1
|
Bastiaans D. Thalattosauria in time and space: a review of thalattosaur spatiotemporal occurrences, presumed evolutionary relationships and current ecological hypotheses. SWISS JOURNAL OF PALAEONTOLOGY 2024; 143:36. [PMID: 39345254 PMCID: PMC11427521 DOI: 10.1186/s13358-024-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
In the wake of the greatest mass extinction in Earth's history, the End-Permian Mass Extinction, the Triassic was a time of recovery and innovation. Aided by warm climatic conditions and favorable ecological circumstances, many reptilian clades originated and rapidly diversified during this time. This set the stage for numerous independent invasions of the marine realm by several reptilian clades, such as Ichthyosauriformes and Sauropterygia, shaping the oceanic ecosystems for the entire Mesozoic. Although comparatively less speciose, and temporally and latitudinally more restricted, another marine reptile clade, the Thalattosauriformes, stands out because of their unusual and highly disparate cranial, dental and skeletal morphology. Research on Thalattosauriformes has been hampered by a historic dearth of material, with the exception of rare material from Lagerstätten and highly fossiliferous localities, such as that from the UNESCO world heritage site of Monte San Giorgio. Consequently, their evolutionary origins and paleobiology remain poorly understood. The recent influx of new material from southwestern China and North America has renewed interest in this enigmatic group prompting the need for a detailed review of historic work and current views. The earliest representatives of the group may have been present from the late Early Triassic onwards in British Columbia. By the Ladinian the group had achieved a wide distribution across the northern hemisphere, spanning the eastern Panthalassic as well as the eastern and western Tethyan provinces. Distinct morphological and likely ecological differences exist between the two major clades of Thalattosauriformes, the Askeptosauroidea and the Thalattosauroidea, with the latter showing a higher degree of cranial and skeletal morphological disparity. In-group relationships remain poorly resolved beyond this bipartition. Overall, thalattosaurs may be closely related to other marine reptile groups such as ichthyopterygians and sauropterygians. However, their exact position within Diapsida remains elusive. Future focal points should utilize modern digital paleontological approaches to explore the many fragmentary specimens of otherwise poorly sampled localities.
Collapse
Affiliation(s)
- Dylan Bastiaans
- Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
- Natural History Museum Maastricht, Centre Céramique, De Bosquetplein 7, 6211 KJ Maastricht, The Netherlands
| |
Collapse
|
2
|
Rogger J, Judd EJ, Mills BJW, Goddéris Y, Gerya TV, Pellissier L. Biogeographic climate sensitivity controls Earth system response to large igneous province carbon degassing. Science 2024; 385:661-666. [PMID: 39116244 DOI: 10.1126/science.adn3450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Periods of large igneous province (LIP) magmatism have shaped Earth's biological and climatic history, causing major climatic shifts and biological reorganizations. The vegetation response to LIP-induced perturbations may affect the efficiency of the carbon-climate regulation system and the post-LIP climate evolution. Using an eco-evolutionary vegetation model, we demonstrate here that the vegetation's climate adaptation capacity, through biological evolution and geographic dispersal, is a major determinant of the severity and longevity of LIP-induced hyperthermals and can promote the emergence of a new climatic steady state. Proxy-based temperature reconstructions of the Permian-Triassic, Triassic-Jurassic, and Paleocene-Eocene hyperthermals match the modeled trajectories of bioclimatic disturbance and recovery. We conclude that biological vegetation dynamics shape the multimillion-year Earth system response to sudden carbon degassing and global warming episodes.
