1
|
Nan J, Peng X, Plümper O, ten Have IC, Lu JG, Liu QB, Li SL, Hu Y, Liu Y, Shen Z, Yao W, Tao R, Preiner M, Luo Y. Unraveling abiotic organic synthesis pathways in the mafic crust of mid-ocean ridges. Proc Natl Acad Sci U S A 2024; 121:e2308684121. [PMID: 39388277 PMCID: PMC11513914 DOI: 10.1073/pnas.2308684121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
The aqueous alteration of the oceanic lithosphere provides significant energy that impacts the synthesis and diversity of organic compounds, which are crucial for the deep carbon cycle and may have provided the first building blocks for life. Although abiotic organic synthesis has been documented in mantle-derived rocks, the formation mechanisms and complexity of organic compounds in crustal rocks remain largely unknown. Here, we show the specific association of aliphatic carbonaceous matter with Fe oxyhydroxides in mafic crustal rocks of the Southwest Indian Ridge (SWIR). We determine potential Fe-based pathways for abiotic organic synthesis from CO2 and H2 using multimodal and molecular nano-geochemical tools. Quantum mechanical modeling is further employed to constrain the catalytical activity of Fe oxyhydroxides, revealing that the catalytic cycle of hydrogen may play a key role in carbon-carbon bond formation. This approach offers the possibility of interpreting physicochemical organic formation and condensation mechanisms at an atomic scale. The findings expand our knowledge of the existence of abiotic organic carbon in the oceanic crustal rocks and emphasize the mafic oceanic crust of the SWIR as a potential site for low-temperature abiotic organic synthesis.
Collapse
Affiliation(s)
- Jingbo Nan
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya572000, China
- Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing210008, China
- Center for High Pressure Science and Technology Advanced Research, Beijing100094, China
| | - Xiaotong Peng
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya572000, China
| | - Oliver Plümper
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht3584 CD, The Netherlands
| | - Iris C. ten Have
- Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Utrecht3584 CG, The Netherlands
| | - Jing-Guang Lu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau999078, China
| | - Qian-Bao Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau999078, China
| | - Shao-Lin Li
- The State Key Laboratory of Lunar and Planetary Science, Macau University of Science and Technology, Taipa, Macau999078, China
| | - Yingjie Hu
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing211171, China
| | - Yu Liu
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing100083, China
| | - Zhen Shen
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing100083, China
| | - Weiqi Yao
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Renbiao Tao
- Center for High Pressure Science and Technology Advanced Research, Beijing100094, China
| | - Martina Preiner
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht3584 CD, The Netherlands
- Microcosm Earth Center, Max Planck Institute for Terrestrial Microbiology and Philipps Universität Marburg, Marburg35032, Germany
- Center for Synthetic Microbiology, Marburg35032, Germany
- Geochemical Protoenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg35043, Germany
| | - Yongxiang Luo
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya572000, China
| |
Collapse
|
2
|
Abstract
The Fischer-Tropsch (FT) process converts a mixture of CO and H2 into liquid hydrocarbons as a major component of the gas-to-liquid technology for the production of synthetic fuels. Contrary to the energy-demanding chemical FT process, the enzymatic FT-type reactions catalyzed by nitrogenase enzymes, their metalloclusters, and synthetic mimics utilize H+ and e- as the reducing equivalents to reduce CO, CO2, and CN- into hydrocarbons under ambient conditions. The C1 chemistry exemplified by these FT-type reactions is underscored by the structural and electronic properties of the nitrogenase-associated metallocenters, and recent studies have pointed to the potential relevance of this reactivity to nitrogenase mechanism, prebiotic chemistry, and biotechnological applications. This review will provide an overview of the features of nitrogenase enzymes and associated metalloclusters, followed by a detailed discussion of the activities of various nitrogenase-derived FT systems and plausible mechanisms of the enzymatic FT reactions, highlighting the versatility of this unique reactivity while providing perspectives onto its mechanistic, evolutionary, and biotechnological implications.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Mario Grosch
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Joseph B. Solomon
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| |
Collapse
|
3
|
