1
|
Wynne E, Connell SD, Shinebaum R, Blade H, George N, Brown A, Collins SM. Grain and Domain Microstructure in Long Chain N-Alkane and N-Alkanol Wax Crystals. CRYSTAL GROWTH & DESIGN 2024; 24:10127-10142. [PMID: 39713280 PMCID: PMC11660156 DOI: 10.1021/acs.cgd.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
Waxes comprise a diverse set of materials from lubricants and coatings to biological materials such as the intracuticular wax layers on plant leaves that restrict water loss to inhibit dehydration. Despite the often mixed hydrocarbon chain lengths and functional groups within waxes, they show a propensity for ordering into crystalline phases, albeit with a wealth of solid solution behavior and disorder modes that determine chemical transport and mechanical properties. Here, we reveal the microscopic structure and heterogeneity of replica leaf wax models based on the dominant wax types in the Schefflera elegantissima plant, namely C31H64 and C30H61OH and their binary mixtures. We observe defined grain microstructure in C31H64 crystals and nanoscale domains of chain-ordered lamellae within these grains. Moreover, nematic phases and dynamical disorder coexist with the domains of ordered lamellae. C30H61OH exhibits more disordered chain packing with no grain structure or lamellar domains. Binary mixtures from 0-50% C30H61OH exhibit a loss of grain structure with increasing alcohol content accompanied by increasingly nematic rather than lamellar chain packing, suggesting a partial but limited solid solution behavior. Together, these results unveil the previously unseen microstructural features governing flexibility and permeability in leaf waxes and outline an approach to microstructure analysis across agrochemicals, pharmaceuticals, and food.
Collapse
Affiliation(s)
- Emily Wynne
- School
of Chemical and Process Engineering, University
of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Simon D. Connell
- Bragg
Centre for Materials Research, University
of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- School
of Physics and Astronomy, University of
Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Rachael Shinebaum
- AstraZeneca,
Technical Operations Science & Innovation, Pharmaceutical Technology
& Development, Operations, Macclesfield SK10 2NA, U.K.
| | - Helen Blade
- AstraZeneca,
Oral Product Development, Pharmaceutical Technology & Development,
Operations, Macclesfield SK10 2NA, U.K.
| | - Neil George
- School
of Chemical and Process Engineering, University
of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- Syngenta, Jealott’s Hill, Warfield, Bracknell RG42 6EY, U.K.
| | - Andy Brown
- School
of Chemical and Process Engineering, University
of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Sean M. Collins
- School
of Chemical and Process Engineering, University
of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
2
|
Smeaton MA, Abellan P, Spurgeon SR, Unocic RR, Jungjohann KL. Tutorial on In Situ and Operando (Scanning) Transmission Electron Microscopy for Analysis of Nanoscale Structure-Property Relationships. ACS NANO 2024; 18:35091-35103. [PMID: 39690460 PMCID: PMC11697340 DOI: 10.1021/acsnano.4c09256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
In situ and operando (scanning) transmission electron microscopy [(S)TEM] is a powerful characterization technique that uses imaging, diffraction, and spectroscopy to gain nano-to-atomic scale insights into the structure-property relationships in materials. This technique is both customizable and complex because many factors impact the ability to collect structural, compositional, and bonding information from a sample during environmental exposure or under application of an external stimulus. In the past two decades, in situ and operando (S)TEM methods have diversified and grown to encompass additional capabilities, higher degrees of precision, dynamic tracking abilities, enhanced reproducibility, and improved analytical tools. Much of this growth has been shared through the community and within commercialized products that enable rapid adoption and training in this approach. This tutorial aims to serve as a guide for students, collaborators, and nonspecialists to learn the important factors that impact the success of in situ and operando (S)TEM experiments and assess the value of the results obtained. As this is not a step-by-step guide, readers are encouraged to seek out the many comprehensive resources available for gaining a deeper understanding of in situ and operando (S)TEM methods, property measurements, data acquisition, reproducibility, and data analytics.
Collapse
Affiliation(s)
| | - Patricia Abellan
- Nantes
Université, CNRS, Institut des Matériaux de Nantes Jean
Rouxel, IMN, F-44000 Nantes, France
| | - Steven R. Spurgeon
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Raymond R. Unocic
- Oak
Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | |
Collapse
|
3
|
Banerjee P, Kollmannsberger KL, Fischer RA, Jinschek JR. Mechanism of Electron-Beam-Induced Structural Degradation in ZIF-8 and its Electron Dose Tolerance. J Phys Chem A 2024; 128:10440-10451. [PMID: 39565713 DOI: 10.1021/acs.jpca.4c06391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Zeolitic-imidazolate frameworks (ZIFs) are crystalline microporous materials with promising potential for gas adsorption and catalysis application. Further research advances include studies on integrating ZIFs into nanodevice concepts. In detail for the application, e.g., electron-beam-assisted structural modifications or patterning, there is a need to understand potential structural degradation processes caused by such electron beams. Advanced transmission electron microscopy (TEM) has demonstrated its ability to study structures at the nanoscale. Here, we systematically investigated electron-beam-induced loss in crystallinity in ZIF-8 under various experimental conditions, using as measure the attenuation of the relative intensity and the relative displacement of electron diffraction Bragg planes with increasing cumulative electron dose. The {110} Bragg planes reflect the overall stability of the ZIF-8 unit-cell structure, while the {431} Bragg planes assess the stability of its micropore structure. We considered a relative loss of Bragg plane intensity of 37% as the threshold for determining the critical electron dose, which varied for different Bragg planes, with 35.6 ± 8.4 e-Å-2 for {110} and 11.4 ± 3.0 e-Å-2 for {431}. However, the critical dose per breakage of N-Zn bonds in a ZnN4 tetrahedra per different Bragg plane was found to be ∼3 e-Å-2, which indicates continuous, simultaneous breakage of N-Zn bonds throughout the crystal, confirming radiolysis as the dominant damage mechanism. In addition, we investigated the effects of TEM experiment parameters, including acceleration voltage, electron dose rate, cryogenic sample temperature, in situ sample drying, and change in conductivity of the sample substrate (e.g., graphene). Our results unravel the degradation mechanisms in ZIF-8 and provide threshold parameters for maximizing resolution in electron-beam-assisted experiments and processes.
