1
|
Abstract
The molecular mechanisms underlying cardiogenesis are of critical biomedical importance due to the high prevalence of cardiac birth defects. Over the past two decades, the zebrafish has served as a powerful model organism for investigating heart development, facilitated by its powerful combination of optical access to the embryonic heart and plentiful opportunities for genetic analysis. Work in zebrafish has identified numerous factors that are required for various aspects of heart formation, including the specification and differentiation of cardiac progenitor cells, the morphogenesis of the heart tube, cardiac chambers, and atrioventricular canal, and the establishment of proper cardiac function. However, our current roster of regulators of cardiogenesis is by no means complete. It is therefore valuable for ongoing studies to continue pursuit of additional genes and pathways that control the size, shape, and function of the zebrafish heart. An extensive arsenal of techniques is available to distinguish whether particular mutations, morpholinos, or small molecules disrupt specific processes during heart development. In this chapter, we provide a guide to the experimental strategies that are especially effective for the characterization of cardiac phenotypes in the zebrafish embryo.
Collapse
Affiliation(s)
- A R Houk
- University of California, San Diego, CA, United States
| | - D Yelon
- University of California, San Diego, CA, United States
| |
Collapse
|
2
|
Dhillon SS, Dóró É, Magyary I, Egginton S, Sík A, Müller F. Optimisation of embryonic and larval ECG measurement in zebrafish for quantifying the effect of QT prolonging drugs. PLoS One 2013; 8:e60552. [PMID: 23579446 PMCID: PMC3620317 DOI: 10.1371/journal.pone.0060552] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/28/2013] [Indexed: 02/04/2023] Open
Abstract
Effective chemical compound toxicity screening is of paramount importance for safe cardiac drug development. Using mammals in preliminary screening for detection of cardiac dysfunction by electrocardiography (ECG) is costly and requires a large number of animals. Alternatively, zebrafish embryos can be used as the ECG waveform is similar to mammals, a minimal amount of chemical is necessary for drug testing, while embryos are abundant, inexpensive and represent replacement in animal research with reduced bioethical concerns. We demonstrate here the utility of pre-feeding stage zebrafish larvae in detection of cardiac dysfunction by electrocardiography. We have optimised an ECG recording system by addressing key parameters such as the form of immobilization, recording temperature, electrode positioning and developmental age. Furthermore, analysis of 3 days post fertilization (dpf) zebrafish embryos treated with known QT prolonging drugs such as terfenadine, verapamil and haloperidol led to reproducible detection of QT prolongation as previously shown for adult zebrafish. In addition, calculation of Z-factor scores revealed that the assay was sensitive and specific enough to detect large drug-induced changes in QTc intervals. Thus, the ECG recording system is a useful drug-screening tool to detect alteration to cardiac cycle components and secondary effects such as heart block and arrhythmias in zebrafish larvae before free feeding stage, and thus provides a suitable replacement for mammalian experimentation.
Collapse
Affiliation(s)
- Sundeep Singh Dhillon
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
- Department of Nature Protection, University of Kaposvar, Kaposvar, Hungary
| | - Éva Dóró
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - István Magyary
- Department of Nature Protection, University of Kaposvar, Kaposvar, Hungary
| | - Stuart Egginton
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Attila Sík
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Ferenc Müller
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Hoage T, Ding Y, Xu X. Quantifying cardiac functions in embryonic and adult zebrafish. Methods Mol Biol 2012; 843:11-20. [PMID: 22222517 DOI: 10.1007/978-1-61779-523-7_2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zebrafish embryos have been extensively used to study heart development and cardiac function, mainly due to the unique embryology and genetics of this model organism. Since most human heart disease occurs during adulthood, adult zebrafish models of heart disease are being created to dissect mechanisms of the disease and discover novel therapies. However, due to its small heart size, the use of cardiac functional assays in the adult zebrafish has been limited. To address this bottleneck, the transparent fish line casper;Tg(cmlc2:nuDsRed) that has a red fluorescent heart can be used to document beating hearts in vivo and to quantify cardiac functions in adult zebrafish. Here, we describe our methods for quantifying shortening fraction and heart rate in embryonic zebrafish, as well as in the juvenile and adult casper;Tg(cmlc2:nuDsRed) fish. In addition, we describe the red blood cell flow rate assay that can be used to reflect cardiac function indirectly in zebrafish at any stage.
