a consistent theoretical basis for the physical interpretation of its non-Arrhenius behavior. More precisely, we obtain the generalized drag and diffusion coefficients that allow us to model a wide range of non-Arrhenius processes. This provides a reliable measurement of the degree of fragility of the system and an estimation of the fragile-to-strong transition in glass-forming liquids, as well as a generalized Stokes-Einstein equation, leading to a better understanding of the classical and quantum effects on the dynamics of nonadditive stochastic systems.
Collapse
Affiliation(s)
- A C P Rosa Junior
- Grupo de Informação Quântica, Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre I, 47810-059 Barreiras, Bahia, Brazil
| | - C Cruz
- Grupo de Informação Quântica, Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre I, 47810-059 Barreiras, Bahia, Brazil
| | - W S Santana
- Grupo de Informação Quântica, Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre I, 47810-059 Barreiras, Bahia, Brazil
| | - M A Moret
- Programa de Modelagem Computacional-SENAI-CIMATEC, 41650-010 Salvador, Bahia, Brazil.,Universidade do Estado da Bahia (UNEB), 41150-000 Salvador, Bahia, Brazil
| |
Collapse
|
24
|
Machado HG, Sanches-Neto FO, Coutinho ND, Mundim KC, Palazzetti F, Carvalho-Silva VH. "Transitivity": A Code for Computing Kinetic and Related Parameters in Chemical Transformations and Transport Phenomena. Molecules 2019; 24:E3478. [PMID: 31557893 PMCID: PMC6803931 DOI: 10.3390/molecules24193478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 12/25/2022] Open
Abstract
The Transitivity function, defined in terms of the reciprocal of the apparent activation energy, measures the propensity for a reaction to proceed and can provide a tool for implementing phenomenological kinetic models. Applications to systems which deviate from the Arrhenius law at low temperature encouraged the development of a user-friendly graphical interface for estimating the kinetic and thermodynamic parameters of physical and chemical processes. Here, we document the Transitivity code, written in Python, a free open-source code compatible with Windows, Linux and macOS platforms. Procedures are made available to evaluate the phenomenology of the temperature dependence of rate constants for processes from the Arrhenius and Transitivity plots. Reaction rate constants can be calculated by the traditional Transition-State Theory using a set of one-dimensional tunneling corrections (Bell (1935), Bell (1958), Skodje and Truhlar and, in particular, the deformed ( d -TST) approach). To account for the solvent effect on reaction rate constant, implementation is given of the Kramers and of Collins-Kimball formulations. An input file generator is provided to run various molecular dynamics approaches in CPMD code. Examples are worked out and made available for testing. The novelty of this code is its general scope and particular exploit of d -formulations to cope with non-Arrhenius behavior at low temperatures, a topic which is the focus of recent intense investigations. We expect that this code serves as a quick and practical tool for data documentation from electronic structure calculations: It presents a very intuitive graphical interface which we believe to provide an excellent working tool for researchers and as courseware to teach statistical thermodynamics, thermochemistry, kinetics, and related areas.
Collapse
Affiliation(s)
- Hugo G Machado
- Grupo de Química Teórica e Estrutural de Anápolis, Centro de Pesquisa e Pós-Graduação. Universidade Estadual de Goiás, 75132-400 Anápolis, GO, Brazil.
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970 Brasília, Brazil.
| | - Flávio O Sanches-Neto
- Grupo de Química Teórica e Estrutural de Anápolis, Centro de Pesquisa e Pós-Graduação. Universidade Estadual de Goiás, 75132-400 Anápolis, GO, Brazil.
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970 Brasília, Brazil.
| | - Nayara D Coutinho
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia, Italy.
| | - Kleber C Mundim
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970 Brasília, Brazil.
| | - Federico Palazzetti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia, Italy.
| | - Valter H Carvalho-Silva
- Grupo de Química Teórica e Estrutural de Anápolis, Centro de Pesquisa e Pós-Graduação. Universidade Estadual de Goiás, 75132-400 Anápolis, GO, Brazil.