Collapse
Affiliation(s)
- Pritam Banerjee
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Kathrin L Kollmannsberger
- TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D- 85748 Garching, Germany
| | - Roland A Fischer
- TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D- 85748 Garching, Germany
| | - Joerg R Jinschek
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Matsko NB, Schorb M, Schwab Y. Selective signal enhancement in Fourier space as a tool for discovering ultrastructural organization of macromolecules from in situ TEM. J Struct Biol 2024; 216:108128. [PMID: 39284397 DOI: 10.1016/j.jsb.2024.108128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
We present a Fourier transform (FT) based analytical method that allows to obtain of ultrastructural details from TEM images at sub-nanometer scale applying a selective filtering for singular macromolecule electron microscopy density information. It can be applied to high-pressure frozen, frozen hydrated and epoxy freeze substituted and embedded biological species. Both 2D projections and orthoslices from reconstructed tomograms can be used as a source of structural information. The key to the method is to select the macromolecule or organelle of interest with an accuracy of ≥ 7 - 3 nm (depending on pixel size of initial tilt series or singular image acquisition) and explore both the central low frequency FT intensity and diffraction regions to obtain the spatial structural organization and its dimensional characteristics, respectively. We also introduce a structure-specific selective mask FT filtering approach that can significantly improve image information even in poorly contrasted TEM of resin sections without heavy metal been used. The described method elucidates chromatin architecture without the need of averaging. A zigzag symmetry of 30 nm diameter chromatin fibers which in general is a controversial topic of research has been identified for C. elegans cells in vivo with sub-nanometer details being preserved in the images.
Collapse
Affiliation(s)
- Nadejda B Matsko
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Max-Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Jahn-Str. 29, D-69120 Heidelberg, Germany.
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
5
|
Caffrey BJ, Pedrazo‐Tardajos A, Liberti E, Gaunt B, Kim JS, Kirkland AI. Liquid Phase Electron Microscopy of Bacterial Ultrastructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402871. [PMID: 39239997 PMCID: PMC11636060 DOI: 10.1002/smll.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Indexed: 09/07/2024]
Abstract
Recent advances in liquid phase scanning transmission electron microscopy (LP-STEM) have enabled the study of dynamic biological processes at nanometer resolutions, paving the way for live-cell imaging using electron microscopy. However, this technique is often hampered by the inherent thickness of whole cell samples and damage from electron beam irradiation. These restrictions degrade image quality and resolution, impeding biological interpretation. Using graphene encapsulation, scanning transmission electron microscopy (STEM), and energy-dispersive X-ray (EDX) spectroscopy to mitigate these issues provides unprecedented levels of intracellular detail in aqueous specimens. This study demonstrates the potential of LP-STEM to examine and identify internal cellular structures in thick biological samples. Specifically, it highlights the use of LP-STEM to investigate the radiation resistant, gram-positive bacterium, Deinococcus radiodurans using various imaging techniques.
Collapse
Affiliation(s)
- Brian J. Caffrey
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
| | | | - Emanuela Liberti
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
| | - Benjamin Gaunt
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
- Nuffield Department of Women's & Reproductive HealthUniversity of OxfordJohn Radcliffe HospitalOxfordOX3 9DUUK
| | - Judy S. Kim
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
- Department of MaterialsUniversity of OxfordOxfordOX1 3PHUK
| | - Angus I. Kirkland
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
- Department of MaterialsUniversity of OxfordOxfordOX1 3PHUK
| |
Collapse
|
6
|
Noisternig SM, Rentenberger C, Gammer C, Karnthaler HP, Kotakoski J. Probing the interaction range of electron beam-induced etching in STEM by a non-contact electron beam. Ultramicroscopy 2024; 265:114019. [PMID: 39094366 DOI: 10.1016/j.ultramic.2024.114019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Beside its main purpose as a high-end tool in material analysis reaching the atomic scale for structure, chemical and electronic properties, aberration-corrected scanning transmission electron microscopy (STEM) is increasingly used as a tool to manipulate materials down to that very same scale. In order to obtain exact and reproducible results, it is essential to consider the interaction processes and interaction ranges between the electron beam and the involved materials. Here, we show in situ that electron beam-induced etching in a low-pressure oxygen atmosphere can extend up to a distance of several nm away from the Ångström-size electron beam, usually used for probing the sample. This relatively long-range interaction is related to beam tails and inelastic scattering involved in the etching process. To suppress the influence of surface diffusion, we measure the etching effect indirectly on isolated nm-sized holes in a 2 nm thin amorphous carbon foil that is commonly used as sample support in STEM. During our experiments, the electron beam is placed inside the nanoholes so that most electrons cannot directly participate in the etching process. We characterize the etching process from measuring etching rates at multiple nanoholes with different distances between the hole edge and the electron beam.