Collapse
Affiliation(s)
- Tiffany Hoage
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
4
|
Abstract
The zebrafish is an ideal model organism for investigating the molecular mechanisms underlying cardiogenesis, due to the powerful combination of optical access to the embryonic heart and plentiful opportunities for genetic analysis. A continually increasing number of studies are uncovering mutations, morpholinos, and small molecules that cause striking cardiac defects and disrupt blood circulation in the zebrafish embryo. Such defects can result from a wide variety of origins including defects in the specification or differentiation of cardiac progenitor cells; errors in the morphogenesis of the heart tube, the cardiac chambers, or the atrioventricular canal or problems with establishing proper cardiac function. An extensive arsenal of techniques is available to distinguish between these possibilities and thereby decipher the roots of cardiac defects. In this chapter, we provide a guide to the experimental strategies that are particularly effective for the characterization of cardiac phenotypes in the zebrafish embryo.
Collapse
Affiliation(s)
- Grant I Miura
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
5
|
Kohli V, Elezzabi AY. Prospects and developments in cell and embryo laser nanosurgery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 1:11-25. [PMID: 20049775 DOI: 10.1002/wnan.29] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recently, there has been increasing interest in the application of femtosecond (fs) laser pulses to the study of cells, tissues and embryos. This review explores the developments that have occurred within the last several years in the fields of cell and embryo nanosurgery. Each of the individual studies presented in this review clearly demonstrates the nondestructiveness of fs laser pulses, which are used to alter both cellular and subcellular sites within simple cells and more complicated multicompartmental embryos. The ability to manipulate these model systems noninvasively makes applied fs laser pulses an invaluable tool for developmental biologists, geneticists, cryobiologists, and zoologists. We are beginning to see the integration of this tool into life sciences, establishing its status among molecular and genetic cell manipulation methods. More importantly, several studies demonstrating the versatility of applied fs laser pulses have established new collaborations among physicists, engineers, and biologists with the common intent of solving biological problems.
Collapse
Affiliation(s)
- Vikram Kohli
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Abdulhakem Y Elezzabi
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Wu M, Sato TN. On the mechanics of cardiac function of Drosophila embryo. PLoS One 2008; 3:e4045. [PMID: 19107195 PMCID: PMC2602980 DOI: 10.1371/journal.pone.0004045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 11/23/2008] [Indexed: 12/30/2022] Open
Abstract
The heart is a vital organ that provides essential circulation throughout the body. Malfunction of cardiac pumping, thus, leads to serious and most of the times, to fatal diseases. Mechanics of cardiac pumping is a complex process, and many experimental and theoretical approaches have been undertaken to understand this process. We have taken advantage of the simplicity of the embryonic heart of an invertebrate, Drosophila melanogaster, to understand the fundamental mechanics of the beating heart. We applied a live imaging technique to the beating embryonic heart combined with analytical imaging tools to study the dynamic mechanics of the pumping. Furthermore, we have identified one mutant line that exhibits aberrant pumping mechanics. The Drosophila embryonic heart consists of only 104 cardiac cells forming a simple straight tube that can be easily accessed for real-time imaging. Therefore, combined with the wealth of available genetic tools, the embryonic Drosophila heart may serve as a powerful model system for studies of human heart diseases, such as arrhythmia and congenital heart diseases. We, furthermore, believe our mechanistic data provides important information that is useful for our further understanding of the design of biological structure and function and for engineering the pumps for medical uses.
