1
|
Hossain A, Gnanagobal H, Cao T, Chakraborty S, Chukwu-Osazuwa J, Soto-Dávila M, Vasquez I, Santander J. Role of cold shock proteins B and D in Aeromonas salmonicida subsp. salmonicida physiology and virulence in lumpfish ( Cyclopterus lumpus). Infect Immun 2024; 92:e0001124. [PMID: 38920386 PMCID: PMC11320987 DOI: 10.1128/iai.00011-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Cold shock proteins (Csp) are pivotal nucleic acid binding proteins known for their crucial roles in the physiology and virulence of various bacterial pathogens affecting plant, insect, and mammalian hosts. However, their significance in bacterial pathogens of teleost fish remains unexplored. Aeromonas salmonicida subsp. salmonicida (hereafter A. salmonicida) is a psychrotrophic pathogen and the causative agent of furunculosis in marine and freshwater fish. Four csp genes (cspB, cspD, cspA, and cspC) have been identified in the genome of A. salmonicida J223 (wild type). Here, we evaluated the role of DNA binding proteins, CspB and CspD, in A. salmonicida physiology and virulence in lumpfish (Cyclopterus lumpus). A. salmonicida ΔcspB, ΔcspD, and the double ΔcspBΔcspD mutants were constructed and characterized. A. salmonicida ΔcspB and ΔcspBΔcspD mutants showed a faster growth at 28°C, and reduced virulence in lumpfish. A. salmonicida ΔcspD showed a slower growth at 28°C, biofilm formation, lower survival in low temperatures and freezing conditions (-20°C, 0°C, and 4°C), deficient in lipopolysaccharide synthesis, and low virulence in lumpfish. Additionally, ΔcspBΔcspD mutants showed less survival in the presence of bile compared to the wild type. Transcriptome analysis revealed that 200, 37, and 921 genes were differentially expressed in ΔcspB, ΔcspD, and ΔcspBΔcspD, respectively. In ΔcspB and ΔcspBΔcspD virulence genes in the chromosome and virulence plasmid were downregulated. Our analysis indicates that CspB and CspD mostly act as a transcriptional activator, influencing cell division (e.g., treB), virulence factors (e.g., aexT), and ultimately virulence.
Collapse
Affiliation(s)
- Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Joy Chukwu-Osazuwa
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Manuel Soto-Dávila
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| |
Collapse
|
2
|
Sidarta M, Lorente Martín AI, Monsalve A, Marinho Righetto G, Schäfer AB, Wenzel M. Lipid phase separation impairs membrane thickness sensing by the Bacillus subtilis sensor kinase DesK. Microbiol Spectr 2024; 12:e0392523. [PMID: 38717171 PMCID: PMC11237406 DOI: 10.1128/spectrum.03925-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/08/2024] [Indexed: 06/06/2024] Open
Abstract
Membrane fluidity and thickness have emerged as crucial factors for the activity of and resistance to several antimicrobials. However, the lack of tools to study membrane fluidity and, in particular, thickness in living bacteria limits our understanding of this interplay. The Bacillus subtilis histidine kinase/phosphatase DesK is a molecular sensor that directly detects membrane thickness. It controls activity of DesR, which regulates expression of the lipid desaturase Des, known for its role in cold adaptation and daptomycin susceptibility. We hypothesized that this property could be exploited to develop biosensors and reporters for antibiotic-induced changes in membrane fluidity and thickness. To test this, we designed three assays based on the des system: activation of the Pdes promoter as reporter for membrane thickening, localization of DesK-GFP(green-fluorescent protein) as proxy for rigidified membrane domains, and antibiotic sensitivity of des, desK, and desR deletion mutants as readout for the importance of membrane rigidification/thickening under the tested condition. While we could not confirm the suitability of the des system as reporter for antibiotic-induced changes in membrane thickness, we did observe that des expression is only activated by mild temperature shocks, likely due to partitioning of the sensor DesK into fluid membrane domains upon phase separation, precluding effective thickness sensing under harsh cold shock and antibiotic stress conditions. Similarly, we did not observe any sensitivity of the deletion mutants to either temperature or antibiotic stress, raising the question to what extent the des system contributes to fluidity adaptation under these conditions. IMPORTANCE The B. subtilis des system is a prime model for direct molecular membrane thickness sensor and, as such, has been well studied in vitro. Our study shows that our understanding of its function in vivo and its importance under temperature and antibiotic stress is still very limited. Specifically, our results suggest that (i) the des system senses very subtle membrane fluidity changes that escape detection by established fluidity reporters like laurdan; (ii) membrane thickness sensing by DesK is impaired by phase separation due to partitioning of the protein into the fluid phase; and (iii) fluidity adaptations by Des are too subtle to elicit growth defects under rigidifying conditions, raising the question of how much the des system contributes to adaptation of overall membrane fluidity.