Santos-Carballal D, de Leeuw NH. Catalytic formation of oxalic acid on the partially oxidised greigite Fe 3S 4(001) surface. Phys Chem Chem Phys 2022; 24:20104-20124. [PMID: 35983830 DOI: 10.1039/d2cp00333c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Greigite (Fe3S4), with its ferredoxin-like 4Fe-4S redox centres, is a naturally occurring mineral capable of acting as a catalyst in the conversion of carbon dioxide (CO2) into low molecular-weight organic acids (LMWOAs), which are of paramount significance in several soil and plant processes as well as in the chemical industry. In this paper, we report the reaction between CO2 and water (H2O) to form oxalic acid (H2C2O4) on the partially oxidised greigite Fe3S4(001) surface by means of spin-polarised density functional theory calculations with on-site Coulomb corrections and long-range dispersion interactions (DFT+U-D2). We have calculated the bulk phase of Fe3S4 and the two reconstructed Tasker type 3 terminations of its (001) surface, whose properties are in good agreement with available experimental data. We have obtained the relevant phase diagram, showing that the Fe3S4(001) surface becomes 62.5% partially oxidised, by replacing S by O atoms, in the presence of water at the typical conditions of calcination [Mitchell et al. Faraday Discuss. 2021, 230, 30-51]. The adsorption and co-adsorption of the reactants on the partially oxidised Fe3S4(001) surface are exothermic processes. We have considered three mechanistic pathways to explain the formation of H2C2O4, showing that the coupling of the C-C bond and second protonation are the elementary steps with the largest energy penalty. Our calculations suggest that the partially oxidised Fe3S4(001) surface is a mineral phase that can catalyse the formation of H2C2O4 under favourable conditions, which has important implications for natural ecosystems and is a process that can be harnessed for the industrial manufacture of this organic acid.
Collapse
Affiliation(s)
| | - Nora H de Leeuw
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK. .,Department of Earth Sciences, Utrecht University, Princetonplein 8A, 3584 CD Utrecht, The Netherlands.
| |
Collapse
|
4
|
Pahija E, Panaritis C, Gusarov S, Shadbahr J, Bensebaa F, Patience G, Boffito DC. Experimental and Computational Synergistic Design of Cu and Fe Catalysts for the Reverse Water–Gas Shift: A Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ergys Pahija
- Department of Chemical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
| | - Christopher Panaritis
- Department of Chemical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
| | - Sergey Gusarov
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| | - Jalil Shadbahr
- Energy, Mining and Environment Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Farid Bensebaa
- Energy, Mining and Environment Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Gregory Patience
- Department of Chemical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
| | - Daria Camilla Boffito
- Department of Chemical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
5
|
Bolney R, Grosch M, Winkler M, van Slageren J, Weigand W, Robl C. Mackinawite formation from elemental iron and sulfur. RSC Adv 2021; 11:32464-32475. [PMID: 35495494 PMCID: PMC9041996 DOI: 10.1039/d1ra03705f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/19/2021] [Indexed: 01/28/2023] Open
Abstract
Sulfur-assisted corrosion is a process known to material scientists for many decades now. Though the corrosion of iron in the presence of sulfur has been studied extensively, it has never been used to intentionally synthesize mackinawite. In contrast to the conventional preparation of mackinawite by precipitation, the synthesis from the elements can be carried out without additional ions. This makes it possible to investigate the influence of any dissolved salts on the mackinawite formation and its properties. We found that the addition of NaCl significantly accelerates the reaction and furthermore influences the Fe2+ ion content of the formed mackinawite itself. This finding leads us to propose a novel model of charged layers which can be used to explain some of the inconsistencies found in the literature regarding the structure and particle characteristics of nano-mackinawite. Nanoparticulate mackinawite was synthesized from elemental iron and sulfur in a convenient and reliable reaction. The structure and composition of the products were characterized and a new model describing the particle characteristics is established.![]()
Collapse
Affiliation(s)
- Robert Bolney
- Faculty of Chemistry and Earth Sciences, Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University Humboldtstrasse 8 07743 Jena Germany +49 3641 9-48160
| | - Mario Grosch
- Faculty of Chemistry and Earth Sciences, Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University Humboldtstrasse 8 07743 Jena Germany +49 3641 9-48160
| | - Mario Winkler
- Institute for Physical Chemistry, University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Joris van Slageren
- Institute for Physical Chemistry, University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Wolfgang Weigand