Collapse
Affiliation(s)
- Julian Rogger
- Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Emily J Judd
- Department of Geosciences, University of Arizona, Tucson, Arizona, USA
| | | | - Yves Goddéris
- Géosciences-Environnement Toulouse, CNRS-Observatoire Midi-Pyrénées, Toulouse, France
| | - Taras V Gerya
- Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | - Loïc Pellissier
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| |
Collapse
|
3
|
Song H, Wu Y, Dai X, Dal Corso J, Wang F, Feng Y, Chu D, Tian L, Song H, Foster WJ. Respiratory protein-driven selectivity during the Permian-Triassic mass extinction. Innovation (N Y) 2024; 5:100618. [PMID: 38638583 PMCID: PMC11025005 DOI: 10.1016/j.xinn.2024.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Extinction selectivity determines the direction of macroevolution, especially during mass extinction; however, its driving mechanisms remain poorly understood. By investigating the physiological selectivity of marine animals during the Permian-Triassic mass extinction, we found that marine clades with lower O2-carrying capacity hemerythrin proteins and those relying on O2 diffusion experienced significantly greater extinction intensity and body-size reduction than those with higher O2-carrying capacity hemoglobin or hemocyanin proteins. Our findings suggest that animals with high O2-carrying capacity obtained the necessary O2 even under hypoxia and compensated for the increased energy requirements caused by ocean acidification, which enabled their survival during the Permian-Triassic mass extinction. Thus, high O2-carrying capacity may have been crucial for the transition from the Paleozoic to the Modern Evolutionary Fauna.
Collapse
Affiliation(s)
- Haijun Song
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Yuyang Wu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Xu Dai
- Biogéosciences, UMR 6282, CNRS, Université de Bourgogne, 21000 Dijon, France
| | - Jacopo Dal Corso
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Fengyu Wang
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Yan Feng
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Daoliang Chu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Li Tian
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Huyue Song
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | | |
Collapse
|
4
|
Pinheiro FL, Pretto FA, Kerber L. The dawn of an Era: New contributions on comparative and functional anatomy of Triassic tetrapods. Anat Rec (Hoboken) 2024; 307:713-721. [PMID: 38344876 DOI: 10.1002/ar.25402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 03/16/2024]
Abstract
The Triassic period stands as a crucial moment for understanding tetrapod evolution, marking the emergence and early diversification of numerous lineages that persist in today's ecosystems. Birds, crocodiles, testudines, lizards, and mammals can all trace their origins to the Triassic, which is distinguished by several adaptive radiation events that fostered unparalleled diversity in body plans and lifestyles. Beyond this macroevolutionary significance, the Triassic period serves as fertile ground for scientific inquiry, especially in tetrapod studies. The aim of this Special Issue is to assemble a diverse array of new contributions focused on continental Triassic tetrapods globally, encouraging collaboration among researchers across generations, pooling their efforts to comprehend this pivotal moment in tetrapod evolutionary history. This issue encompasses almost 40 varied contributions, spanning topics from comparative and functional anatomy, including descriptions of novel taxa, comprehensive anatomical reviews, systematic investigations, phylogenetic analyses, paleoneurological studies, biomechanical assessments, and detailed examinations of histology and ontogeny. Collectively, this Special Issue offers an extensive exploration of Triassic tetrapods from anatomical, ecological, and evolutionary perspectives, unveiling fresh insights into this intriguing moment in vertebrate evolutionary history.