Collapse
Affiliation(s)
- Margareth Sidarta
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Ana I. Lorente Martín
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Anuntxi Monsalve
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Gabriela Marinho Righetto
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Ann-Britt Schäfer
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| |
Collapse
|
3
|
Sakai K, Hidayat F, Maeda K, Sakake A, Fujishima K, Ojima M, Jinya K, Tashiro Y. Different traits for cold tolerance of extremely thermophilic Calditerricola strains isolated from mesothermal municipal sewage sludge and its hyperthermal compost. J Biosci Bioeng 2024; 137:290-297. [PMID: 38310038 DOI: 10.1016/j.jbiosc.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 02/05/2024]
Abstract
Extreme thermophiles Calditerricola satsumensis DD2 and D3 were isolated from mesothermal municipal sludge, a material used for hyperthermal composting. To understand the ecologically anomalous findings, their behavior at various temperatures, membrane fatty acid composition, and draft genome sequences were compared with those of C. satsumensis YMO81T and Calditerricola yamamurae YMO722T, already isolated from hyperthermal compost. All four strains grew between 56 and 83 °C. However, strains DD2 and D3 were stable for ≥48 h at a wide range of temperatures (20-75 °C), while strains YMO81T and YMO722T were highly labile at lower temperatures. The former strains maintained their colony-forming ability for >180 days at 20 °C, while the latter strains lost it within 1 d. All four strains showed similar composition of membrane fatty acid, which were not affected by 20 °C treatment. Comparative draft genome analyses showed that 13 candidate genes were present only in strains DD2 and D3, and the specific expression of six gene homologs was confirmed. A DNA chaperone, site-specific recombinase XerD homolog, had tetra adenine sequence at its upper gene region, and was up-regulated by 20 °C treatment in DD2 and D3, suggesting a possible role in the cold tolerance of sludge-derived strains. In addition, the lack of another possible DNA chaperone, a homolog of the ATP-dependent DNA helicase, in the compost-derived strains may accelerate their sensitivity to cold shock. In conclusion, we speculate that the specific phenotypic and genotypic characteristics of sludge-derived strains are responsible for their unusual ecological distribution at ambient temperatures.
Collapse
Affiliation(s)
- Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Fandi Hidayat
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Indonesian Oil Palm Research Institute, Jl. Brigjen Katamso No. 51, Kampung Baru, Medan, North Sumatra 20158, Indonesia
| | - Kazushi Maeda
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Ai Sakake
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Keisuke Fujishima
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Maise Ojima
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kouta Jinya
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
4
|
Kumari K, Sharma PK, Singh RP. Unravelling the transcriptome response of Enterobacter sp. S-33 under varying temperature. Arch Microbiol 2024; 206:81. [PMID: 38294553 DOI: 10.1007/s00203-023-03792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024]
Abstract
Enterobacter genus includes the bacteria occupying every aspect of environment, however, their adaptability at varying temperature is not clear. In the present study, we analyzed the transcriptome response of Enterobacter sp. S-33 and their functional genes under various temperatures (30-45 ℃) that were expressed and accumulated in cells under temperature-stress. During a temperature shift from 37 to 45 ℃, 165 genes showed differential expression including 112 up-regulated and 53 down-regulated. In particular, heat-shock genes such as CspA, 16 kDa heat shock protein A/B and transcriptional regulators such as LysR, TetR, and LuxR were differentially expressed, indicating the role of complex molecular mechanism of Enterobacter adapting to temperature stress. Similarly, genes associated to signal transduction, ABC transporters, iron homeostasis, and quorum sensing were also induced. The Gene ontology enrichment analysis of differentially expressed genes (DEGs) were categorized into "transmembrane transport", "tRNA binding", "hydrogen sulfide biosynthetic process" and "sulfate assimilation" terms. In addition, Kyoto Encyclopedia of Genes and Genomes pathways showed that ABC transporter as well as quorum sensing pathways were significantly enriched. Overall, current study has contributed to explore the adaptive molecular mechanisms of Enterobacter spp. upon temperature change, which further opens new avenues for future in-depth functional studies.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
| |
Collapse
|
5
|
Manrique-Moreno M, Jemioła-Rzemińska M, Múnera-Jaramillo J, López GD, Suesca E, Leidy C, Strzałka K. Staphylococcus aureus Carotenoids Modulate the Thermotropic Phase Behavior of Model Systems That Mimic Its Membrane Composition. MEMBRANES 2022; 12:945. [PMID: 36295704 PMCID: PMC9612337 DOI: 10.3390/membranes12100945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Staphylococcus aureus (S. aureus) is a pathogenic gram-positive bacterium that normally resides in the skin and nose of the human body. It is subject to fluctuations in environmental conditions that may affect the integrity of the membrane. S. aureus produces carotenoids, which act as antioxidants. However, these carotenoids have also been implicated in modulating the biophysical properties of the membrane. Here, we investigate how carotenoids modulate the thermotropic phase behavior of model systems that mimic the phospholipid composition of S. aureus. We found that carotenoids depress the main phase transition of DMPG and CL, indicating that they strongly affect cooperativity of membrane lipids in their gel phase. In addition, carotenoids modulate the phase behavior of mixtures of DMPG and CL, indicating that they may play a role in modulation of lipid domain formation in S. aureus membranes.
Collapse
Affiliation(s)
- Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin 050010, Colombia
| | - Małgorzata Jemioła-Rzemińska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
| | - Jessica Múnera-Jaramillo
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin 050010, Colombia
| | - Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia
| | - Elizabeth Suesca
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia
| | - Chad Leidy
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia
| | - Kazimierz Strzałka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
| |
Collapse
|
6
|
Guddimalli R, Somanaboina AK, Palle SR, Edupuganti S, Kummari D, Palakolanu SR, Naravula J, Gandra J, Qureshi IA, Marka N, Polavarapu R, Kavi Kishor PB. Overexpression of RNA-binding bacterial chaperones in rice leads to stay-green phenotype, improved yield and tolerance to salt and drought stresses. PHYSIOLOGIA PLANTARUM 2021; 173:1351-1368. [PMID: 33583030 DOI: 10.1111/ppl.13369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/18/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Genes encoding bacterial cold shock proteins A (CspA, 213 bp) and B (CspB, 216 bp) were isolated from Escherichia coli strain K12, which showed 100% homology with gene sequences isolated from other bacterial species. In silico domain, analysis showed eukaryotic conserved cold shock domain (CSD) and ribonuclease-binding domain (RBD) indicating that they bind to RNA and are involved in temperature stress tolerance. Overexpression of these two genes in E. coli resulted in higher growth in presence of 200 mM NaCl and 300 mM mannitol. Western blot confirmed the translational products of the two genes. Seedlings of indica rice were transformed with Agrobacterium tumefaciens containing pCAMBIA1301 CspA and CspB genes. Transgene integration was confirmed by β-glucuronidase (GUS) histochemical assay, polymerase chain reaction (PCR) amplification, and gene copy number by Southern blotting. Chlorophyll, proline, Na+ , and K+ contents were higher in transgenics exposed to 150 mM NaCl and drought (imposed by withholding water) stresses during floral initiation stage. Catalase (CAT), superoxide dismutase (SOD), and guaiacol peroxidase (GPX) activities increased, while malondialdehyde (MDA) content was low in transgenics. Transgenics displayed increased root, shoot, and panicle lengths, root dry mass, and a distinct stay-green (SGR) phenotype. Higher transcript levels of CspA, CspB, SGR, chlorophyllase, isopentenyl adenine transferase 1 (IPT1), 9-cis-epoxycarotenoid dioxygenase (NCED), SOD, and sirtuin 1 (SIRT1) genes were observed in transgenics compared to wild type plants (WT) under multiple stresses. Present work indicates that bacterial chaperone proteins are capable of imparting SGR phenotype, salt and drought stress tolerance alongside grain improvement.