Collapse
Affiliation(s)
- Stefan Manuel Noisternig
- University of Vienna, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Vienna, Austria; Austrian Academy of Sciences, Erich Schmid Institute of Materials Science, Jahnstraße 12, 8700, Leoben, Austria.
| | - Christian Rentenberger
- University of Vienna, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christoph Gammer
- Austrian Academy of Sciences, Erich Schmid Institute of Materials Science, Jahnstraße 12, 8700, Leoben, Austria
| | - H Peter Karnthaler
- University of Vienna, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Jani Kotakoski
- University of Vienna, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
7
|
Ilett M, Afzali M, Abdulkarim B, Aslam Z, Foster S, Burgos-Ruiz M, Kim YY, Meldrum FC, Drummond-Brydson RM. Studying crystallisation processes using electron microscopy: The importance of sample preparation. J Microsc 2024; 295:243-256. [PMID: 38594963 DOI: 10.1111/jmi.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/12/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
We present a comparison of common electron microscopy sample preparation methods for studying crystallisation processes from solution using both scanning and transmission electron microscopy (SEM and TEM). We focus on two widely studied inorganic systems: calcium sulphate, gypsum (CaSO4·2H2O) and calcium carbonate (CaCO3). We find significant differences in crystallisation kinetics and polymorph selection between the different sample preparation methods, which indicate that drying and chemical quenching can induce severe artefacts that are capable of masking the true native state of the crystallising solution. Overall, these results highlight the importance of cryogenic (cryo)-quenching crystallising solutions and the use of full cryo-TEM as the most reliable method for studying the early stages of crystallisation.
Collapse
Affiliation(s)
- Martha Ilett
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Maryam Afzali
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Bilal Abdulkarim
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Zabeada Aslam
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Stephanie Foster
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Miguel Burgos-Ruiz
- Department of Mineralogy and Petrology, University of Granada, Granada, UK
| | - Yi-Yeoun Kim
- School of Chemistry, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
8
|
Bothra U, Venugopal H, Kabra D, McNeill CR, Liu ACY. Visualization of Nanocrystallites in Organic Semiconducting Blends Using Cryo-Electron Microscopy. SMALL METHODS 2024; 8:e2301352. [PMID: 38349044 DOI: 10.1002/smtd.202301352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/19/2024] [Indexed: 08/18/2024]
Abstract
The efficiency of an organic solar cell is highly dependent on the complex, interpenetrating morphology, and molecular order within the composite phases of the bulk heterojunction (BHJ) blend. Both these microstructural aspects are strongly influenced by the processing conditions and chemical design of donor/acceptor materials. To establish improved structure-function relationships, it is vital to visualize the local microstructural order to provide specific local information about donor/acceptor interfaces and crystalline texture in BHJ blend films. The visualization of nanocrystallites, however, is difficult due to the complex semi-crystalline structure with few characterization techniques capable of visualizing the molecular ordering of soft materials at the nanoscale. Here, it is demonstrated how cryo-electron microscopy can be utilized to visualize local nanoscale order. This method is used to understand the distribution/orientation of crystallites in a BHJ blend. Long-range (>300 nm) texturing of IEICO-4F crystallites oriented in an edge-on fashion is observed, which has not previously been observed for spin-coated materials. This approach provides a wealth of quantitative information about the texture and size of nanocrystallites, which can be utilized to understand charge generation and transport in organic film. This study guides tailoring the material design and processing conditions for high-performance organic optoelectronic devices.
Collapse
Affiliation(s)
- Urvashi Bothra
- IITB-Monash Research Academy, IIT Bombay, Powai, Mumbai, 400076, India
- Department of Physics, IIT Bombay, Powai, Mumbai, 400076, India
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, 3800, Australia
| | - Dinesh Kabra
- Department of Physics, IIT Bombay, Powai, Mumbai, 400076, India
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Amelia C Y Liu
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
9
|
Montaño MD, Goodman AJ, Ranville JF. Past progress in environmental nanoanalysis and a future trajectory for atomic mass-spectrometry methods. NANOIMPACT 2024; 35:100518. [PMID: 38906249 DOI: 10.1016/j.impact.2024.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/14/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
The development of engineered nanotechnology has necessitated a commensurate maturation of nanoanalysis capabilities. Building off a legacy established by electron microscopy and light-scattering, environmental nanoanalysis has now benefited from ongoing advancements in instrumentation and data analysis, which enable a deeper understanding of nanomaterial properties, behavior, and impacts. Where once environmental nanoparticles and colloids were grouped into broad 'dissolved or particulate' classes that are dependent on a filter size cut-off, now size distributions of submicron particles can be separated and characterized providing a more comprehensive examination of the nanoscale. Inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS), directly coupled to field flow fractionation (FFF-ICP-QMS) or operated in single particle mode (spICP-MS) have spearheaded a revolution in nanoanalysis, enabling research into nanomaterial behavior in environmental and biological systems at expected release concentrations. However, the complexity of the nanoparticle population drives a need to characterize and quantify the multi-element composition of nanoparticles, which has begun to be realized through the application of time-of-flight MS (spICP-TOFMS). Despite its relative infancy, this technique has begun to make significant strides in more fully characterizing particulate systems and expanding our understanding of nanoparticle behavior. Though there is still more work to be done with regards to improving instrumentation and data processing, it is possible we are on the cusp of a new nanoanalysis revolution, capable of broadening our understanding of the size regime between dissolved and bulk particulate compartments of the environment.