- Faculty of Chemistry and Earth Sciences, Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University Humboldtstrasse 8 07743 Jena Germany +49 3641 9-48160
| | - Christian Robl
- Faculty of Chemistry and Earth Sciences, Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University Humboldtstrasse 8 07743 Jena Germany +49 3641 9-48160
| |
Collapse
|
6
|
Altair T, Borges LGF, Galante D, Varela H. Experimental Approaches for Testing the Hypothesis of the Emergence of Life at Submarine Alkaline Vents. Life (Basel) 2021; 11:777. [PMID: 34440521 PMCID: PMC8401828 DOI: 10.3390/life11080777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Since the pioneering experimental work performed by Urey and Miller around 70 years ago, several experimental works have been developed for approaching the question of the origin of life based on very few well-constructed hypotheses. In recent years, attention has been drawn to the so-called alkaline hydrothermal vents model (AHV model) for the emergence of life. Since the first works, perspectives from complexity sciences, bioenergetics and thermodynamics have been incorporated into the model. Consequently, a high number of experimental works from the model using several tools have been developed. In this review, we present the key concepts that provide a background for the AHV model and then analyze the experimental approaches that were motivated by it. Experimental tools based on hydrothermal reactors, microfluidics and chemical gardens were used for simulating the environments of early AHVs on the Hadean Earth (~4.0 Ga). In addition, it is noteworthy that several works used techniques from electrochemistry to investigate phenomena in the vent-ocean interface for early AHVs. Their results provided important parameters and details that are used for the evaluation of the plausibility of the AHV model, and for the enhancement of it.
Collapse
Affiliation(s)
- Thiago Altair
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| | - Luiz G. F. Borges
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (L.G.F.B.); (D.G.)
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (L.G.F.B.); (D.G.)
| | - Hamilton Varela
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| |
Collapse
|
7
|
Lupan O, Santos-Carballal D, Ababii N, Magariu N, Hansen S, Vahl A, Zimoch L, Hoppe M, Pauporté T, Galstyan V, Sontea V, Chow L, Faupel F, Adelung R, de Leeuw NH, Comini E. TiO 2/Cu 2O/CuO Multi-Nanolayers as Sensors for H 2 and Volatile Organic Compounds: An Experimental and Theoretical Investigation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32363-32380. [PMID: 34223766 DOI: 10.1021/acsami.1c04379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
TiO2/Cu2O/CuO multi-nanolayers highly sensitive toward volatile organic compounds (VOCs) and H2 have been grown in various thicknesses by a cost-effective and reproducible combined spray-sputtering-annealing approach. The ultrathin TiO2 films were deposited by spray pyrolysis on top of sputtered-annealed Cu2O/CuO nanolayers to enhance their gas sensing performance and improve their protection against corrosion at high operating temperatures. The prepared heterostructures were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet visible (UV-vis) and micro-Raman spectroscopy. The gas sensing properties were measured at several operating temperatures, where the nanolayered sensors with oxide thicknesses between 20 and 30 nm (Cu2O/CuO nanolayers) exhibited a high response and an excellent selectivity to ethanol vapor after thermal annealing the samples at 420 °C. The results obtained at an operating temperature of 350 °C demonstrate that the CuO/Cu2O nanolayers with thicknesses between 20 and 30 nm are sensitive mainly to ethanol vapor, with a response of ∼150. The response changes from ethanol vapors to hydrogen gas as the thickness of the CuO/Cu2O nanolayers changes from 50 to 20 nm. Density functional theory-based calculations were carried out for the geometries of the CuO(1̅11)/Cu2O(111) and TiO2(111)/CuO(1̅11)/Cu2O(111) heterostructures and their sensing mechanism toward alcohols of different chain lengths and molecular hydrogen. The reconstructed hexagonal Cu2O(111) surface and the reconstructed monoclinic CuO(1̅11) and TiO2(111) facets, all of which terminate in an O layer, lead to the lowest surface energies for each isolated material. We studied the formation of the binary and ternary heteroepitaxial interfaces for the surface planes with the best-matching lattices. Despite the impact of the Cu2O(111) substrate in lowering the atomic charges of the CuO(1̅11) adlayer in the binary sensor, we found that it is the different surface structures of the CuO(1̅11)/Cu2O(111) and TiO2(111)/CuO(1̅11)/Cu2O(111) devices that are fundamental in driving the change in the sensitivity response observed experimentally. The experimental data, supported by the computational results, are important in understanding the use of the multi-nanolayered films tested in this work as reliable, accurate, and selective sensor structures for the tracking of gases at low concentrations.