Collapse
Affiliation(s)
| | - Anil Kumar Somanaboina
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Guntur, India
| | | | | | - Divya Kummari
- Cell, Molecular & Genetic Engineering Lab, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sudhakar Reddy Palakolanu
- Cell, Molecular & Genetic Engineering Lab, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Jalaja Naravula
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Guntur, India
| | - Jawahar Gandra
- Department of Life Sciences, School of Sciences B-II, Jain University, Bengaluru, India
| | - Insaf A Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Nagaraju Marka
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | | | | |
Collapse
|
7
|
Abstract
Bacteria often encounter temperature fluctuations in their natural habitats and must adapt to survive. The molecular response of bacteria to sudden temperature upshift or downshift is termed the heat shock response (HSR) or the cold shock response (CSR), respectively. Unlike the HSR, which activates a dedicated transcription factor that predominantly copes with heat-induced protein folding stress, the CSR is mediated by a diverse set of inputs. This review provides a picture of our current understanding of the CSR across bacteria. The fundamental aspects of CSR involved in sensing and adapting to temperature drop, including regulation of membrane fluidity, protein folding, DNA topology, RNA metabolism, and protein translation, are discussed. Special emphasis is placed on recent findings of a CSR circuitry in Escherichia coli mediated by cold shock family proteins and RNase R that monitors and modulates messenger RNA structure to facilitate global translation recovery during acclimation. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, California 94158, USA;
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, California 94158, USA; .,Department of Cell and Tissue Biology, University of California, San Francisco, California 94158, USA.,California Institute of Quantitative Biology, University of California, San Francisco, California 94158, USA
| |
Collapse
|
8
|
Liu Y, Tan X, Cheng H, Gong J, Zhang Y, Wang D, Ding W. The cold shock family gene cspD3 is involved in the pathogenicity of Ralstonia solanacearum CQPS-1 to tobacco. Microb Pathog 2020; 142:104091. [PMID: 32088390 DOI: 10.1016/j.micpath.2020.104091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 10/25/2022]
Abstract
Cold shock proteins (Csps) are small and highly conserved proteins that have target RNA- and DNA-binding activities. Csps play roles in different cellular processes and show functional redundancy. Ralstonia solanacearum, the agent of bacterial wilt, has 4 or 5 Csps based on genome analysis. However, the functions of all Csps in R. solanacearum remain unclear. According to phylogenetic analysis, the Csps from R. solanacearum are clustered into a group with CspD from E. coli. Here, we studied the role of CspD3, which was closer to CspD of E. coli in the phylogenetic tree. A cspD3 deletion strain was constructed to assess its effect on the phenotype of R. solanacearum, including growth, biofilm formation, motility, and virulence. The results showed that cspD3 of R. solanacearum was not necessary for normal growth, cold-shock adaptation, or biofilm formation. However, deletion of cspD3 in R. solanacearum CQPS-1 led to increased swimming motility, and the mean diameters of swimming haloes produced by the ΔcspD3 mutant were 1.3-fold larger than those produced by wild-type strain and 1.2-fold larger than those produced by the complemented strain. More importantly, the virulence of the cspD3 deletion mutant on susceptible tobacco plants was significantly attenuated compared to the wild-type strain. At 20 days after inoculation, the disease index of the ΔcspD3 mutant was 2.27, which was reduced by 1.6-fold relative to the wild-type strain. To assess the molecular response influenced by cspD3, the expressions of the main motility-associated genes and virulence-associated genes including flgM, fliA, pehS, pehR, hrpG, xpsR, and prhI in R. solanacearum were measured. The results showed that the expressions of hrpG, xpsR, and prhI were significantly decreased in cspD3 deletion mutant. Collectively, our findings showed that Csps are involved in the regulation of motility and virulence in R. solanacearum.