Collapse
Affiliation(s)
- M D Montaño
- Department of Environmental Sciences, Western Washington University, Bellingham, WA 98225, United States of America
| | - A J Goodman
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, United States of America
| | - J F Ranville
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, United States of America.
| |
Collapse
|
10
|
Parker CJ, Zuraiqi K, Krishnamurthi V, Mayes EL, Vaillant PHA, Fatima SS, Matuszek K, Tang J, Kalantar-Zadeh K, Meftahi N, McConville CF, Elbourne A, Russo SP, Christofferson AJ, Chiang K, Daeneke T. Spontaneous Liquefaction of Solid Metal-Liquid Metal Interfaces in Colloidal Binary Alloys. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400147. [PMID: 38704677 PMCID: PMC11234468 DOI: 10.1002/advs.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Indexed: 05/06/2024]
Abstract
Crystallization of alloys from a molten state is a fundamental process underpinning metallurgy. Here the direct imaging of an intermetallic precipitation reaction at equilibrium in a liquid-metal environment is demonstrated. It is shown that the outer layers of a solidified intermetallic are surprisingly unstable to the depths of several nanometers, fluctuating between a crystalline and a liquid state. This effect, referred to herein as crystal interface liquefaction, is observed at remarkably low temperatures and results in highly unstable crystal interfaces at temperatures exceeding 200 K below the bulk melting point of the solid. In general, any liquefaction process would occur at or close to the formal melting point of a solid, thus differentiating the observed liquefaction phenomenon from other processes such as surface pre-melting or conventional bulk melting. Crystal interface liquefaction is observed in a variety of binary alloy systems and as such, the findings may impact the understanding of crystallization and solidification processes in metallic systems and alloys more generally.
Collapse
Affiliation(s)
- Caiden J Parker
- School of Engineering, RMIT University, Melbourne, 3001, Australia
| | - Karma Zuraiqi
- School of Engineering, RMIT University, Melbourne, 3001, Australia
| | | | - Edwin Lh Mayes
- School of Science, RMIT University, Melbourne, 3001, Australia
| | | | | | | | - Jianbo Tang
- School of Engineering, University of New South Wales (UNSW), Sydney, 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2008, Australia
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3001, Australia
| | | | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, 3001, Australia
| | - Salvy P Russo
- School of Science, RMIT University, Melbourne, 3001, Australia
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3001, Australia
| | - Andrew J Christofferson
- School of Science, RMIT University, Melbourne, 3001, Australia
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3001, Australia
| | - Ken Chiang
- School of Engineering, RMIT University, Melbourne, 3001, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, 3001, Australia
| |
Collapse
|
11
|
Dzyhovskyi V, Romani A, Pula W, Bondi A, Ferrara F, Melloni E, Gonelli A, Pozza E, Voltan R, Sguizzato M, Secchiero P, Esposito E. Characterization Methods for Nanoparticle-Skin Interactions: An Overview. Life (Basel) 2024; 14:599. [PMID: 38792620 PMCID: PMC11122446 DOI: 10.3390/life14050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Research progresses have led to the development of different kinds of nanoplatforms to deliver drugs through different biological membranes. Particularly, nanocarriers represent a precious means to treat skin pathologies, due to their capability to solubilize lipophilic and hydrophilic drugs, to control their release, and to promote their permeation through the stratum corneum barrier. A crucial point in the development of nano-delivery systems relies on their characterization, as well as in the assessment of their interaction with tissues, in order to predict their fate under in vivo administration. The size of nanoparticles, their shape, and the type of matrix can influence their biodistribution inside the skin strata and their cellular uptake. In this respect, an overview of some characterization methods employed to investigate nanoparticles intended for topical administration is presented here, namely dynamic light scattering, zeta potential, scanning and transmission electron microscopy, X-ray diffraction, atomic force microscopy, Fourier transform infrared and Raman spectroscopy. In addition, the main fluorescence methods employed to detect the in vitro nanoparticles interaction with skin cell lines, such as fluorescence-activated cell sorting or confocal imaging, are described, considering different examples of applications. Finally, recent studies on the techniques employed to determine the nanoparticle presence in the skin by ex vivo and in vivo models are reported.
Collapse
Affiliation(s)
- Valentyn Dzyhovskyi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
| | - Arianna Romani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, 44121 Ferrara, Italy;
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| | - Elisabetta Melloni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, 44121 Ferrara, Italy;
| | - Arianna Gonelli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Elena Pozza
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
| | - Rebecca Voltan
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, 44121 Ferrara, Italy;
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, 44121 Ferrara, Italy;
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| |
Collapse
|
12
|
Chen Y, Chou TC, Fang CH, Lu CY, Hsiao CN, Hsu WT, Chen CC. Direct observation of single-atom defects in monolayer two-dimensional materials by using electron ptychography at 200 kV acceleration voltage. Sci Rep 2024; 14:277. [PMID: 38167628 PMCID: PMC10761697 DOI: 10.1038/s41598-023-50784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
Electron ptychography has emerged as a popular technology for high-resolution imaging by combining the high coherence of electron sources with the ultra-fast scanning electron coil. However, the limitations of conventional pixelated detectors, including poor dynamic range and slow data readout speeds, have posed restrictions in the past on conducting electron ptychography experiments. We used the Gatan STELA pixelated detector to capture sequential diffraction data of monolayer two-dimensional (2D) materials for ptychographic reconstruction. By using the pixelated detector and electron ptychography, we demonstrate the observation of the radiation damage at atomic resolution in Transition Metal Dichalcogenides (TMDs).
Collapse
Affiliation(s)
- Ying Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Tzu-Chieh Chou
- Department of Physics, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ching-Hsing Fang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Cheng-Yi Lu
- Department of Physics, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chien-Nan Hsiao
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, 300092, Taiwan
| | - Wei-Ting Hsu
- Department of Physics, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chien-Chun Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
13
|
Švarc T, Majerič P, Feizpour D, Jelen Ž, Zadravec M, Gomboc T, Rudolf R. Recovery Study of Gold Nanoparticle Markers from Lateral Flow Immunoassays. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5770. [PMID: 37687463 PMCID: PMC10488536 DOI: 10.3390/ma16175770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Lateral flow immunoassays (LFIAs) are a simple diagnostic device used to detect targeted analytes. Wasted and unused rapid antigen lateral flow immunoassays represent mass waste that needs to be broken down and recycled into new material components. The aim of this study was to recover gold nanoparticles that are used as markers in lateral flow immunoassays. For this purpose, a dissolution process with aqua regia was utilised, where gold nanoparticles were released from the lateral flow immunoassay conjugate pads. The obtained solution was then concentrated further with gold chloride salt (HAuCl4) so that it could be used for the synthesis of new gold nanoparticles in the process of ultrasonic spray pyrolysis (USP). Various characterisation methods including scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy and optical emission spectrometry with inductively coupled plasma were used during this study. The results of this study showed that the recovery of gold nanoparticles from lateral flow immunoassays is possible, and the newly synthesised gold nanoparticles represent the possibility for incorporation into new products.