Collapse
Affiliation(s)
- Mingming Wu
- The Sibley School of Mechanical and Aerospace Engineering, and the Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Thomas N. Sato
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Redfern WS, Waldron G, Winter MJ, Butler P, Holbrook M, Wallis R, Valentin JP. Zebrafish assays as early safety pharmacology screens: Paradigm shift or red herring? J Pharmacol Toxicol Methods 2008; 58:110-7. [DOI: 10.1016/j.vascn.2008.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Accepted: 05/08/2008] [Indexed: 12/22/2022]
|
8
|
Kohli V, Elezzabi AY. Laser surgery of zebrafish (Danio rerio) embryos using femtosecond laser pulses: optimal parameters for exogenous material delivery, and the laser's effect on short- and long-term development. BMC Biotechnol 2008; 8:7. [PMID: 18230185 PMCID: PMC2270268 DOI: 10.1186/1472-6750-8-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 01/29/2008] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Femtosecond (fs) laser pulses have recently received wide interest as an alternative tool for manipulating living biological systems. In various model organisms the excision of cellular components and the intracellular delivery of foreign exogenous materials have been reported. However, the effect of the applied fs laser pulses on cell viability and development has yet to be determined. Using the zebrafish (Danio rerio) as our animal model system, we address both the short- and long-term developmental changes following laser surgery on zebrafish embryonic cells. RESULTS An exogenous fluorescent probe, fluorescein isothiocyanate (FITC), was successfully introduced into blastomere cells and found to diffuse throughout all developing cells. Using the reported manipulation tool, we addressed whether the applied fs laser pulses induced any short- or long-term developmental effects in embryos reared to 2 and 7 days post-fertilization (dpf). Using light microscopy and scanning electron microscopy we compared key developmental features of laser-manipulated and control samples, including the olfactory pit, dorsal, ventral and pectoral fins, notochord, pectoral fin buds, otic capsule, otic vesicle, neuromast patterning, and kinocilia of the olfactory pit rim and cristae of the lateral wall of the ear. CONCLUSION In our study, no significant differences in hatching rates and developmental morphologies were observed in laser-manipulated samples relative to controls. This tool represents an effective non-destructive technique for potential medical and biological applications.
Collapse
Affiliation(s)
- Vikram Kohli
- 9107-116 St, Ultrafast Photonics and Nano-Optics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6G2V4, Canada
| | - Abdulhakem Y Elezzabi
- 9107-116 St, Ultrafast Photonics and Nano-Optics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6G2V4, Canada
| |
Collapse
|
9
|
Malone MH, Sciaky N, Stalheim L, Hahn KM, Linney E, Johnson GL. Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae. BMC Biotechnol 2007; 7:40. [PMID: 17623073 PMCID: PMC1955438 DOI: 10.1186/1472-6750-7-40] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 07/10/2007] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The zebrafish Danio rerio is an important model system for drug discovery and to study cardiovascular development. Using a laser-scanning confocal microscope, we have developed a non-invasive method of measuring cardiac performance in zebrafish embryos and larvae that obtains cardiovascular parameters similar to those obtained using Doppler echocardiography in mammals. A laser scan line placed parallel to the path of blood in the dorsal aorta measures blood cell velocity, from which cardiac output and indices of vascular resistance and contractility are calculated. RESULTS This technique, called laser-scanning velocimetry, was used to quantify the effects of pharmacological, developmental, and genetic modifiers of cardiac function. Laser-scanning velocimetry was applied to analyze the cardiovascular effects of morpholino knockdown of osmosensing scaffold for MEKK3 (OSM), which when mutated causes the human vascular disease cerebral cavernous malformations. OSM-deficient embryos had a constricted aortic arch and markedly increased peak cell velocity, a characteristic indicator of aortic stenosis. CONCLUSION These data validate laser-scanning velocimetry as a quantitative tool to measure cardiovascular performance for pharmacological and genetic analysis in zebrafish, which requires no specialized equipment other than a laser-scanning confocal microscope.
Collapse
Affiliation(s)
- Michael H Malone
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Noah Sciaky
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lisa Stalheim
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Klaus M Hahn
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elwood Linney
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Gary L Johnson
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Ho YL, Lin YH, Tsai IJ, Hsieh FJ, Tsai HJ. In Vivo Assessment of Cardiac Morphology and Function in Heart-specific Green Fluorescent Zebrafish. J Formos Med Assoc 2007; 106:181-6. [PMID: 17389161 DOI: 10.1016/s0929-6646(09)60238-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND/PURPOSE The zebrafish (Danio rerio) is a new animal model for cardiac research. Zebrafish possessing a green fluorescent heart facilitates the dynamic observation of cardiac development, morphology, and function in vivo. However, the effect of an excessive expression of green fluorescent protein (GFP) in cardiac muscle on the heart function of zebrafish has not been reported. METHODS We cloned a 1.6 kb polymerase chain reaction (PCR) product containing the upstream sequence (870 bp), exon 1 (39 bp), intron 1 (682 bp), and exon 2 (69 bp) of the zebrafish cardiac myosin light chain 2 gene. A germ line-transmitted zebrafish possessing a green fluorescent heart was generated by injecting this PCR product fused with the GFP gene with ends consisting of inverted terminal repeats of an adeno-associated virus. RESULTS Green fluorescence was intensively and specifically expressed in the myocardial cells located around both the heart chambers. Two lines with different GFP expression were bred (A26 and A277). The luminance of A277 was brighter than that of A26 (1.7-fold). The 4 days postfertilization (dpf) cardiac function and morphology were similar between these two groups. However, the 8 dpf cardiac growth seemed to be retarded in the A277 group. The 8 dpf heart rate, stroke volume, and cardiac output were also significantly lower in the A277 group. CONCLUSION Excess expression of GFP seems to exert some detrimental effects on zebrafish hearts.