Collapse
Affiliation(s)
- Felipe L Pinheiro
- Laboratório de Paleobiologia, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Flávio A Pretto
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria (CAPPA/UFSM), São João do Polêsine, Brazil
| | - Leonardo Kerber
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria (CAPPA/UFSM), São João do Polêsine, Brazil
| |
Collapse
|
5
|
Holtum JAM. The diverse diaspora of CAM: a pole-to-pole sketch. ANNALS OF BOTANY 2023; 132:597-625. [PMID: 37303205 PMCID: PMC10800000 DOI: 10.1093/aob/mcad067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Crassulacean acid metabolism (CAM) photosynthesis is a successful adaptation that has evolved often in angiosperms, gymnosperms, ferns and lycophytes. Present in ~5 % of vascular plants, the CAM diaspora includes all continents apart from Antarctica. Species with CAM inhabit most landscapes colonized by vascular plants, from the Arctic Circle to Tierra del Fuego, from below sea level to 4800 m a.s.l., from rainforests to deserts. They have colonized terrestrial, epiphytic, lithophytic, palustrine and aquatic systems, developing perennial, annual or geophyte strategies that can be structurally arborescent, shrub, forb, cladode, epiphyte, vine or leafless with photosynthetic roots. CAM can enhance survival by conserving water, trapping carbon, reducing carbon loss and/or via photoprotection. SCOPE This review assesses the phylogenetic diversity and historical biogeography of selected lineages with CAM, i.e. ferns, gymnosperms and eumagnoliids, Orchidaceae, Bromeliaceae, Crassulaceae, Euphorbiaceae, Aizoaceae, Portulacineae (Montiaceae, Basellaceae, Halophytaceae, Didiereaceae, Talinaceae, Portulacaceae, Anacampserotaceae and Cactaceae) and aquatics. CONCLUSIONS Most extant CAM lineages diversified after the Oligocene/Miocene, as the planet dried and CO2 concentrations dropped. Radiations exploited changing ecological landscapes, including Andean emergence, Panamanian Isthmus closure, Sundaland emergence and submergence, changing climates and desertification. Evidence remains sparse for or against theories that CAM biochemistry tends to evolve before pronounced changes in anatomy and that CAM tends to be a culminating xerophytic trait. In perennial taxa, any form of CAM can occur depending upon the lineage and the habitat, although facultative CAM appears uncommon in epiphytes. CAM annuals lack strong CAM. In CAM annuals, C3 + CAM predominates, and inducible or facultative CAM is common.
Collapse
Affiliation(s)
- Joseph A M Holtum
- College of Science and Engineering, James Cook University, Townsville, QLD4811, Australia
| |
Collapse
|
6
|
Abstract
Paleontology has provided invaluable basic knowledge on the history of life on Earth. The discipline can also provide substantial knowledge to societal challenges such as climate change. The long-term perspective of climate change impacts on natural systems is both a unique selling point and a major obstacle to becoming more pertinent for policy-relevant bodies like the Intergovernmental Panel on Climate Change (IPCC). Repeated experiments on the impacts of climate change without anthropogenic disturbance facilitate the extraction of climate triggers in biodiversity changes. At the same time, the long timescales over which paleontological changes are usually assessed are beyond the scope of policymakers. Based on first-hand experience with the IPCC and a quantitative analysis of its cited literature, we argue that the differences in temporal scope are less of an issue than inappropriate framing and reporting of most paleontological publications. Accepting that some obstacles will remain, paleontology can quickly improve its relevance by targeting climate change impacts more directly and focusing on effect sizes and relevance for projections, particularly on higher-end climate change scenarios.
Collapse
|
7
|
Procheş Ş, Watkeys MK, Ramsay LF, Cowling RM. Why we should be looking for longitudinal patterns in biodiversity. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1032827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Our understanding of global diversity patterns relies overwhelmingly on ecological and evolutionary correlates of latitude, and largely ignores longitude. However, the two major explanations of biodiversity patterns – energy and stability – are confounded across latitudes, and longitude offers potential solutions. Recent literature shows that the global biogeography of the Cenozoic world is structured by longitudinal barriers. In a few well-studied regions, such as South Africa’s Cape, the Himalayas and the Amazon-Andes continuum, there are strong longitudinal gradients in biodiversity. Often, such gradients occur where high and low past climatic velocities are juxtaposed, and there is clear evidence of higher biodiversity at the climatically-stable end. Understanding longitudinal biodiversity variations more widely can offer new insights towards biodiversity conservation in the face of anthropogenic climatic change.