Collapse
Affiliation(s)
- Tilen Švarc
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (P.M.); (Ž.J.); (M.Z.); (T.G.); (R.R.)
| | - Peter Majerič
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (P.M.); (Ž.J.); (M.Z.); (T.G.); (R.R.)
- Zlatarna Celje d.o.o., 3000 Celje, Slovenia
| | - Darja Feizpour
- Institute of Metals and Technology (IMT), 1000 Ljubljana, Slovenia;
| | - Žiga Jelen
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (P.M.); (Ž.J.); (M.Z.); (T.G.); (R.R.)
| | - Matej Zadravec
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (P.M.); (Ž.J.); (M.Z.); (T.G.); (R.R.)
| | - Timi Gomboc
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (P.M.); (Ž.J.); (M.Z.); (T.G.); (R.R.)
| | - Rebeka Rudolf
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (P.M.); (Ž.J.); (M.Z.); (T.G.); (R.R.)
- Zlatarna Celje d.o.o., 3000 Celje, Slovenia
| |
Collapse
|
14
|
Laube C, Temme R, Prager A, Griebel J, Knolle W, Abel B. Fluorescence Lifetime Control of Nitrogen Vacancy Centers in Nanodiamonds for Long-Term Information Storage. ACS NANO 2023; 17:15401-15410. [PMID: 37440601 DOI: 10.1021/acsnano.3c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Today's huge amount of data generation and transfer induced an urgent requirement for long-term data storage. Here, we demonstrate and discuss a concept for long-term storage using NV centers inside nanodiamonds. The approach is based upon the radiation-induced generation of additional vacancies (so-called GR1 states), which quench the initial NV centers, resulting in a reduced overall fluorescence lifetime of the NV center. Using the tailored fluorescence lifetime of the NV center to code the information, we demonstrate a "beyond binary" data storage density per bit. We also demonstrate that this process is reversible by heating the sample or the spot of information. This proof of principle shows that our technique may be a promising alternative data storage technology, especially in terms of long-term storage, due to the high stability of the involved color centers. In addition to the proof-of-principle demonstration using macroscopic samples, we suggest and discuss the usage of focused electron beams to write information in nanodiamond materials, to read it out with focused low-intensity light, and to erase it on the macro-, micro-, or nanoscale.
Collapse
Affiliation(s)
- Christian Laube
- Leibniz-Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Chemical Technology, University Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | - Robert Temme
- Leibniz-Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Chemical Technology, University Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | - Andrea Prager
- Leibniz-Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Jan Griebel
- Leibniz-Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Wolfgang Knolle
- Leibniz-Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Bernd Abel
- Leibniz-Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Chemical Technology, University Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Besnard C, Marie A, Sasidharan S, Buček P, Walker JM, Parker JE, Spink MC, Harper RA, Marathe S, Wanelik K, Moxham TE, Salvati E, Ignatyev K, Kłosowski MM, Shelton RM, Landini G, Korsunsky AM. Multi-resolution Correlative Ultrastructural and Chemical Analysis of Carious Enamel by Scanning Microscopy and Tomographic Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37259-37273. [PMID: 37524079 PMCID: PMC10416148 DOI: 10.1021/acsami.3c08031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Caries, a major global disease associated with dental enamel demineralization, remains insufficiently understood to devise effective prevention or minimally invasive treatment. Understanding the ultrastructural changes in enamel is hampered by a lack of nanoscale characterization of the chemical spatial distributions within the dental tissue. This leads to the requirement to develop techniques based on various characterization methods. The purpose of the present study is to demonstrate the strength of analytic methods using a correlative technique on a single sample of human dental enamel as a specific case study to test the accuracy of techniques to compare regions in enamel. The science of the different techniques is integrated to genuinely study the enamel. The hierarchical structures within carious tissue were mapped using the combination of focused ion beam scanning electron microscopy with synchrotron X-ray tomography. The chemical changes were studied using scanning X-ray fluorescence (XRF) and X-ray wide-angle and small-angle scattering using a beam size below 80 nm for ångström and nanometer length scales. The analysis of XRF intensity gradients revealed subtle variations of Ca intensity in carious samples in comparison with those of normal mature enamel. In addition, the pathways for enamel rod demineralization were studied using X-ray ptychography. The results show the chemical and structural modification in carious enamel with differing locations. These results reinforce the need for multi-modal approaches to nanoscale analysis in complex hierarchically structured materials to interpret the changes of materials. The approach establishes a meticulous correlative characterization platform for the analysis of biomineralized tissues at the nanoscale, which adds confidence in the interpretation of the results and time-saving imaging techniques. The protocol demonstrated here using the dental tissue sample can be applied to other samples for statistical study and the investigation of nanoscale structural changes. The information gathered from the combination of methods could not be obtained with traditional individual techniques.