Collapse
Affiliation(s)
- Ying Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xi Tan
- College of Plant Protection, Southwest University, Chongqing, China
| | - Haojin Cheng
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jie Gong
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Daibin Wang
- Chongqing Tobacco Science Research Institute, Chongqing, China.
| | - Wei Ding
- College of Plant Protection, Southwest University, Chongqing, China.
| |
Collapse
|
9
|
Xia JM, Hu XM, Huang CH, Yu LB, Xu RF, Tang XX, Lin DH. Metabolic profiling of cold adaptation of a deep-sea psychrotolerant Microbacterium sediminis to prolonged low temperature under high hydrostatic pressure. Appl Microbiol Biotechnol 2019; 104:277-289. [PMID: 31728583 DOI: 10.1007/s00253-019-10134-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 12/01/2022]
Abstract
The most wide-spread "hostile" environmental factor for marine microorganisms is low temperature, which is usually accompanied by high hydrostatic pressure (HHP). Metabolic mechanisms of marine microorganisms adapting to prolonged low temperature under HHP remain to be clarified. To reveal the underlying metabolic mechanisms, we performed NMR-based metabolomic analysis of aqueous extracts derived from a psychrotolerant Microbacterium sediminis YLB-01, which was isolated from deep-sea sediment and possess great biotechnology potentials. The YLB-01 cells were firstly cultivated at the optimal condition (28 °C, 0.1 MPa) for either 18 h (logarithmic phase) or 24 h (stationary phase), then continually cultivated at either 28 °C or 4 °C under HHP (30 MPa) for 7 days. The cells cultivated at low temperature, which experienced cold stress, were distinctly distinguished from those at normal temperature. Cold stress primarily induced metabolic changes in amino acid metabolism and carbohydrate metabolism. Furthermore, the logarithmic and stationary phase cells cultivated at low temperature exhibited distinct metabolic discrimination, which was mostly reflected in the significantly disturbed carbohydrate metabolism. The logarithmic phase cells displayed suppressed TCA cycle, while the stationary phase cells showed decreased pyruvate and increased lactate. In addition, we performed transcriptome analysis for the stationary phase cells to support the metabolomic analysis. Our results suggest that the cold adaptation of the psychrotroph YLB-01 is closely associated with profoundly altered amino acid metabolism and carbohydrate metabolism. Our work provides a mechanistic understanding of the metabolic adaptation of marine psychrotrophs to prolonged low temperature under HHP.
Collapse
Affiliation(s)
- Jin-Mei Xia
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Xiao-Min Hu
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Cai-Hua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, 361024, China
| | - Li-Bo Yu
- China Ocean Sample Respository (Biology), 184 Daxue Road, Xiamen, 361005, China
| | - Ru-Fang Xu
- China Ocean Sample Respository (Biology), 184 Daxue Road, Xiamen, 361005, China
| | - Xi-Xiang Tang
- China Ocean Sample Respository (Biology), 184 Daxue Road, Xiamen, 361005, China.
| | - Dong-Hai Lin
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
10
|
Wu H, Gu Q, Xie Y, Lou Z, Xue P, Fang L, Yu C, Jia D, Huang G, Zhu B, Schneider A, Blom J, Lasch P, Borriss R, Gao X. Cold-adapted Bacilli isolated from the Qinghai-Tibetan Plateau are able to promote plant growth in extreme environments. Environ Microbiol 2019; 21:3505-3526. [PMID: 31233661 DOI: 10.1111/1462-2920.14722] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
Abstract
Nearly 1400 Bacillus strains growing in the plant rhizosphere were sampled from different sites on the Qinghai-Tibetan Plateau. Forty-five of the isolates, selected due to their biocontrol activity, were genome-sequenced and their taxonomic identification revealed that they were representatives of the Bacillus subtilis species complex (20) and the Bacillus cereus group (9). Majority of the remaining strains were found closely related to Bacillus pumilus, but their average nucleotide identity based on BLAST and electronic DNA/DNA hybridization values excluded closer taxonomic identification. A total of 45 different gene clusters involved in synthesis of secondary metabolites were detected by mining the genomes of the 45 selected strains. Except eight mesophilic strains, the 37 remaining strains were found either cold-adapted or psychrophilic, able to propagate at 10°C and below (Bacillus wiedmannii NMSL88 and Bacillus sp. RJGP41). Pot experiments performed at 10°C with winter wheat seedlings revealed that cold-adapted representatives of B. pumilus, B. safensis and B. atrophaeus promoted growth of the seedlings under cold conditions, suggesting that these bacilli isolated from a cold environment are promising candidates for developing of bioformulations useful for application in sustainable agriculture under environmental conditions unfavourable for the mesophilic bacteria presently in use.
Collapse
Affiliation(s)
- Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Yongli Xie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Zhiying Lou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Pengqi Xue
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Liu Fang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Chenjie Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Dandan Jia
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Guochao Huang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Bichun Zhu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Andy Schneider
- Proteomics and Spectroscopy Unit (ZBS6) at the Centre for Biological Threats and Special Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Peter Lasch
- Proteomics and Spectroscopy Unit (ZBS6) at the Centre for Biological Threats and Special Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Rainer Borriss
- Nordreet UG, Greifswald, Germany.,Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Cold Water Immersion Syndrome and Whitewater Recreation Fatalities. Wilderness Environ Med 2019; 30:321-327. [PMID: 31178366 DOI: 10.1016/j.wem.2019.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/19/2019] [Accepted: 03/25/2019] [Indexed: 11/23/2022]
Abstract
Sudden death during whitewater recreation often occurs through understandable mechanisms such as underwater entrapment or trauma, but poorly defined events are common, particularly in colder water. These uncharacterized tragedies are frequently called flush drownings by whitewater enthusiasts. We believe the condition referred to as cold water immersion syndrome may be responsible for some of these deaths. Given this assumption, the physiologic alterations contributing to cold water immersion syndrome are reviewed with an emphasis on those factors pertinent to flush drowning.