Collapse
|
8
|
Davis CV, Shaw JO, D’haenens S, Thomas E, Hull PM. Photosymbiont associations persisted in planktic foraminifera during early Eocene hyperthermals at Shatsky Rise (Pacific Ocean). PLoS One 2022; 17:e0267636. [PMID: 36155636 PMCID: PMC9512218 DOI: 10.1371/journal.pone.0267636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding the sensitivity of species-level responses to long-term warming will become increasingly important as we look towards a warmer future. Here, we examine photosymbiont associations in planktic foraminifera at Shatsky Rise (ODP Site 1209, Pacific Ocean) across periods of global warming of differing magnitude and duration. We compare published data from the Paleocene-Eocene Thermal Maximum (PETM; ~55.9 Ma) with data from the less intense Eocene Thermal Maximum 2 (ETM2; ~54.0 Ma), and H2 events (~53.9 Ma). We use a positive relationship between test size and carbon isotope value (size-δ13C) in foraminifera shells as a proxy for photosymbiosis in Morozovella subbotinae and Acarinina soldadoensis, and find no change in photosymbiont associations during the less intense warming events, in contrast with PETM records indicating a shift in symbiosis in A. soldadoensis (but not M. subbotinae). Declines in abundance and differing preservation potential of the asymbiotic species Subbotina roesnaesensis along with sediment mixing likely account for diminished differences in δ13C between symbiotic and asymbiotic species from the PETM and ETM2. We therefore conclude that photosymbiont associations were maintained in both A. soldadoensis and M. subbotinae across ETM2 and H2. Our findings support one or both of the hypotheses that 1) changing symbiotic associations in response to warming during the PETM allowed A. soldadoensis and perhaps other acarininids to thrive through subsequent hyperthermals or 2) some critical environmental threshold value was not reached in these less intense hyperthermals.
Collapse
Affiliation(s)
- Catherine V. Davis
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States of America
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, United States of America
| | - Jack O. Shaw
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, United States of America
| | - Simon D’haenens
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, United States of America
| | - Ellen Thomas
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, United States of America
- Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT, United States of America
| | - Pincelli M. Hull
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, United States of America
- Peabody Museum of Natural History, Yale University, New Haven, CT, United States of America
| |
Collapse
|
9
|
Knowledge Gaps and Missing Links in Understanding Mass Extinctions: Can Mathematical Modeling Help? Phys Life Rev 2022; 41:22-57. [DOI: 10.1016/j.plrev.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
|
10
|
Massive and rapid predominantly volcanic CO 2 emission during the end-Permian mass extinction. Proc Natl Acad Sci U S A 2021; 118:2014701118. [PMID: 34493684 PMCID: PMC8449420 DOI: 10.1073/pnas.2014701118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
The end-Permian mass extinction event (∼252 Mya) is associated with one of the largest global carbon cycle perturbations in the Phanerozoic and is thought to be triggered by the Siberian Traps volcanism. Sizable carbon isotope excursions (CIEs) have been found at numerous sites around the world, suggesting massive quantities of 13C-depleted CO2 input into the ocean and atmosphere system. The exact magnitude and cause of the CIEs, the pace of CO2 emission, and the total quantity of CO2, however, remain poorly known. Here, we quantify the CO2 emission in an Earth system model based on new compound-specific carbon isotope records from the Finnmark Platform and an astronomically tuned age model. By quantitatively comparing the modeled surface ocean pH and boron isotope pH proxy, a massive (∼36,000 Gt C) and rapid emission (∼5 Gt C yr-1) of largely volcanic CO2 source (∼-15%) is necessary to drive the observed pattern of CIE, the abrupt decline in surface ocean pH, and the extreme global temperature increase. This suggests that the massive amount of greenhouse gases may have pushed the Earth system toward a critical tipping point, beyond which extreme changes in ocean pH and temperature led to irreversible mass extinction. The comparatively amplified CIE observed in higher plant leaf waxes suggests that the surface waters of the Finnmark Platform were likely out of equilibrium with the initial massive centennial-scale release of carbon from the massive Siberian Traps volcanism, supporting the rapidity of carbon injection. Our modeling work reveals that carbon emission pulses are accompanied by organic carbon burial, facilitated by widespread ocean anoxia.