Collapse
Affiliation(s)
- Oleg Lupan
- Functional Nanomaterials, Faculty of Engineering, Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
- Center for Nanotechnology and Nanosensors, Technical University of Moldova, 168 Stefan cel Mare si Sfant Boulevard, MD-2004 Chisinau, Republic of Moldova
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, United States
| | | | - Nicolai Ababii
- Center for Nanotechnology and Nanosensors, Technical University of Moldova, 168 Stefan cel Mare si Sfant Boulevard, MD-2004 Chisinau, Republic of Moldova
| | - Nicolae Magariu
- Center for Nanotechnology and Nanosensors, Technical University of Moldova, 168 Stefan cel Mare si Sfant Boulevard, MD-2004 Chisinau, Republic of Moldova
| | - Sandra Hansen
- Functional Nanomaterials, Faculty of Engineering, Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Alexander Vahl
- Faculty of Engineering, Chair for Multicomponent Materials, Christian-Albrechts Universität zu Kiel, Kaiserstraße 2, D-24143, 16 Kiel, Germany
| | - Lukas Zimoch
- Functional Nanomaterials, Faculty of Engineering, Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Mathias Hoppe
- Functional Nanomaterials, Faculty of Engineering, Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Thierry Pauporté
- Institut de Recherche de Chimie Paris-IRCP, Chimie ParisTech, Paris Sciences et Lettres (PSL) Université, rue Pierre et Marie Curie 11, 75231 Paris, France
| | - Vardan Galstyan
- Sensor Laboratory, Department of Information Engineering (DII), University of Brescia, Via Valotti 9, 25133 Brescia, Italy
| | - Victor Sontea
- National Center for Biomedical Engineering, Technical University of Moldova, 168 Stefan cel Mare si Sfant Boulevard, MD-2004 Chisinau, Republic of Moldova
- Department of Nanoelectronics and Surface Modification, Sumy State University, 2 Rymskogo-Korsakova Street, 40007 Sumy, Ukraine
| | - Lee Chow
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, United States
| | - Franz Faupel
- Faculty of Engineering, Chair for Multicomponent Materials, Christian-Albrechts Universität zu Kiel, Kaiserstraße 2, D-24143, 16 Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Faculty of Engineering, Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Nora H de Leeuw
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
- Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands
| | - Elisabetta Comini
- Sensor Laboratory, Department of Information Engineering (DII), University of Brescia, Via Valotti 9, 25133 Brescia, Italy
| |
Collapse
|
8
|
Mitchell CE, Santos-Carballal D, Beale AM, Jones W, Morgan DJ, Sankar M, de Leeuw NH. The role of surface oxidation and Fe-Ni synergy in Fe-Ni-S catalysts for CO 2 hydrogenation. Faraday Discuss 2021; 230:30-51. [PMID: 33884381 DOI: 10.1039/d0fd00137f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Increasing carbon dioxide (CO2) emissions, resulting in climate change, have driven the motivation to achieve the effective and sustainable conversion of CO2 into useful chemicals and fuels. Taking inspiration from biological processes, synthetic iron-nickel-sulfides have been proposed as suitable catalysts for the hydrogenation of CO2. In order to experimentally validate this hypothesis, here we report violarite (Fe,Ni)3S4 as a cheap and economically viable catalyst for the hydrogenation of CO2 into formate under mild, alkaline conditions at 125 °C and 20 bar (CO2 : H2 = 1 : 1). Calcination of violarite at 200 °C resulted in excellent catalytic activity, far superior to that of Fe-only and Ni-only sulfides. We further report first principles simulations of the CO2 conversion on the partially oxidised (001) and (111) surfaces of stoichiometric violarite (FeNi2S4) and polydymite (Ni3S4) to rationalise the experimentally observed trends. We have obtained the thermodynamic and kinetic profiles for the reaction of carbon dioxide (CO2) and water (H2O) on the catalyst surfaces via substitution and dissociation mechanisms. We report that the partially oxidised (111) surface of FeNi2S4 is the best catalyst in the series and that the dissociation mechanism is the most favourable. Our study reveals that the partial oxidation of the FeNi2S4 surface, as well as the synergy of the Fe and Ni ions, are important in the catalytic activity of the material for the effective hydrogenation of CO2 to formate.