Collapse
|
12
|
Koo H, Hakim JA, Morrow CD, Crowley MR, Andersen DT, Bej AK. Metagenomic Analysis of Microbial Community Compositions and Cold-Responsive Stress Genes in Selected Antarctic Lacustrine and Soil Ecosystems. Life (Basel) 2018; 8:life8030029. [PMID: 29997353 PMCID: PMC6161096 DOI: 10.3390/life8030029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
This study describes microbial community compositions, and various cold-responsive stress genes, encompassing cold-induced proteins (CIPs) and cold-associated general stress-responsive proteins (CASPs) in selected Antarctic lake water, sediment, and soil metagenomes. Overall, Proteobacteria and Bacteroidetes were the major taxa in all metagenomes. Prochlorococcus and Thiomicrospira were highly abundant in waters, while Myxococcus, Anaeromyxobacter, Haliangium, and Gloeobacter were dominant in the soil and lake sediment metagenomes. Among CIPs, genes necessary for DNA replication, translation initiation, and transcription termination were highly abundant in all metagenomes. However, genes for fatty acid desaturase (FAD) and trehalose synthase (TS) were common in the soil and lake sediment metagenomes. Interestingly, the Lake Untersee water and sediment metagenome samples contained histone-like nucleoid structuring protein (H-NS) and all genes for CIPs. As for the CASPs, high abundances of a wide range of genes for cryo- and osmo-protectants (glutamate, glycine, choline, and betaine) were identified in all metagenomes. However, genes for exopolysaccharide biosynthesis were dominant in Lake Untersee water, sediment, and other soil metagenomes. The results from this study indicate that although diverse microbial communities are present in various metagenomes, they share common cold-responsive stress genes necessary for their survival and sustenance in the extreme Antarctic conditions.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Joseph A Hakim
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Michael R Crowley
- Department of Genetics, Heflin Center Genomics Core, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Dale T Andersen
- Carl Sagan Center, SETI Institute, Mountain View, California, CA 94043, USA.
| | - Asim K Bej
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
13
|
Huang W, Ma HY, Huang Y, Li Y, Wang GL, Jiang Q, Wang F, Xiong AS. Comparative proteomic analysis provides novel insights into chlorophyll biosynthesis in celery under temperature stress. PHYSIOLOGIA PLANTARUM 2017; 161:468-485. [PMID: 28767140 DOI: 10.1111/ppl.12609] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/09/2017] [Accepted: 07/18/2017] [Indexed: 05/03/2023]
Abstract
Chlorophyll (Chl) is essential for light harvesting and energy transduction in photosynthesis. A proper amount of Chl within plant cells is important to celery (Apium graveolens) yield and quality. Temperature stress is an influential abiotic stress affecting Chl biosynthesis and plant growth. There are limited proteomic studies regarding Chl accumulation under temperature stress in celery leaves. Here, the proteins from celery leaves under different temperature treatments (4, 25 and 38°C) were analyzed using a proteomic approach. There were 71 proteins identified through MALDI-TOF-TOF analysis. The relative abundance of proteins involved in carbohydrate and energy metabolism, protein metabolism, amino acid metabolism, antioxidant and polyamine biosynthesis were enhanced under cold stress. These temperature stress-responsive proteins may establish a new homeostasis to enhance temperature tolerance. Magnesium chelatase (Mg-chelatase) and glutamate-1-semialdehyde aminotransferase (GSAT), related to Chl biosynthesis, showed increased abundances under cold stress. Meanwhile, the Chl contents were decreased in heat- and cold-stressed celery leaves. The inhibition of Chl biosynthesis may be due to the downregulated mRNA levels of 15 genes involved in Chl biosynthesis. The study will expand our knowledge on Chl biosynthesis and the temperature tolerance mechanisms in celery leaves.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-Yu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
14
|
Fiedoruk K, Drewnowska JM, Daniluk T, Leszczynska K, Iwaniuk P, Swiecicka I. Ribosomal background of the Bacillus cereus group thermotypes. Sci Rep 2017; 7:46430. [PMID: 28406161 PMCID: PMC5390287 DOI: 10.1038/srep46430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/08/2017] [Indexed: 11/09/2022] Open
Abstract
In this study we reconstructed the architecture of Bacillus cereus sensu lato population based on ribosomal proteins, and identified a link between the ribosomal proteins’ variants and thermal groups (thermotypes) of the bacilli. The in silico phyloproteomic analysis of 55 ribosomal proteins (34 large and 21 small subunit r-proteins) of 421 strains, representing 14 well-established or plausible B. cereus sensu lato species, revealed several ribosomal clusters (r-clusters), which in general were well correlated with the strains’ affiliation to phylogenetic/thermal groups I–VII. However, a conformity and possibly a thermal characteristic of certain phylogenetic groups, e.g. the group IV, were not supported by a distribution of the corresponding r-clusters, and consequently neither by the analysis of cold-shock proteins (CSPs) nor by a content of heat shock proteins (HSPs). Furthermore, a preference for isoleucine and serine over valine and alanine in r-proteins along with a lack of HSP16.4 were recognized in non-mesophilic thermotypes. In conclusion, we suggest that the observed divergence in ribosomal proteins may be connected with an adaptation of B. cereus sensu lato members to various thermal niches.
Collapse
Affiliation(s)
- Krzysztof Fiedoruk
- Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
| | - Justyna M Drewnowska
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Tamara Daniluk
- Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
| | | | - Piotr Iwaniuk
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Izabela Swiecicka
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland.,Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland
| |
Collapse
|
15
|
Abstract
High levels of penetrating cryoprotectants (CPAs) can eliminate ice formation during cryopreservation of cells, tissues, and organs to cryogenic temperatures. But CPAs become increasingly toxic as concentration increases. Many strategies have been attempted to overcome the problem of eliminating ice while minimizing toxicity, such as attempting to optimize cooling and warming rates, or attempting to optimize time of adding individual CPAs during cooling. Because strategies currently used are not adequate, CPA toxicity remains the greatest obstacle to cryopreservation. CPA toxicity stands in the way of cryogenic cryopreservation of human organs, a procedure that has the potential to save many lives. This review attempts to describe what is known about CPA toxicity, theories of CPA toxicity, and strategies to reduce CPA toxicity. Critical analysis and suggestions are also included.