Collapse
Affiliation(s)
- Cyril Besnard
- MBLEM,
Department of Engineering Science, University
of Oxford, Parks Road, Oxford, Oxfordshire OX1
3PJ, U.K.
| | - Ali Marie
- MBLEM,
Department of Engineering Science, University
of Oxford, Parks Road, Oxford, Oxfordshire OX1
3PJ, U.K.
| | - Sisini Sasidharan
- MBLEM,
Department of Engineering Science, University
of Oxford, Parks Road, Oxford, Oxfordshire OX1
3PJ, U.K.
| | - Petr Buček
- TESCAN-UK
Ltd., Wellbrook Court, Girton, Cambridge CB3 0NA, U.K.
| | | | - Julia E. Parker
- Diamond
Light Source Ltd., Didcot, Oxfordshire OX11 0DE, U.K.
| | | | - Robert A. Harper
- School
of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, West Midlands B5 7EG, U.K.
| | | | - Kaz Wanelik
- Diamond
Light Source Ltd., Didcot, Oxfordshire OX11 0DE, U.K.
| | - Thomas E.J. Moxham
- MBLEM,
Department of Engineering Science, University
of Oxford, Parks Road, Oxford, Oxfordshire OX1
3PJ, U.K.
- Diamond
Light Source Ltd., Didcot, Oxfordshire OX11 0DE, U.K.
| | - Enrico Salvati
- MBLEM,
Department of Engineering Science, University
of Oxford, Parks Road, Oxford, Oxfordshire OX1
3PJ, U.K.
| | | | | | - Richard M. Shelton
- School
of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, West Midlands B5 7EG, U.K.
| | - Gabriel Landini
- School
of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, West Midlands B5 7EG, U.K.
| | - Alexander M. Korsunsky
- MBLEM,
Department of Engineering Science, University
of Oxford, Parks Road, Oxford, Oxfordshire OX1
3PJ, U.K.
| |
Collapse
|
16
|
Shaw NA, Lott TS, Petruk AA, Hamada N, Andrei CM, Liu Y, Liu J, Pichugin K, Sciaini G. High-Throughput Low-Dose Biomolecule Imaging in Liquid Phase Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:986-987. [PMID: 37613570 DOI: 10.1093/micmic/ozad067.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Nicolette A Shaw
- The Ultrafast electron Imaging Laboratory (UeIL), University of Waterloo, Waterloo, ON, Canada
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON, Canada
| | - Tyler S Lott
- The Ultrafast electron Imaging Laboratory (UeIL), University of Waterloo, Waterloo, ON, Canada
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON, Canada
| | - Ariel A Petruk
- The Ultrafast electron Imaging Laboratory (UeIL), University of Waterloo, Waterloo, ON, Canada
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON, Canada
| | - Natalie Hamada
- The Canadian Centre for Electron Microscopy (CCEM), McMaster University, Hamilton, ON, Canada
| | - Carmen M Andrei
- The Canadian Centre for Electron Microscopy (CCEM), McMaster University, Hamilton, ON, Canada
| | - Yibo Liu
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON, Canada
| | - Juewen Liu
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON, Canada
| | - Kostyantyn Pichugin
- The Ultrafast electron Imaging Laboratory (UeIL), University of Waterloo, Waterloo, ON, Canada
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON, Canada
| | - Germán Sciaini
- The Ultrafast electron Imaging Laboratory (UeIL), University of Waterloo, Waterloo, ON, Canada
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
17
|
Lodico JJ, Mecklenburg M, Chan HL, Chen Y, Ling XY, Regan BC. Operando spectral imaging of the lithium ion battery's solid-electrolyte interphase. SCIENCE ADVANCES 2023; 9:eadg5135. [PMID: 37436993 DOI: 10.1126/sciadv.adg5135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/09/2023] [Indexed: 07/14/2023]
Abstract
The lithium-ion battery is currently the preferred power source for applications ranging from smart phones to electric vehicles. Imaging the chemical reactions governing its function as they happen, with nanoscale spatial resolution and chemical specificity, is a long-standing open problem. Here, we demonstrate operando spectrum imaging of a Li-ion battery anode over multiple charge-discharge cycles using electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). Using ultrathin Li-ion cells, we acquire reference EELS spectra for the various constituents of the solid-electrolyte interphase (SEI) layer and then apply these "chemical fingerprints" to high-resolution, real-space mapping of the corresponding physical structures. We observe the growth of Li and LiH dendrites in the SEI and fingerprint the SEI itself. High spatial- and spectral-resolution operando imaging of the air-sensitive liquid chemistries of the Li-ion cell opens a direct route to understanding the complex, dynamic mechanisms that affect battery safety, capacity, and lifetime.
Collapse
Affiliation(s)
- Jared J Lodico
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Mecklenburg
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Core Center of Excellence in Nano Imaging, University of Southern California, Los Angeles, CA 90089, USA
| | - Ho Leung Chan
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yueyun Chen
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xin Yi Ling
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - B C Regan
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Kosasih FU, Su F, Du T, Ratnasingham SR, Briscoe J, Ducati C. Deep Learning-Assisted Multivariate Analysis for Nanoscale Characterization of Heterogeneous Beam-Sensitive Materials. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1047-1061. [PMID: 37749677 DOI: 10.1093/micmic/ozad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/17/2022] [Accepted: 03/03/2023] [Indexed: 09/27/2023]
Abstract
Nanoscale materials characterization often uses highly energetic probes which can rapidly damage beam-sensitive materials, such as hybrid organic-inorganic compounds. Reducing the probe dose minimizes the damage, but often at the cost of lower signal-to-noise ratio (SNR) in the acquired data. This work reports the optimization and validation of principal component analysis (PCA) and nonnegative matrix factorization for the postprocessing of low-dose nanoscale characterization data. PCA is found to be the best approach for data denoising. However, the popular scree plot-based method for separation of principal and noise components results in inaccurate or excessively noisy models of the heterogeneous original data, even after Poissonian noise weighting. Manual separation of principal and noise components produces a denoised model which more accurately reproduces physical features present in the raw data while improving SNR by an order of magnitude. However, manual selection is time-consuming and potentially subjective. To suppress these disadvantages, a deep learning-based component classification method is proposed. The neural network model can examine PCA components and automatically classify them with an accuracy of >99% and a rate of ∼2 component/s. Together, multivariate analysis and deep learning enable a deeper analysis of nanoscale materials' characterization, allowing as much information as possible to be extracted.