Collapse
Affiliation(s)
- Claire E Mitchell
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| | | | - Andrew M Beale
- Department of Chemistry, University College London, London, WC1H 0AJ, UK and Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science & Innovation Campus, Harwell, Didcot, OX11 0FA, UK
| | - Wilm Jones
- Department of Chemistry, University College London, London, WC1H 0AJ, UK and Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science & Innovation Campus, Harwell, Didcot, OX11 0FA, UK
| | - David J Morgan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| | | | - Nora H de Leeuw
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK. and School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. and Department of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
9
|
Santos-Carballal D, Roldan A, de Leeuw NH. CO 2 reduction to acetic acid on the greigite Fe 3S 4{111} surface. Faraday Discuss 2021; 229:35-49. [PMID: 34075915 DOI: 10.1039/c9fd00141g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Acetic acid (CH3-COOH) is an important commodity chemical widely used in a myriad of industrial processes, whose production still largely depends on homogeneous catalysts based on expensive rare metals. Here, we report a computational study on the formation of CH3-COOH from carbon dioxide (CO2) as an alternative chemical feedstock on the {111} surface of the low-cost greigite Fe3S4 catalyst. We have used density functional theory calculations with a Hubbard Hamiltonian approach and long-range dispersion corrections (DFT+U-D2) to simulate the various stages of the direct combination of C1 species of different composition to produce glyoxylic acid (CHO-COOH) as a key intermediate in the formation of CH3-COOH. Three reaction mechanisms are considered: (i) the main pathway where the direct formation of the C-C bond takes place spontaneously, followed by a step-wise reduction of CHO-CHOO to CH3-COOH; and the competitive pathways for the non-promoted and H-promoted elimination of hydroxy groups (OH) and water (H2O), respectively from (ii) the carboxyl; and (iii) the carbonyl end of the glyoxylate intermediates. The thermodynamic and kinetic profiles show that the energies for the intermediates on the main pathway are very similar for the two catalytic sites considered, although the activation energies are somewhat larger for the exposed tetrahedral iron (FeA) ion. In most cases, the intermediates for the deoxygenation of the carboxylic acid are less stable than the intermediates on the main pathway, which suggests that the molecule prefers to lose the carbonylic oxygen. The suitable surface properties of the Fe3S4{111} surface show that this material could be a promising sustainable catalyst in future technologies for the conversion of CO2 into organic acid molecules of commercial interest.
Collapse
Affiliation(s)
- David Santos-Carballal
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
| | - Alberto Roldan
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
| | - Nora H de Leeuw
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK. and Department of Earth Sciences, Utrecht University, Princetonplein 8A, 3584 CD Utrecht, The Netherlands
| |
Collapse
|
10
|
CO2 and H2O Coadsorption and Reaction on the Low-Index Surfaces of Tantalum Nitride: A First-Principles DFT-D3 Investigation. Catalysts 2020. [DOI: 10.3390/catal10101217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A comprehensive mechanistic insight into the photocatalytic reduction of CO2 by H2O is indispensable for the development of highly efficient and robust photocatalysts for artificial photosynthesis. This work presents first-principles mechanistic insights into the adsorption and activation of CO2 in the absence and presence of H2O on the (001), (010), and (110) surfaces of tantalum nitride (Ta3N5), a photocatalysts of significant technological interest. The stability of the different Ta3N surfaces is shown to dictate the strength of adsorption and the extent of activation of CO2 and H2O species, which bind strongest to the least stable Ta3N5(001) surface and weakest to the most stable Ta3N5(110) surface. The adsorption of the CO2 on the Ta3N5(001), (010), and (110) surfaces is demonstrated to be characterized by charge transfer from surface species to the CO2 molecule, resulting in its activation (i.e., forming negatively charged bent CO2−δ species, with elongated C–O bonds confirmed via vibrational frequency analyses). Compared to direct CO2 dissociation, H2O dissociates spontaneously on the Ta3N5 surfaces, providing the necessary hydrogen source for CO2 reduction reactions. The coadsorption reactions of CO2 and H2O are demonstrated to exhibit the strongest attractive interactions on the (010) surface, giving rise to proton transfer to the CO2 molecule, which causes its spontaneous dissociation to form CO and 2OH− species. These results demonstrate that Ta3N5, a narrow bandgap photocatalyst able to absorb visible light, can efficiently activate the CO2 molecule and photocatalytically reduce it with water to produce value-added fuels.