Collapse
|
16
|
Liljeqvist M, Ossandon FJ, González C, Rajan S, Stell A, Valdes J, Holmes DS, Dopson M. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiol Ecol 2015; 91:fiv011. [PMID: 25764459 DOI: 10.1093/femsec/fiv011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/13/2022] Open
Abstract
An acid mine drainage (pH 2.5-2.7) stream biofilm situated 250 m below ground in the low-temperature (6-10°C) Kristineberg mine, northern Sweden, contained a microbial community equipped for growth at low temperature and acidic pH. Metagenomic sequencing of the biofilm and planktonic fractions identified the most abundant microorganism to be similar to the psychrotolerant acidophile, Acidithiobacillus ferrivorans. In addition, metagenome contigs were most similar to other Acidithiobacillus species, an Acidobacteria-like species, and a Gallionellaceae-like species. Analyses of the metagenomes indicated functional characteristics previously characterized as related to growth at low temperature including cold-shock proteins, several pathways for the production of compatible solutes and an anti-freeze protein. In addition, genes were predicted to encode functions related to pH homeostasis and metal resistance related to growth in the acidic metal-containing mine water. Metagenome analyses identified microorganisms capable of nitrogen fixation and exhibiting a primarily autotrophic lifestyle driven by the oxidation of the ferrous iron and inorganic sulfur compounds contained in the sulfidic mine waters. The study identified a low diversity of abundant microorganisms adapted to a low-temperature acidic environment as well as identifying some of the strategies the microorganisms employ to grow in this extreme environment.
Collapse
Affiliation(s)
- Maria Liljeqvist
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | - Francisco J Ossandon
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 7780272, Chile
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 7780272, Chile Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Piso 14, 7550296, Chile
| | - Sukithar Rajan
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31 Kalmar, Sweden
| | - Adam Stell
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31 Kalmar, Sweden
| | - Jorge Valdes
- Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Piso 14, 7550296, Chile
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 7780272, Chile
| | - Mark Dopson
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31 Kalmar, Sweden
| |
Collapse
|
17
|
González C, Yanquepe M, Cardenas JP, Valdes J, Quatrini R, Holmes DS, Dopson M. Genetic variability of psychrotolerant Acidithiobacillus ferrivorans revealed by (meta)genomic analysis. Res Microbiol 2014; 165:726-34. [PMID: 25172573 DOI: 10.1016/j.resmic.2014.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 01/17/2023]
Abstract
Acidophilic microorganisms inhabit low pH environments such as acid mine drainage that is generated when sulfide minerals are exposed to air. The genome sequence of the psychrotolerant Acidithiobacillus ferrivorans SS3 was compared to a metagenome from a low temperature acidic stream dominated by an A. ferrivorans-like strain. Stretches of genomic DNA characterized by few matches to the metagenome, termed 'metagenomic islands', encoded genes associated with metal efflux and pH homeostasis. The metagenomic islands were enriched in mobile elements such as phage proteins, transposases, integrases and in one case, predicted to be flanked by truncated tRNAs. Cus gene clusters predicted to be involved in copper efflux and further Cus-like RND systems were predicted to be located in metagenomic islands and therefore, constitute part of the flexible gene complement of the species. Phylogenetic analysis of Cus clusters showed both lineage specificity within the Acidithiobacillus genus as well as niche specificity associated with an acidic environment. The metagenomic islands also contained a predicted copper efflux P-type ATPase system and a polyphosphate kinase potentially involved in polyphosphate mediated copper resistance. This study identifies genetic variability of low temperature acidophiles that likely reflects metal resistance selective pressures in the copper rich environment.
Collapse
Affiliation(s)
- Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile; Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Chile.
| | - María Yanquepe
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
| | - Juan Pablo Cardenas
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
| | - Jorge Valdes
- Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Chile.
| | - Raquel Quatrini
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Sweden.
| |
Collapse
|
18
|
Wang Z, Wang S, Wu Q. Cold shock protein A plays an important role in the stress adaptation and virulence of Brucella melitensis. FEMS Microbiol Lett 2014; 354:27-36. [PMID: 24661136 DOI: 10.1111/1574-6968.12430] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 11/29/2022] Open
Abstract
Brucella melitensis is a facultative intracellular pathogen that mainly resides within macrophages. The mechanisms employed by Brucella to adapt to harsh intracellular environments and survive within host macrophages are not clearly understood. Here, we constructed a cspA gene deletion mutant, NIΔcspA, that did not exhibit any discernible growth defect at a normal culture temperature (37 °C) or at a low temperature (15 °C). However, expression of the cspA gene in Brucella was induced by cold, acidic, and oxidative conditions, as determined via quantitative reverse transcription PCR. Unlike its parental strain, B. melitensis NI, the NIΔcspA mutant showed an increased sensitivity to acidic and H2 O2 stresses, especially during the mid-log-phase, and these stress conditions would presumably be encountered by bacteria during intracellular infections. Moreover, macrophage and mouse infection assays indicated that the NIΔcspA mutant fails to replicate in cultured J774.A1 murine macrophages and is rapidly cleared from the spleens of experimentally infected BALB/c mice. These findings suggest that the Brucella cspA gene makes an essential contribution to virulence in vitro and in vivo, most likely by allowing brucellae to adapt appropriately to the harsh environmental conditions encountered within host macrophages.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China; Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | | | | |
Collapse
|
19
|
Abstract
Temperature, among other environmental factors, influences the incidence and severity of many plant diseases. Likewise, numerous traits, including the expression of virulence factors, are regulated by temperature. Little is known about the underlying genetic determinants of thermoregulation in plant-pathogenic bacteria. Previously, we showed that the expression of both fliC (encoding flagellin) and syfA (encoding a nonribosomal polypeptide synthetase) was suppressed at high temperatures in Pseudomonas syringae. In this work, we used a high-throughput screen to identify mutations that conferred overexpression of syfA at elevated temperatures (28°C compared to 20°C). Two genes, Psyr_2474, encoding an acyl-coenzyme A (CoA) dehydrogenase, and Psyr_4843, encoding an ortholog of RppH, which in Escherichia coli mediates RNA turnover, contribute to thermoregulation of syfA. To assess the global role of rppH in thermoregulation in P. syringae, RNA sequencing was used to compare the transcriptomes of an rppH deletion mutant and the wild-type strain incubated at 20°C and 30°C. The disruption of rppH had a large effect on the temperature-dependent transcriptome of P. syringae, affecting the expression of 569 genes at either 20°C or 30°C but not at both temperatures. Intriguingly, RppH is involved in the thermoregulation of ribosome-associated proteins, as well as of RNase E, suggesting a prominent role of rppH on the proteome in addition to its effect on the transcriptome.