Collapse
Affiliation(s)
- Felix Utama Kosasih
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Fanzhi Su
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Tian Du
- School of Engineering and Materials Science and Materials Research Institute, Queen Mary University of London, London E1 4NS, UK
| | - Sinclair Ryley Ratnasingham
- School of Engineering and Materials Science and Materials Research Institute, Queen Mary University of London, London E1 4NS, UK
- Department of Materials and Centre for Processable Electronics, Molecular Science Research Hub, Imperial College London, London W12 0BZ, UK
| | - Joe Briscoe
- School of Engineering and Materials Science and Materials Research Institute, Queen Mary University of London, London E1 4NS, UK
| | - Caterina Ducati
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| |
Collapse
|
19
|
Harrison PJ, Vecerkova T, Clare DK, Quigley A. A review of the approaches used to solve sub-100 kDa membrane proteins by cryo-electron microscopy. J Struct Biol 2023; 215:107959. [PMID: 37004781 DOI: 10.1016/j.jsb.2023.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Membrane proteins (MPs) are essential components of all biological membranes, contributing to key cellular functions that include signalling, molecular transport and energy metabolism. Consequently, MPs are important biomedical targets for therapeutics discovery. Despite hardware and software developments in cryo-electron microscopy, as well as MP sample preparation, MPs smaller than 100 kDa remain difficult to study structurally. Significant investment is required to overcome low levels of naturally abundant protein, MP hydrophobicity as well as conformational and compositional instability. Here we have reviewed the sample preparation approaches that have been taken to successfully express, purify and prepare small MPs for analysis by cryo-EM (those with a total solved molecular weight of under 100 kDa), as well as examining the differing approaches towards data processing and ultimately obtaining a structural solution. We highlight common challenges at each stage in the process as well as strategies that have been developed to overcome these issues. Finally, we discuss future directions and opportunities for the study of sub-100 kDa membrane proteins by cryo-EM.
Collapse
|
20
|
Chaupard M, Degrouard J, Li X, Stéphan O, Kociak M, Gref R, de Frutos M. Nanoscale Multimodal Analysis of Sensitive Nanomaterials by Monochromated STEM-EELS in Low-Dose and Cryogenic Conditions. ACS NANO 2023; 17:3452-3464. [PMID: 36745677 DOI: 10.1021/acsnano.2c09571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS) provides spatially resolved chemical information down to the atomic scale. However, studying radiation-sensitive specimens such as organic-inorganic composites remains extremely challenging. Here, we analyzed metal-organic framework nanoparticles (nanoMOFs) at low-dose (10 e-/Å2) and liquid nitrogen temperatures, similar to cryo-TEM conditions usually employed for high-resolution imaging of biological specimens. Our results demonstrate that monochromated STEM-EELS enables damage-free analysis of nanoMOFs, providing in a single experiment, signatures of intact functional groups comparable with infrared, ultraviolet, and X-ray data, with an energy resolution down to 7 meV. The signals have been mapped at the nanoscale (<10 nm) for each of these energy spectral ranges, including the chemical features observed for high energy losses (X-ray range). By controlling beam irradiation and monitoring spectral changes, our work provides insights into the possible pathways of chemical reactions occurring under electron exposure. These results demonstrate the possibilities for characterizing at the nanoscale the chemistry of sensitive systems such as organic and biological materials.
Collapse
Affiliation(s)
- Maeva Chaupard
- Laboratoire de Physique des Solides, CNRS, UMR 8502, Université Paris-Saclay, F-91405 Orsay, France
- Institut des Sciences Moléculaires d'Orsay, CNRS, UMR 8214, Université Paris-Saclay, F-91405 Orsay, France
| | - Jéril Degrouard
- Laboratoire de Physique des Solides, CNRS, UMR 8502, Université Paris-Saclay, F-91405 Orsay, France
| | - Xiaoyan Li
- Laboratoire de Physique des Solides, CNRS, UMR 8502, Université Paris-Saclay, F-91405 Orsay, France
| | - Odile Stéphan
- Laboratoire de Physique des Solides, CNRS, UMR 8502, Université Paris-Saclay, F-91405 Orsay, France
| | - Mathieu Kociak
- Laboratoire de Physique des Solides, CNRS, UMR 8502, Université Paris-Saclay, F-91405 Orsay, France
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d'Orsay, CNRS, UMR 8214, Université Paris-Saclay, F-91405 Orsay, France
| | - Marta de Frutos
- Laboratoire de Physique des Solides, CNRS, UMR 8502, Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
21
|
Treder KP, Huang C, Kim JS, Kirkland AI. Applications of deep learning in electron microscopy. Microscopy (Oxf) 2022; 71:i100-i115. [DOI: 10.1093/jmicro/dfab043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Abstract
We review the growing use of machine learning in electron microscopy (EM) driven in part by the availability of fast detectors operating at kiloHertz frame rates leading to large data sets that cannot be processed using manually implemented algorithms. We summarize the various network architectures and error metrics that have been applied to a range of EM-related problems including denoising and inpainting. We then provide a review of the application of these in both physical and life sciences, highlighting how conventional networks and training data have been specifically modified for EM.