Collapse
|
11
|
Huang Y, Chen ZQ, Roopnarine PD, Benton MJ, Yang W, Liu J, Zhao L, Li Z, Guo Z. Ecological dynamics of terrestrial and freshwater ecosystems across three mid-Phanerozoic mass extinctions from northwest China. Proc Biol Sci 2021; 288:20210148. [PMID: 33726593 PMCID: PMC8059510 DOI: 10.1098/rspb.2021.0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Earth has been beset by many crises during its history, and yet comparing the ecological impacts of these mass extinctions has been difficult. Key questions concern the kinds of species that go extinct and survive, how communities rebuild in the post-extinction recovery phase, and especially how the scaling of events affects these processes. Here, we explore ecological impacts of terrestrial and freshwater ecosystems in three mass extinctions through the mid-Phanerozoic, a span of 121 million years (295–174 Ma). This critical duration encompasses the largest mass extinction of all time, the Permian–Triassic (P–Tr) and is flanked by two smaller crises, the Guadalupian–Lopingian (G–L) and Triassic–Jurassic (T–J) mass extinctions. Palaeocommunity dynamics modelling of 14 terrestrial and freshwater communities through a long sedimentary succession from the lower Permian to the lower Jurassic in northern Xinjiang, northwest China, shows that the P–Tr mass extinction differed from the other two in two ways: (i) ecological recovery from this extinction was prolonged and the three post-extinction communities in the Early Triassic showed low stability and highly variable and unpredictable responses to perturbation primarily following the huge losses of species, guilds and trophic space; and (ii) the G–L and T–J extinctions were each preceded by low-stability communities, but post-extinction recovery was rapid. Our results confirm the uniqueness of the P–Tr mass extinction and shed light on the trophic structure and ecological dynamics of terrestrial and freshwater ecosystems across the three mid-Phanerozoic extinctions, and how complex communities respond to environmental stress and how communities recovered after the crisis. Comparisons with the coeval communities from the Karoo Basin, South Africa show that geographically and compositionally different communities of terrestrial ecosystems were affected in much the same way by the P–Tr extinction.
Collapse
Affiliation(s)
- Yuangeng Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, People's Republic of China.,Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Zhong-Qiang Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Peter D Roopnarine
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, People's Republic of China.,Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Michael J Benton
- School of Earth Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, UK
| | - Wan Yang
- Geology and Geophysics Program, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Jun Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, People's Republic of China
| | - Laishi Zhao
- State Key Laboratory of Geological Processes and Resource Geology, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Zhenhua Li
- School of Computer Science, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Zhen Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, People's Republic of China
| |
Collapse
|
12
|
Petti FM, Furrer H, Collo E, Martinetto E, Bernardi M, Delfino M, Romano M, Piazza M. Archosauriform footprints in the Lower Triassic of Western Alps and their role in understanding the effects of the Permian-Triassic hyperthermal. PeerJ 2020; 8:e10522. [PMID: 33384899 PMCID: PMC7751423 DOI: 10.7717/peerj.10522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/17/2020] [Indexed: 11/20/2022] Open
Abstract
The most accepted killing model for the Permian-Triassic mass extinction (PTME) postulates that massive volcanic eruption (i.e., the Siberian Traps Large Igneous Province) led to geologically rapid global warming, acid rain and ocean anoxia. On land, habitable zones were drastically reduced, due to the combined effects of heating, drought and acid rains. This hyperthermal had severe effects also on the paleobiogeography of several groups of organisms. Among those, the tetrapods, whose geographical distribution across the end-Permian mass extinction (EPME) was the subject of controversy in a number of recent papers. We here describe and interpret a new Early Triassic (?Olenekian) archosauriform track assemblage from the Gardetta Plateau (Briançonnais, Western Alps, Italy) which, at the Permian-Triassic boundary, was placed at about 11° North. The tracks, both arranged in trackways and documented by single, well-preserved imprints, are assigned to Isochirotherium gardettensis ichnosp. nov., and are here interpreted as produced by a non-archosaurian archosauriform (erytrosuchid?) trackmaker. This new discovery provides further evidence for the presence of archosauriformes at low latitudes during the Early Triassic epoch, supporting a model in which the PTME did not completely vacate low-latitude lands from tetrapods that therefore would have been able to cope with the extreme hot temperatures of Pangaea mainland.