Collapse
|
20
|
Wang J, Li J, Dasgupta S, Zhang L, Golovko MY, Golovko SA, Fang J. Alterations in Membrane Phospholipid Fatty Acids of Gram-Positive Piezotolerant Bacterium Sporosarcina sp. DSK25 in Response to Growth Pressure. Lipids 2014; 49:347-56. [DOI: 10.1007/s11745-014-3878-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
|
21
|
Porrini L, Cybulski LE, Altabe SG, Mansilla MC, de Mendoza D. Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor. Microbiologyopen 2014; 3:213-24. [PMID: 24574048 PMCID: PMC3996569 DOI: 10.1002/mbo3.154] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/14/2013] [Accepted: 11/25/2013] [Indexed: 11/11/2022] Open
Abstract
Bacillus subtilis responds to a sudden decrease in temperature by transiently inducing the expression of the des gene encoding for a lipid desaturase, Δ5-Des, which introduces a double bond into the acyl chain of preexisting membrane phospholipids. This Δ5-Des-mediated membrane remodeling is controlled by the cold-sensor DesK. After cooling, DesK activates the response regulator DesR, which induces transcription of des. We show that inhibition of fatty acid synthesis by the addition of cerulenin, a potent and specific inhibitor of the type II fatty acid synthase, results in increased levels of short-chain fatty acids (FA) in membrane phospholipids that lead to inhibition of the transmembrane-input thermal control of DesK. Furthermore, reduction of phospholipid synthesis by conditional inactivation of the PlsC acyltransferase causes significantly elevated incorporation of long-chain FA and constitutive upregulation of the des gene. Thus, we provide in vivo evidence that the thickness of the hydrophobic core of the lipid bilayer serves as one of the stimulus sensed by the membrane spanning region of DesK.
Collapse
Affiliation(s)
- Lucía Porrini
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina; Departamento de Microbiología Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Rosario, Argentina
| | | | | | | | | |
Collapse
|
22
|
Zhang W, Shi X, Huang J, Zhang Y, Wu Z, Xian Y. Bacitracin-conjugated superparamagnetic iron oxide nanoparticles: synthesis, characterization and antibacterial activity. Chemphyschem 2012; 13:3388-96. [PMID: 22753190 DOI: 10.1002/cphc.201200161] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Indexed: 11/12/2022]
Abstract
Bacitracin-conjugated superparamagnetic iron oxide (Fe(3)O(4)) nanoparticles were prepared by click chemistry and their antibacterial activity was investigated. After functionalization with hydrophilic and biocompatible poly(acrylic acid), water-soluble Fe(3)O(4) nanoparticles were obtained. Propargylated Fe(3)O(4) nanoparticles were then synthesized by carbodiimide reaction of propargylamine with the carboxyl groups on the surface of the iron oxide nanoparticles. By further reaction with N(3)-bacitracin in a Cu(I)-catalyzed azide-alkyne cycloaddition, the magnetic Fe(3)O(4) nanoparticles were modified with the peptide bacitracin. The functionalized magnetic nanoparticles were characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, TEM, zeta-potential analysis, FTIR spectroscopy and vibrating-sample magnetometry. Cell cytotoxicity tests indicate that bacitracin-conjugated Fe(3)O(4) nanoparticles show very low cytotoxicity to human fibroblast cells, even at relatively high concentrations. In view of the antibacterial activity of bacitracin, the biofunctionalized Fe(3)O(4) nanoparticles exhibit an antibacterial effect against both Gram-positive and Gram-negative organisms, which is even higher than that of bacitracin itself. The enhanced antibacterial activity of the magnetic nanocomposites allows the dosage and the side effects of the antibiotic to be reduced. Due to the antibacterial effect and magnetism, the bacitracin-functionalized magnetic nanoparticles have potential application in magnetic-targeting biomedical applications.
Collapse
Affiliation(s)
- Wenjing Zhang
- Chemistry, East China Normal University, 3663 Zhongshan Road (N), Shanghai 200062, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Reder A, Albrecht D, Gerth U, Hecker M. Cross-talk between the general stress response and sporulation initiation inBacillus subtilis- the σBpromoter ofspo0Erepresents an AND-gate. Environ Microbiol 2012; 14:2741-56. [DOI: 10.1111/j.1462-2920.2012.02755.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Sachs R, Max KE, Heinemann U, Balbach J. RNA single strands bind to a conserved surface of the major cold shock protein in crystals and solution. RNA (NEW YORK, N.Y.) 2012; 18:65-76. [PMID: 22128343 PMCID: PMC3261745 DOI: 10.1261/rna.02809212] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/29/2011] [Indexed: 05/26/2023]
Abstract
Bacterial cold shock proteins (CSPs) regulate the cellular response to temperature downshift. Their general principle of function involves RNA chaperoning and transcriptional antitermination. Here we present two crystal structures of cold shock protein B from Bacillus subtilis (Bs-CspB) in complex with either a hexanucleotide (5'-UUUUUU-3') or heptanucleotide (5'-GUCUUUA-3') single-stranded RNA (ssRNA). Hydrogen bonds and stacking interactions between RNA bases and aromatic sidechains characterize individual binding subsites. Additional binding subsites which are not occupied by the ligand in the crystal structure were revealed by NMR spectroscopy in solution on Bs-CspB·RNA complexes. Binding studies demonstrate that Bs-CspB associates with ssDNA as well as ssRNA with moderate sequence specificity. Varying affinities of oligonucleotides are reflected mainly in changes of the dissociation rates. The generally lower binding affinity of ssRNA compared to its ssDNA analog is attributed solely to the substitution of thymine by uracil bases in RNA.