Collapse
Affiliation(s)
- Kevin P Treder
- Department of Materials, University of Oxford, Oxford, Oxfordshire OX1 3PH, UK
| | - Chen Huang
- Rosalind Franklin Institute, Harwell Research Campus, Didcot, Oxfordshire OX11 0FA, UK
| | - Judy S Kim
- Department of Materials, University of Oxford, Oxford, Oxfordshire OX1 3PH, UK
- Rosalind Franklin Institute, Harwell Research Campus, Didcot, Oxfordshire OX11 0FA, UK
| | - Angus I Kirkland
- Department of Materials, University of Oxford, Oxford, Oxfordshire OX1 3PH, UK
- Rosalind Franklin Institute, Harwell Research Campus, Didcot, Oxfordshire OX11 0FA, UK
| |
Collapse
|
22
|
Ke X, Zhang M, Zhao K, Su D. Moiré Fringe Method via Scanning Transmission Electron Microscopy. SMALL METHODS 2022; 6:e2101040. [PMID: 35041281 DOI: 10.1002/smtd.202101040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Moiré fringe, originated from the beating of two sets of lattices, is a commonly observed phenomenon in physics, optics, and materials science. Recently, a new method of creating moiré fringe via scanning transmission electron microscopy (STEM) has been developed to image materials' structures at a large field of view. Moreover, this method shows great advantages in studying atomic structures of beam sensitive materials by significantly reduced electron dose. Here, the development of the STEM moiré fringe (STEM-MF) method is reviewed. The authors first introduce the theory of STEM-MF and then discuss the advances of this technique in combination with geometric phase analysis, annular bright field imaging, energy dispersive X-ray spectroscopy, and electron energy loss spectroscopy. Applications of STEM-MF on strain, defects, 2D materials, and beam-sensitive materials are further summarized. Finally, the authors' perspectives on the future directions of STEM-MF are presented.
Collapse
Affiliation(s)
- Xiaoxing Ke
- Beijing Key Laboratory of Microstructure and Property of Advanced Solid Material, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Manchen Zhang
- Beijing Key Laboratory of Microstructure and Property of Advanced Solid Material, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Kangning Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
23
|
Elbaum M, Seifer S, Houben L, Wolf SG, Rez P. Toward Compositional Contrast by Cryo-STEM. Acc Chem Res 2021; 54:3621-3631. [PMID: 34491730 DOI: 10.1021/acs.accounts.1c00279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electron microscopy (EM) is the most versatile tool for the study of matter at scales ranging from subatomic to visible. The high vacuum environment and the charged irradiation require careful stabilization of many specimens of interest. Biological samples are particularly sensitive due to their composition of light elements suspended in an aqueous medium. Early investigators developed techniques of embedding and staining with heavy metal salts for contrast enhancement. Indeed, the Nobel Prize in 1974 recognized Claude, de Duve, and Palade for establishment of the field of cell biology, largely due to their developments in separation and preservation of cellular components for electron microscopy. A decade later, cryogenic fixation was introduced. Vitrification of the water avoids the need for dehydration and provides an ideal matrix in which the organic macromolecules are suspended; the specimen represents a native state, suddenly frozen in time at temperatures below -150 °C. The low temperature maintains a low vapor pressure for the electron microscope, and the amorphous nature of the medium avoids diffraction contrast from crystalline ice. Such samples are extremely delicate, however, and cryo-EM imaging is a race for information in the face of ongoing damage by electron irradiation. Through this journey, cryo-EM enhanced the resolution scale from membranes to molecules and most recently to atoms. Cryo-EM pioneers, Dubochet, Frank, and Henderson, were awarded the Nobel Prize in 2017 for high resolution structure determination of biological macromolecules.A relatively untapped feature of cryo-EM is its preservation of composition. Nothing is added and nothing removed. Analytical spectroscopies based on electron energy loss or X-ray emission can be applied, but the very small interaction cross sections conflict with the weak exposures required to preserve sample integrity. To what extent can we interpret quantitatively the pixel intensities in images themselves? Conventional cryo-transmission electron microscopy (TEM) is limited in this respect, due to the strong dependence of the contrast transfer on defocus and the absence of contrast at low spatial frequencies.Inspiration comes largely from a different modality for cryo-tomography, using soft X-rays. Contrast depends on the difference in atomic absorption between carbon and oxygen in a region of the spectrum between their core level ionization energies, the so-called water window. Three dimensional (3D) reconstruction provides a map of the local X-ray absorption coefficient. The quantitative contrast enables the visualization of organic materials without stain and measurement of their concentration quantitatively. We asked, what aspects of the quantitative contrast might be transferred to cryo-electron microscopy?Compositional contrast is accessible in scanning transmission EM (STEM) via incoherent elastic scattering, which is sensitive to the atomic number Z. STEM can be regarded as a high energy, low angle diffraction measurement performed pixel by pixel with a weakly convergent beam. When coherent diffraction effects are absent, that is, in amorphous materials, a dark field signal measures quantitatively the flux scattered from the specimen integrated over the detector area. Learning to interpret these signals will open a new dimension in cryo-EM. This Account describes our efforts so far to introduce STEM for cryo-EM and tomography of biological specimens. We conclude with some thoughts on further developments.
Collapse
Affiliation(s)
| | | | | | | | - Peter Rez
- Department of Physics, Arizona State University, 550 E Tyler Drive, Tempe, Arizona 85287, United States
| |
Collapse
|
24
|
Gai PL, Boyes ED, Brydson R, Catlow R. Dynamic in situ microscopy relating structure and function. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190596. [PMID: 33100158 PMCID: PMC7661280 DOI: 10.1098/rsta.2019.0596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Pratibha L. Gai
- Department of Chemistry, University of York, York, UK
- Department of Physics, University of York, York, UK
| | | | - Rik Brydson
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Richard Catlow
- Department of Chemistry, University College London, London, UK
| |
Collapse
|