Collapse
Affiliation(s)
| | - Heinz Furrer
- Paläontologisches Institut und Museum, Universität Zürich, Zürich, Switzerland
| | | | - Edoardo Martinetto
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Turin, Italy
| | | | - Massimo Delfino
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Turin, Italy.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autónoma de Barcelona. Edifici ICTA-ICP, Barcelona, Spain
| | - Marco Romano
- Dipartimento di Scienze della Terra, Sapienza, University of Rome, Rome, Italy
| | - Michele Piazza
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genoa, Italy
| |
Collapse
|
13
|
Evolution of Protein Structure and Stability in Global Warming. Int J Mol Sci 2020; 21:ijms21249662. [PMID: 33352933 PMCID: PMC7767258 DOI: 10.3390/ijms21249662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the molecular signatures of protein structures in relation to evolution and survival in global warming. It is based on the premise that the power of evolutionary selection may lead to thermotolerant organisms that will repopulate the planet and continue life in general, but perhaps with different kinds of flora and fauna. Our focus is on molecular mechanisms, whereby known examples of thermoresistance and their physicochemical characteristics were noted. A comparison of interactions of diverse residues in proteins from thermophilic and mesophilic organisms, as well as reverse genetic studies, revealed a set of imprecise molecular signatures that pointed to major roles of hydrophobicity, solvent accessibility, disulfide bonds, hydrogen bonds, ionic and π-electron interactions, and an overall condensed packing of the higher-order structure, especially in the hydrophobic regions. Regardless of mutations, specialized protein chaperones may play a cardinal role. In evolutionary terms, thermoresistance to global warming will likely occur in stepwise mutational changes, conforming to the molecular signatures, such that each "intermediate" fits a temporary niche through punctuated equilibrium, while maintaining protein functionality. Finally, the population response of different species to global warming may vary substantially, and, as such, some may evolve while others will undergo catastrophic mass extinction.
Collapse
|
14
|
The struggle to equilibrate outer and inner milieus: Renal evolution revisited. Ann Anat 2020; 233:151610. [PMID: 33065247 DOI: 10.1016/j.aanat.2020.151610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022]
Abstract
The journey of life, from primordial protoplasm to a complex vertebrate form, is a tale of survival against incessant alterations in climate, surface topography, food chain, and chemistry of the external environment. Kidneys present with an ensemble embodiment of the adaptations devised by diverse life-forms to cope with such challenges and maintain a chemical equilibrium of water and solutes, both in and outside the body. This minireview revisits renal evolution utilizing the classic: From Fish to Philosopher; the story of our internal environment, by Prof. Homer W. Smith (1895-1962) as a template. Prof. Smith's views exemplified the invention of glomeruli, or its abolishment, as a mechanism to filter water. Moreover, with the need to preserve water, as in reptiles, the loop of Henle was introduced to concentrate urine. When compared to smaller mammals, the larger ones, albeit having loops of Henle of similar lengths, demonstrated a distinct packing of the nephrons in kidneys. Moreover, the renal portal system degenerated in mammals, while still present in other vertebrates. This account will present with a critique of the current concepts of renal evolution while examining how various other factors, including the ones that we know more about now, such as genetic factors, synchronize to achieve renal development. Finally, it will try to assess the validity of ideas laid by Prof. Smith with the knowledge that we possess now, and understand the complex architecture that evolution has imprinted on the kidneys during its struggle to survive over epochs.