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970 Brasília, Brazil.
| |
Collapse
|
25
|
Albernaz AF, da Silva WB, Barreto PRP, Correa E. Thermal rate constant for the C(
3
P) + OH(X
2
Π) → CO(X
1
Σ) + H(
2
S) reaction using stochastic energy grained master equation method. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Washington B. da Silva
- Instituto Federal de EducaçãoCiência e Tecnologia de Brasília – IFBCeilândia Distrito Federal Brazil
| | - Patricia R. P. Barreto
- Laboratório Associado de Plasma -- LAPInstituto Nacional de Pesquisas Espaciais -- INPE/MCTSão José dos CamposSão Paulo Brazil
| | - Eberth Correa
- Universidade de BrasíliaCampus Gama, Gama Distrito Federal Brazil
| |
Collapse
|
26
|
Nucleophilic substitution vs elimination reaction of bisulfide ions with substituted methanes: exploration of chiral selectivity by stereodirectional first-principles dynamics and transition state theory. J Mol Model 2019; 25:227. [PMID: 31317347 DOI: 10.1007/s00894-019-4126-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Abstract
Control of molecular orientation is emerging as crucial for the characterization of the stereodynamics of kinetics processes beyond structural stereochemistry. The special role played in chiral discrimination phenomena has been particularly emphasized by Aquilanti and collaborators after their extensive probes of experimental control of molecular alignment and orientation. In this work, the manifestation of the Aquilanti mechanism has been demonstrated for the first time in first-principles molecular dynamics simulations: stationary points characterized on potential energy surfaces have been calculated for the study of chemical reactions occurring between the bisulfide anion HS- and oriented prototypical chiral molecules CHFXY (where X = CH3 or CN and Y = Cl or I). The important reaction channels are those corresponding to bimolecular nucleophilic substitution (SN2) and to bimolecular elimination (E2): their relative role has been assessed and alternative pathways due to the mirror forms of the oriented chiral molecule are revealed by the different reactivity of the two enantiomers of CHFCNI in SN2 reaction.
Collapse
|
27
|
Tsallis C. Beyond Boltzmann-Gibbs-Shannon in Physics and Elsewhere. ENTROPY 2019; 21:e21070696. [PMID: 33267410 PMCID: PMC7515208 DOI: 10.3390/e21070696] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/28/2019] [Indexed: 01/15/2023]
Abstract
The pillars of contemporary theoretical physics are classical mechanics, Maxwell electromagnetism, relativity, quantum mechanics, and Boltzmann–Gibbs (BG) statistical mechanics –including its connection with thermodynamics. The BG theory describes amazingly well the thermal equilibrium of a plethora of so-called simple systems. However, BG statistical mechanics and its basic additive entropy SBG started, in recent decades, to exhibit failures or inadequacies in an increasing number of complex systems. The emergence of such intriguing features became apparent in quantum systems as well, such as black holes and other area-law-like scenarios for the von Neumann entropy. In a different arena, the efficiency of the Shannon entropy—as the BG functional is currently called in engineering and communication theory—started to be perceived as not necessarily optimal in the processing of images (e.g., medical ones) and time series (e.g., economic ones). Such is the case in the presence of generic long-range space correlations, long memory, sub-exponential sensitivity to the initial conditions (hence vanishing largest Lyapunov exponents), and similar features. Finally, we witnessed, during the last two decades, an explosion of asymptotically scale-free complex networks. This wide range of important systems eventually gave support, since 1988, to the generalization of the BG theory. Nonadditive entropies generalizing the BG one and their consequences have been introduced and intensively studied worldwide. The present review focuses on these concepts and their predictions, verifications, and applications in physics and elsewhere. Some selected examples (in quantum information, high- and low-energy physics, low-dimensional nonlinear dynamical systems, earthquakes, turbulence, long-range interacting systems, and scale-free networks) illustrate successful applications. The grounding thermodynamical framework is briefly described as well.