Collapse
|
11
|
Yuan Y, Wang L, Gao L. Nano-Sized Iron Sulfide: Structure, Synthesis, Properties, and Biomedical Applications. Front Chem 2020; 8:818. [PMID: 33134265 PMCID: PMC7512625 DOI: 10.3389/fchem.2020.00818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/04/2020] [Indexed: 12/02/2022] Open
Abstract
Nano-sized iron sulfides have attracted intense research interest due to the variety of their types, structures, and physicochemical properties. In particular, nano-sized iron sulfides exhibit enzyme-like activity by mimicking natural enzymes that depend on an iron-sulfur cluster as cofactor, extending their potential for applications in biomedicine. The present review principally summarizes the synthesis, properties and applications in biomedical fields, demonstrating that nano-sized iron sulfides have considerable potential for improving human health and quality of life.
Collapse
Affiliation(s)
- Ye Yuan
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China.,CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liping Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
do Nascimento Vieira A, Kleinermanns K, Martin WF, Preiner M. The ambivalent role of water at the origins of life. FEBS Lett 2020; 594:2717-2733. [PMID: 32416624 DOI: 10.1002/1873-3468.13815] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Life as we know it would not exist without water. However, water molecules not only serve as a solvent and reactant but can also promote hydrolysis, which counteracts the formation of essential organic molecules. This conundrum constitutes one of the central issues in origin of life. Hydrolysis is an important part of energy metabolism for all living organisms but only because, inside cells, it is a controlled reaction. How could hydrolysis have been regulated under prebiotic settings? Lower water activities possibly provide an answer: geochemical sites with less free and more bound water can supply the necessary conditions for protometabolic reactions. Such conditions occur in serpentinising systems, hydrothermal sites that synthesise hydrogen gas via rock-water interactions. Here, we summarise the parallels between biotic and abiotic means of controlling hydrolysis in order to narrow the gap between biochemical and geochemical reactions and briefly outline how hydrolysis could even have played a constructive role at the origin of molecular self-organisation.
Collapse
Affiliation(s)
| | | | - William F Martin
- Institute for Molecular Evolution, University of Düsseldorf, Germany
| | - Martina Preiner
- Institute for Molecular Evolution, University of Düsseldorf, Germany
| |
Collapse
|
13
|
Ramogayana B, Santos-Carballal D, Aparicio PA, Quesne MG, Maenetja KP, Ngoepe PE, de Leeuw NH. Ethylene carbonate adsorption on the major surfaces of lithium manganese oxide Li 1-xMn 2O 4 spinel (0.000 < x < 0.375): a DFT+U-D3 study. Phys Chem Chem Phys 2020; 22:6763-6771. [PMID: 32168369 DOI: 10.1039/c9cp05658k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Understanding the surface reactivity of the commercial cathode material LiMn2O4 towards the electrolyte is important to improve the cycling performance of secondary lithium-ion batteries and to prevent manganese dissolution. In this work, we have employed spin-polarized density functional theory calculations with on-site Coulomb interactions and long-range dispersion corrections [DFT+U-D3-(BJ)] to investigate the adsorption of the electrolyte component ethylene carbonate (EC) onto the (001), (011) and (111) surfaces of the fully lithiated and partially delithiated Li1-xMn2O4 spinel (0.000 < x < 0.375). The surface interactions were investigated by evaluating the adsorption energies of the EC molecule and the surface free energies. Furthermore, we analyzed the impact of EC adsorption on the Wulff crystal morphologies, the molecular vibrational frequencies and the adsorbate/surface charge transfers. The adsorption energies indicate that the EC molecule strongly adsorbs on the (111) facet, which is attributed to a bidentate binding configuration. We found that EC adsorption enhances the stability of the (111) facet, as shown by the Wulff crystal morphologies. Although a negligible charge transfer was calculated between the spinel surfaces and the EC molecule, a large charge rearrangement takes place within the surfactant upon adsorption. The wavenumbers of the C[double bond, length as m-dash]O stretching mode for the interacting EC molecule are red-shifted with respect to the isolated adsorbate, suggesting that this bond becomes weaker. The surface free energies show that both the fully lithiated and partially delithiated forms of the LiMn2O4 surfaces are stabilized by the EC molecule.