Collapse
|
15
|
Song H, Huang S, Jia E, Dai X, Wignall PB, Dunhill AM. Flat latitudinal diversity gradient caused by the Permian-Triassic mass extinction. Proc Natl Acad Sci U S A 2020; 117:17578-17583. [PMID: 32631978 PMCID: PMC7395496 DOI: 10.1073/pnas.1918953117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The latitudinal diversity gradient (LDG) is recognized as one of the most pervasive, global patterns of present-day biodiversity. However, the controlling mechanisms have proved difficult to identify because many potential drivers covary in space. The geological record presents a unique opportunity for understanding the mechanisms which drive the LDG by providing a direct window to deep-time biogeographic dynamics. Here we used a comprehensive database containing 52,318 occurrences of marine fossils to show that the shape of the LDG changed greatly during the Permian-Triassic mass extinction from showing a significant tropical peak to a flattened LDG. The flat LDG lasted for the entire Early Triassic (∼5 My) before reverting to a modern-like shape in the Middle Triassic. The environmental extremes that prevailed globally, especially the dramatic warming, likely induced selective extinction in low latitudes and accumulation of diversity in high latitudes through origination and poleward migration, which combined together account for the flat LDG of the Early Triassic.
Collapse
Affiliation(s)
- Haijun Song
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China;
| | - Shan Huang
- Senckenberg Biodiversity and Climate Research Center, 60325 Frankfurt am Main, Germany
| | - Enhao Jia
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
| | - Xu Dai
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
| | - Paul B Wignall
- School of Earth and Environment, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Alexander M Dunhill
- School of Earth and Environment, University of Leeds, LS2 9JT Leeds, United Kingdom
| |
Collapse
|
16
|
Gastaldo RA, Kamo SL, Neveling J, Geissman JW, Looy CV, Martini AM. The base of the Lystrosaurus Assemblage Zone, Karoo Basin, predates the end-Permian marine extinction. Nat Commun 2020; 11:1428. [PMID: 32188857 PMCID: PMC7080820 DOI: 10.1038/s41467-020-15243-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/28/2020] [Indexed: 11/25/2022] Open
Abstract
The current model for the end-Permian terrestrial ecosystem crisis holds that systematic loss exhibited by an abrupt turnover from the Daptocephalus to the Lystrosaurus Assemblage Zone (AZ; Karoo Basin, South Africa) is time equivalent with the marine Permian–Triassic boundary (PTB). The marine event began at 251.941 ± 0.037 Ma, with the PTB placed at 251.902 ± 0.024 Ma (2σ). Radio-isotopic dates over this interval in the Karoo Basin were limited to one high resolution ash-fall deposit in the upper Daptocephalus AZ (253.48 ± 0.15 (2σ) Ma) with no similar age constraints for the overlying biozone. Here, we present the first U-Pb CA-ID-TIMS zircon age (252.24 ± 0.11 (2σ) Ma) from a pristine ash-fall deposit in the Karoo Lystrosaurus AZ. This date confirms that the lower exposures of the Lystrosaurus AZ are of latest Permian age and that the purported turnover in the basin preceded the end-Permian marine event by over 300 ka, thus refuting the previously used stratigraphic marker for terrestrial end-Permian extinction. The end-Permian is associated with major changes in both marine and terrestrial biodiversity. Here, Gastaldo et al. present high resolution dating of the Lystrosaurus Assemblage Zone in the Karoo Basin, South Africa, demonstrating that the marine crisis did not mirror a coeval event on land.