Collapse
Affiliation(s)
- Constantino Tsallis
- Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems–Rua Dr. Xavier Sigaud 150, Rio de Janeiro 22290-180, Brazil;
- Santa Fe Institute–1399 Hyde Park Road, Santa Fe, NM 87501, USA
- Complexity Science Hub Vienna–Josefstädter Strasse 39, 1080 Vienna, Austria
| |
Collapse
|
28
|
Carvalho-Silva VH, Coutinho ND, Aquilanti V. Temperature Dependence of Rate Processes Beyond Arrhenius and Eyring: Activation and Transitivity. Front Chem 2019; 7:380. [PMID: 31192196 PMCID: PMC6548831 DOI: 10.3389/fchem.2019.00380] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/10/2019] [Indexed: 12/02/2022] Open
Abstract
Advances in the understanding of the dependence of reaction rates from temperature, as motivated from progress in experiments and theoretical tools (e. g., molecular dynamics), are needed for the modeling of extreme environmental conditions (e.g., in astrochemistry and in the chemistry of plasmas). While investigating statistical mechanics perspectives (Aquilanti et al., 2017b, 2018), the concept of transitivity was introduced as a measure for the propensity for a reaction to occur. The Transitivity plot is here defined as the reciprocal of the apparent activation energy vs. reciprocal absolute temperature. Since the transitivity function regulates transit in physicochemical transformations, not necessarily involving reference to transition-state hypothesis of Eyring, an extended version is here proposed to cope with general types of transformations. The transitivity plot permits a representation where deviations from Arrhenius behavior are given a geometrical meaning and make explicit a positive or negative linear dependence of transitivity for sub- and super-Arrhenius cases, respectively. To first-order in reciprocal temperature, the transitivity function models deviations from linearity in Arrhenius plots as originally proposed by Aquilanti and Mundim: when deviations are increasingly larger, other phenomenological formulas, such as Vogel-Fulcher-Tammann, Nakamura-Takayanagi-Sato, and Aquilanti-Sanches-Coutinho-Carvalho are here rediscussed from the transitivity concept perspective and with in a general context. Emphasized is the interest of introducing into this context modifications to a very successful tool of theoretical kinetics, Eyring's Transition-State Theory: considering the behavior of the transitivity function at low temperatures, in order to describe deviation from Arrhenius behavior under the quantum tunneling regime, a "d-TST" formulation was previously introduced (Carvalho-Silva et al., 2017). In this paper, a special attention is dedicated to a derivation of the temperature dependence of viscosity, making explicit reference to feature of the transitivity function, which in this case generally exhibits a super-Arrhenius behavior. This is of relevance also for advantages of using the transitivity function for diffusion-controlled phenomena.
Collapse
Affiliation(s)
- Valter H. Carvalho-Silva
- Grupo de Química Teórica e Estrutural de Anápolis, Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, Brazil
| | - Nayara D. Coutinho
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Vincenzo Aquilanti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
29
|
Capitelli M, Pietanza LD. Past and present aspects of Italian plasma chemistry. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2019. [DOI: 10.1007/s12210-019-00781-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Masa J, Barwe S, Andronescu C, Schuhmann W. On the Theory of Electrolytic Dissociation, the Greenhouse Effect, and Activation Energy in (Electro)Catalysis: A Tribute to Svante Augustus Arrhenius. Chemistry 2019; 25:158-166. [PMID: 30460721 DOI: 10.1002/chem.201805264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 11/06/2022]
Abstract
Svante Augustus Arrhenius (1859, Vik - 1927, Stockholm) received the Nobel Prize for Chemistry in 1903 "in recognition of the extraordinary services he rendered to the advancement of chemistry by his electrolytic theory of dissociation". Arrhenius was a physicist, and he received his PhD from the University of Uppsala, where he later became a professor for phyiscal chemistry, the first in the country for this subject. He was offered several positions as professor abroad, but decided to remain in Sweden and to build a Nobel Institute for physical chemistry using the Nobel funds. He remained director of the Institute until his death. There are powerful lessons to take from Svante August Arrhenius' journey leading to a Nobel laureate as there are from his tremendous contributions to chemistry and science in general, including climate science, immunochemistry and cosmology. The theory of electrolytic dissociation for which Arrhenius received the 1903 Nobel Prize in Chemistry has had a profound impact on our understanding of the chemistry of solutions, chemical reactivity, mechanisms underlying chemical transformations as well as physiological processes. As a tribute to Arrhenius, we present a brief historical perspective and present status of the theory of electrolytic dissociation, its relevance and role to the development of electrochemistry, as well as some perspectives on the possible role of the theory to future advancements in electroanalysis, electrocatalysis and electrochemical energy storage. The review briefly highlights Arrhenius' contribution to climate science owing to his studies on the potential effects of increased anthropogenic CO2 emissions on the global climate. These studies were far ahead of their time and revealed a daunting global dilemma, global warming, that we are faced with today. Efforts to abate or reverse CO2 accumulation constitute one of the most pressing scientific problems of our time, "man's urgent strive to save self from the adverse effects of his self-orchestrated change on the climate". Finally, we review the application of the Arrhenius equation that correlates reaction rate constants (k) and temperature (T); k = A e ( - E a / R T ) , in determining reaction barriers in catalysis with a particular focus on recent modifications of the equation to account for reactions exhibiting non-linear Arrhenius behavior with concave curvature due to prevalence of quantum mechanical tunneling, as well as infrequent convexity of Arrhenius plots due to decrease of the microcanonical rate coefficient with energy as observed for some enzyme catalyzed reactions.