Collapse
Affiliation(s)
- Brian Ramogayana
- Materials Modelling Centre, School of Physical and Mineral Sciences, University of Limpopo, Private Bag x1106, Sovenga 0727, South Africa
| | | | | | | | | | | | | |
Collapse
|
14
|
Ashraf M, Khan I, Usman M, Khan A, Shah SS, Khan AZ, Saeed K, Yaseen M, Ehsan MF, Tahir MN, Ullah N. Hematite and Magnetite Nanostructures for Green and Sustainable Energy Harnessing and Environmental Pollution Control: A Review. Chem Res Toxicol 2020; 33:1292-1311. [PMID: 31884781 DOI: 10.1021/acs.chemrestox.9b00308] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The optoelectrical and magnetic characteristics of naturally existing iron-based nanostructures, especially hematite and magnetite nanoparticles (H-NPs and M-NPs), gained significant research interest in various applications, recently. The main purpose of this Review is to provide an overview of the utilization of H-NPs and M-NPs in various environmental remediation. Iron-based NPs are extensively explored to generate green energy from environmental friendly processes such as water splitting and CO2 conversion to hydrogen and low molecular weight hydrocarbons, respectively. The latter part of the Review provided a critical overview to use H-NPs and M-NPs for the detection and decontamination of inorganic and organic contaminants to counter the environmental pollution and toxicity challenge, which could ensure environmental sustainability and hygiene. Some of the future perspectives are comprehensively presented in the final portion of the script, optimiztically, and it is supported by some relevant literature surveys to predict the possible routes of H-NPs and M-NPs modifications that could enable researchers to use these NPs in more advanced environmental applications. The literature collection and discussion on the critical assessment of reserving the environmental sustainability challenges provided in this Review will be useful not only for experienced researchers but also for novices in the field.
Collapse
Affiliation(s)
- Muhammad Ashraf
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ibrahim Khan
- Center of Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Usman
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Abuzar Khan
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Abdul Zeeshan Khan
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Khalid Saeed
- Department of Chemistry, Bacha Khan University, Charsadda, Pakhtunkhwa 24631, Pakistan
| | - Muhammad Yaseen
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Punjab 54590, Pakistan
| | - Muhammad Fahad Ehsan
- Verschuren Centre for Sustainability in Energy and the Environment, Cape Breton University, 1250 Grand Lake Road, Sydney B1P 6L2, Nova Scotia, Canada
| | - Muhammad Nawaz Tahir
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Nisar Ullah
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
15
|
Hutchings GJ, Catlow CR, Turner NJ. Providing sustainable catalytic solutions for a rapidly changing world. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0309. [PMID: 29175818 PMCID: PMC5719224 DOI: 10.1098/rsta.2017.0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Graham J Hutchings
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - C Richard Catlow
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Nicholas J Turner
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 3DN, UK
| |
Collapse
|
16
|
Posada-Pérez S, Santos-Carballal D, Terranova U, Roldan A, Illas F, de Leeuw NH. CO2 interaction with violarite (FeNi2S4) surfaces: a dispersion-corrected DFT study. Phys Chem Chem Phys 2018; 20:20439-20446. [DOI: 10.1039/c8cp03430c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The interaction between the CO2 molecule and the violarite FeNi2S4{001} and {111} surfaces is studied using different exchange–correlation functionals and long-range dispersion correction approximations.
Collapse
Affiliation(s)
- Sergio Posada-Pérez
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | | | | | | | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Nora H. de Leeuw
- School of Chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
- Department of Earth Sciences, Utrecht University
| |
Collapse
|