Collapse
Affiliation(s)
| | - Sandra L Kamo
- Department of Earth Sciences, Jack Satterly Geochronology Laboratory, University of Toronto, Toronto, Ontario, M5S 3B1, Canada
| | - Johann Neveling
- Council for Geosciences, Private Bag x112, Silverton, Pretoria, 0001, South Africa
| | - John W Geissman
- Department of Geosciences, The University of Texas at Dallas, Richardson, TX, 75080-3021, USA.,Department of Earth and Planetary Sciences, The University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Cindy V Looy
- Department of Integrative Biology, Museum of Paleontology, University and Jepson Herbaria, University of California-Berkeley, 3060 Valley Life Sciences Building #3140, Berkeley, CA, 94720-3140, USA
| | - Anna M Martini
- Department of Geology, Amherst College, Amherst, MA, 01002, USA
| |
Collapse
|
17
|
Altered fluvial patterns in North China indicate rapid climate change linked to the Permian-Triassic mass extinction. Sci Rep 2019; 9:16818. [PMID: 31727990 PMCID: PMC6856103 DOI: 10.1038/s41598-019-53321-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/21/2019] [Indexed: 11/18/2022] Open
Abstract
The causes of the severest crisis in the history of life around the Permian-Triassic boundary (PTB) remain controversial. Here we report that the latest Permian alluvial plains in Shanxi, North China, went through a rapid transition from meandering rivers to braided rivers and aeolian systems. Soil carbonate carbon isotope (δ13C), oxygen isotope (δ18O), and geochemical signatures of weathering intensity reveal a consistent pattern of deteriorating environments (cool, arid, and anoxic conditions) and climate fluctuations across the PTB. The synchronous ecological collapse is confirmed by a dramatic reduction or disappearance of dominant plants, tetrapods and invertebrates and a bloom of microbially-induced sedimentary structures. A similar rapid switch in fluvial style is seen worldwide (e.g. Karoo Basin, Russia, Australia) in terrestrial boundary sequences, all of which may be considered against a background of global marine regression. The synchronous global expansion of alluvial fans and high-energy braided streams is a response to abrupt climate change associated with aridity, hypoxia, acid rain, and mass wasting. Where neighbouring uplands were not uplifting or basins subsiding, alluvial fans are absent, but in these areas the climate change is evidenced by the disruption of pedogenesis.
Collapse
|
18
|
Lovegrove BG. Obligatory Nocturnalism in Triassic Archaic Mammals: Preservation of Sperm Quality? Physiol Biochem Zool 2019; 92:544-553. [DOI: 10.1086/705440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Multiverse Predictions for Habitability: Fraction of Life That Develops Intelligence. UNIVERSE 2019. [DOI: 10.3390/universe5070175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Do mass extinctions affect the development of intelligence? If so, we may expect to be in a universe that is exceptionally placid. We consider the effects of impacts, supervolcanoes, global glaciations, and nearby gamma ray bursts, and how their rates depend on fundamental constants. It is interesting that despite the very disparate nature of these processes, each occurs on timescales of 100 Myr-Gyr. We argue that this is due to a selection effect that favors both tranquil locales within our universe, as well as tranquil universes. Taking gamma ray bursts to be the sole driver of mass extinctions is disfavored in multiverse scenarios, as the rate is much lower for different values of the fundamental constants. In contrast, geological causes of extinction are very compatible with the multiverse. Various frameworks for the effects of extinctions are investigated, and the intermediate disturbance hypothesis is found to be most compatible with the multiverse.
Collapse
|
20
|
|
21
|
Foster GL, Hull P, Lunt DJ, Zachos JC. Placing our current 'hyperthermal' in the context of rapid climate change in our geological past. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0086. [PMID: 30177567 PMCID: PMC6127387 DOI: 10.1098/rsta.2017.0086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/07/2018] [Indexed: 05/22/2023]
Abstract
'…there are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know. But there are also unknown unknowns. There are things we don't know we don't know.' Donald Rumsfeld 12th February 2002.This article is part of a discussion meeting issue 'Hyperthermals: rapid and extreme global warming in our geological past'.
Collapse
Affiliation(s)
- Gavin L Foster
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, UK
| | - Pincelli Hull
- Department of Geology and Geophysics, Yale University, Box 208109, New Haven, CT 06520-8109, USA
| | - Daniel J Lunt
- School of Geographical Sciences, University of Bristol, University Road, Clifton, Bristol BS8 1SS, UK
| | - James C Zachos
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|