Collapse
Affiliation(s)
- Yi-Lwun Ho
- Graduate Institute of Clinical Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Schoenebeck JJ, Yelon D. Illuminating cardiac development: Advances in imaging add new dimensions to the utility of zebrafish genetics. Semin Cell Dev Biol 2006; 18:27-35. [PMID: 17241801 PMCID: PMC1876688 DOI: 10.1016/j.semcdb.2006.12.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The use of the zebrafish as a model organism for the analysis of cardiac development is no longer proof-of-principle science. Over the last decade, the identification of a variety of zebrafish mutations and the subsequent cloning of mutated genes have revealed many critical regulators of cardiogenesis. More recently, increasingly sophisticated techniques for phenotypic characterization have facilitated analysis of the specific mechanisms by which key genes drive cardiac specification, morphogenesis, and function. Future enrichment of the arsenal of experimental strategies available for zebrafish should continue the yield of high returns from such a small source.
Collapse
Affiliation(s)
- Jeffrey J Schoenebeck
- Developmental Genetics Program and Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
12
|
|
13
|
Affiliation(s)
- Le A Trinh
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, University of California, San Francisco, California 94143-0448, USA
| | | |
Collapse
|
14
|
MacRae CA, Fishman MC. Zebrafish: the complete cardiovascular compendium. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 67:301-7. [PMID: 12858553 DOI: 10.1101/sqb.2002.67.301] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- C A MacRae
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
15
|
Doevendans PA. Genetic secrets from the heart revealed through the zebrafish. Neth Heart J 2003; 11:243-244. [PMID: 25696222 PMCID: PMC2499902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
|
16
|
Grunwald DJ, Eisen JS. Headwaters of the zebrafish -- emergence of a new model vertebrate. Nat Rev Genet 2002; 3:717-24. [PMID: 12209146 DOI: 10.1038/nrg892] [Citation(s) in RCA: 491] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The understanding of vertebrate development has advanced considerably in recent years, primarily due to the study of a few model organisms. The zebrafish, the newest of these models, has risen to prominence because both genetic and experimental embryological methods can be easily applied to this animal. The combination of approaches has proven powerful, yielding insights into the formation and function of individual tissues, organ systems and neural networks, and into human disease mechanisms. Here, we provide a personal perspective on the history of zebrafish research, from the assembly of the first genetic and embryological tools through to sequencing of the genome.
Collapse
Affiliation(s)
- David Jonah Grunwald
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.
| | | |
Collapse
|
17
|
Ho YL, Shau YW, Tsai HJ, Lin LC, Huang PJ, Hsieh FJ. Assessment of zebrafish cardiac performance using Doppler echocardiography and power angiography. ULTRASOUND IN MEDICINE & BIOLOGY 2002; 28:1137-1143. [PMID: 12401383 DOI: 10.1016/s0301-5629(02)00564-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The zebrafish (Danio rerio) has become a new animal model for cardiac researches. Although it is equipped with a prototypical vertebrate heart, the zebrafish studies for cardiac mutations and genetic control of development can reveal some hints for solving human problems. Despite the simplicity of the zebrafish heart, the objective parameters of cardiac performance are not easily available, except for the morphological description, due to its small size. Because the four components (sinus venosus, atrium, ventricle and bulbus arteriosus) of the zebrafish heart are connected in series, we studied it by applying ultrasonic imaging methods for the vascular system. A total of 20 fishes that were ages of 3 to 4 months were studied. Their mean body weight and height were 562 +/- 173 mg and 4.6 +/- 0.7 cm, respectively. Power angiography and routine Doppler echocardiography were used to evaluate the cardiac performance of zebrafish at 25 degrees C and 15 degrees C. The zebrafish hearts could be easily identified with color Doppler (8.5 MHz) or power angiography (7 MHz). The ventricular filling flow contained two components (E and A-flow). The E-flow velocities were lower than the A-flow velocities at both 25 and 15 degrees C. The cycle length was prolonged (p < 0.05) and the velocities of ventricular filling and bulbus arteriosus decreased significantly at 15 degrees C (p < 0.05). A significant decrease in early diastolic deceleration slope and significant prolongation in early diastolic and late-diastolic deceleration times were found at a lower temperature (15 degrees C). The acceleration:deceleration ratio for early and late diastole also showed a significant difference at 15 degrees C. In conclusion, the cardiac performance of the zebrafish could be approached using commercially available clinical instruments equipped with Doppler echocardiography and power angiography.