Collapse
Affiliation(s)
- Justus Masa
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Stefan Barwe
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Corina Andronescu
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| |
Collapse
|
31
|
Ryu S, Novak JJ, Patel R, Yates P, Di L. The impact of low temperature on fraction unbound for plasma and tissue. Biopharm Drug Dispos 2018; 39:437-442. [DOI: 10.1002/bdd.2160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/01/2018] [Accepted: 10/20/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Sangwoo Ryu
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc.; Groton CT 06340 USA
| | - Jonathan J. Novak
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc.; Groton CT 06340 USA
| | - Roshan Patel
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc.; Groton CT 06340 USA
| | - Phillip Yates
- Early Clinical Development, Pfizer Inc.; Cambridge MA 02139 USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc.; Groton CT 06340 USA
| |
Collapse
|
32
|
From statistical thermodynamics to molecular kinetics: the change, the chance and the choice. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0749-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Lin KC, Tsai PY, Chao MH, Nakamura M, Kasai T, Lombardi A, Palazzetti F, Aquilanti V. Roaming signature in photodissociation of carbonyl compounds. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1488951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (ROC)
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan (ROC)
| | - Po-Yu Tsai
- Department of Chemistry, National Chung-Hsing University, Taichung, Taiwan (ROC)
| | - Meng-Hsuan Chao
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (ROC)
| | - Masaaki Nakamura
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (ROC)
| | - Toshio Kasai
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (ROC)
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Andrea Lombardi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
- Consortium for Computational Molecular and Materials Sciences (CMS)2, Perugia, Italy
| | - Federico Palazzetti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
- Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Vincenzo Aquilanti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
34
|
Sanches-Neto FO, Coutinho ND, Carvalho-Silva VH. A novel assessment of the role of the methyl radical and water formation channel in the CH 3OH + H reaction. Phys Chem Chem Phys 2018; 19:24467-24477. [PMID: 28890979 DOI: 10.1039/c7cp03806b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A number of experimental and theoretical papers accounted almost exclusively for two channels in the reaction of atomic hydrogen with methanol: H-abstraction from the methyl (R1) and hydroxyl (R2) functional groups. Recently, several astrochemical studies claimed the importance of another channel for this reaction, which is crucial for kinetic simulations related to the abundance of molecular constituents in planetary atmospheres: methyl radical and water formation (R3 channel). Here, motivated by the lack of and uncertainties about the experimental and theoretical kinetic rate constants for the third channel, we developed first-principles Car-Parrinello molecular dynamics thermalized at two significant temperatures - 300 and 2500 K. Furthermore, the kinetic rate constant of all three channels was calculated using a high-level deformed-transition state theory (d-TST) at a benchmark electronic structure level. d-TST is shown to be suitable for describing the overall rate constant for the CH3OH + H reaction (an archetype of the moderate tunnelling regime) with the precision required for practical applications. Considering the experimental ratios at 1000 K, kR1/kR2 ≈ 0.84 and kR1/kR3 ≈ 15-40, we provided a better estimate when compared with previous theoretical work: 7.47 and 637, respectively. The combination of these procedures explicitly demonstrates the role of the third channel in a significant range of temperatures and indicates its importance considering the thermodynamic control to estimate methyl radical and water formation. We expect that these results can help to shed new light on the fundamental kinetic rate equations for the CH3OH + H reaction.
Collapse
Affiliation(s)
- Flávio O Sanches-Neto
- Grupo de Química Teórica de Anápolis Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Caixa Postal 459, 75001-970, Anápolis, GO, Brazil.
| | | | | |
Collapse
|
35
|
Spezia R, Martínez-Nuñez E, Vazquez S, Hase WL. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:20170035. [PMID: 28320909 PMCID: PMC5360905 DOI: 10.1098/rsta.2017.0035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.
Collapse
Affiliation(s)
- Riccardo Spezia
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, CEA CNRS Université Paris Saclay, 91025 Evry, France
- LAMBE, Université d'Evry, 91025 Evry, France
| | - Emilio Martínez-Nuñez
- Departamento de Química Física and Centro Singular de Investigación en Química, Biológica y Materiales Moleculares (CIQUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Saulo Vazquez
- Departamento de Química Física and Centro Singular de Investigación en Química, Biológica y Materiales Moleculares (CIQUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - William L Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|