Collapse
Affiliation(s)
- Yi-Lwun Ho
- Department of Internal Medicine (Cardiology), National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
18
|
Xu X, Meiler SE, Zhong TP, Mohideen M, Crossley DA, Burggren WW, Fishman MC. Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin. Nat Genet 2002; 30:205-9. [PMID: 11788825 DOI: 10.1038/ng816] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The zebrafish embryo is transparent and can tolerate absence of blood flow because its oxygen is delivered by diffusion rather than by the cardiovascular system. It is therefore possible to attribute cardiac failure directly to particular genes by ruling out the possibility that it is due to a secondary effect of hypoxia. We focus here on pickwickm171 (pikm171), a recessive lethal mutation discovered in a large-scale genetic screen. There are three other alleles in the pik complementation group with this phenotype (pikm242, pikm740, pikm186; ref. 3) and one allele (pikmVO62H) with additional skeletal paralysis. The pik heart develops normally but is poorly contractile from the first beat. Aside from the edema that inevitably accompanies cardiac dysfunction, development is normal during the first three days. We show by positional cloning that the 'causative' mutation is in an alternatively-spliced exon of the gene (ttn) encoding Titin. Titin is the biggest known protein and spans the half-sarcomere from Z-disc to M-line in heart and skeletal muscle. It has been proposed to provide a scaffold for the assembly of thick and thin filaments and to provide elastic recoil engendered by stretch during diastole. We found that nascent myofibrils form in pik mutants, but normal sarcomeres are absent. Mutant cells transplanted to wildtype hearts remain thin and bulge outwards as individual cell aneurysms without affecting nearby wildtype cardiomyocytes, indicating that the contractile deficiency is cell-autonomous. Absence of Titin function thus results in blockage of sarcomere assembly and causes a functional disorder resembling human dilated cardiomyopathies, one form of which is described in another paper in this issue.
Collapse
Affiliation(s)
- Xiaolei Xu
- Cardiovascular Research Center, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Warren KS, Baker K, Fishman MC. The slow mo mutation reduces pacemaker current and heart rate in adult zebrafish. Am J Physiol Heart Circ Physiol 2001; 281:H1711-9. [PMID: 11557562 DOI: 10.1152/ajpheart.2001.281.4.h1711] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic studies in zebrafish have focused on embryonic mutations, but many physiological mechanisms continue to mature after embryogenesis. We report here that zebrafish homozygous for the mutation slow mo can be raised to adulthood. In the embryo, the slow mo gene is needed to regulate heart rate, and its mutation causes a reduction in pacemaker current (I(h)) and slowing of heart rate (bradycardia). The homozygous adult slow mo fish continues to manifest bradycardia, without other evident ill effects. Patch-clamp analysis of isolated adult cardiomyocytes reveals that I(h) has chamber-specific properties such that the atrial current density of I(h) is far greater than the ventricular current density of I(h). I(h) is markedly diminished in cardiomyocytes from both chambers of slow mo mutant fish. Thus I(h) continues to be a critical determinant of pacemaker rate even after adult neural and humoral influences have developed. It is clear that zebrafish may be used for genetic dissection of selected physiological mechanisms in the adult.
Collapse
Affiliation(s)
- K S Warren
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
20
|
Abstract
Forward-genetic analyses in Drosophila and Caenorhabditis elegans have given us unprecedented insights into many developmental mechanisms. To study the formation of organs that contain cell types and structures not present in invertebrates, a vertebrate model system amenable to forward genetics would be very useful. Recent work shows that a newly initiated genetic approach in zebrafish is already making significant contributions to understanding the development of the vertebrate heart, an organ that contains several vertebrate-specific features. These and other studies point to the utility of the zebrafish system for studying a wide range of vertebrate-specific processes.
Collapse
Affiliation(s)
- D Y Stainier
- Department of Biochemistry and Biophysics, University of California, San Francisco, 513 Parnassus Avenue, Box 0448, San Francisco, California 94143-0448, USA.
| |
Collapse
|