Collapse
Affiliation(s)
- Rolf Sachs
- Fachgruppe Biophysik Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Klaas E.A. Max
- Max-Delbrück-Centrum für Molekulare Medizin Berlin-Buch, 13125 Berlin, Germany
| | - Udo Heinemann
- Max-Delbrück-Centrum für Molekulare Medizin Berlin-Buch, 13125 Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jochen Balbach
- Fachgruppe Biophysik Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
25
|
MILADI HANENE, BAKHROUF AMINA, AMMAR EMNA. CELLULAR LIPID FATTY ACID PROFILES OF REFERENCE AND FOOD ISOLATESLISTERIA MONOCYTOGENESAS A RESPONSE TO REFRIGERATION AND FREEZING STRESS. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2011.00607.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. J Bacteriol 2011; 193:1552-62. [PMID: 21296969 DOI: 10.1128/jb.01319-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Accumulation of compatible solutes is a strategy widely employed by bacteria to achieve cellular protection against high osmolarity. These compounds are also used in some microorganisms as thermostress protectants. We found that Bacillus subtilis uses the compatible solute glycine betaine as an effective cold stress protectant. Glycine betaine strongly stimulated growth at 15°C and permitted cell proliferation at the growth-inhibiting temperature of 13°C. Initial uptake of glycine betaine at 15°C was low but led eventually to the buildup of an intracellular pool whose size was double that found in cells grown at 35°C. Each of the three glycine betaine transporters (OpuA, OpuC, and OpuD) contributed to glycine betaine accumulation in the cold. Protection against cold stress was also accomplished when glycine betaine was synthesized from its precursor choline. Growth of a mutant defective in the osmoadaptive biosynthesis for the compatible solute proline was not impaired at low temperature (15°C). In addition to glycine betaine, the compatible solutes and osmoprotectants l-carnitine, crotonobetaine, butyrobetaine, homobetaine, dimethylsulfonioactetate, and proline betaine all served as cold stress protectants as well and were accumulated via known Opu transport systems. In contrast, the compatible solutes and osmoprotectants choline-O-sulfate, ectoine, proline, and glutamate were not cold protective. Our data highlight an underappreciated facet of the acclimatization of B. subtilis to cold environments and allow a comparison of the characteristics of compatible solutes with respect to their osmotic, heat, and cold stress-protective properties for B. subtilis cells.
Collapse
|
27
|
Zeng X, Yuan Y, Wei Y, Jiang H, Zheng Y, Guo Z, Tang J, Yang R, Zhou D, Jiang Y. Microarray analysis of temperature-induced transcriptome of Streptococcus suis serotype 2. Vector Borne Zoonotic Dis 2010; 11:215-21. [PMID: 20795872 DOI: 10.1089/vbz.2009.0225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Streptococcus suis serotype 2 (S. suis S2) is able to cause human infections ranging from superficial wounded skin infections to severe invasive infections such as meningitis and streptococcal toxic shock-like syndrome. During its infection cycle, S. suis S2 must acclimatize itself to temperature shift. Herein, a whole-genome DNA microarray was used to investigate the global transcriptional regulation of an invasive strain of S. suis S2 grown to late-exponential phase at 29°C or 40°C relative to 37°C. The differentially regulated genes that were detected included those encoding virulence factors, antigenic proteins, ATP-binding-cassette transporters, and proteins of unknown functions. Our data provided a global profile of gene transcription induced by temperature alteration and shed light on some unforeseen lines for further pathogenesis investigation.
Collapse
Affiliation(s)
- Xiaotao Zeng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
CspC and CspD are essential for Caulobacter crescentus stationary phase survival. Arch Microbiol 2010; 192:747-58. [PMID: 20607520 DOI: 10.1007/s00203-010-0602-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/02/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022]
Abstract
The cold shock response in bacteria involves the expression of low-molecular weight cold shock proteins (CSPs) containing a nucleic acid-binding cold shock domain (CSD), which are known to destabilize secondary structures on mRNAs, facilitating translation at low temperatures. Caulobacter crescentus cspA and cspB are induced upon cold shock, while cspC and cspD are induced during stationary phase. In this work, we determined a new coding sequence for the cspC gene, revealing that it encodes a protein containing two CSDs. The phenotypes of C. crescentus csp mutants were analyzed, and we found that cspC is important for cells to maintain viability during extended periods in stationary phase. Also, cspC and cspCD strains presented altered morphology, with frequent non-viable filamentous cells, and cspCD also showed a pronounced cell death at late stationary phase. In contrast, the cspAB mutant presented increased viability in this phase, which is accompanied by an altered expression of both cspC and cspD, but the triple cspABD mutant loses this characteristic. Taken together, our results suggest that there is a hierarchy of importance among the csp genes regarding stationary phase viability, which is probably achieved by a fine tune balance of the levels of these proteins.
Collapse
|
29
|
Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Appl Environ Microbiol 2010; 76:2562-73. [PMID: 20190083 DOI: 10.1128/aem.02348-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The mechanisms involved in the ability of Bacillus cereus to multiply at low temperatures were investigated. It was assumed that many genes involved in cold acclimation would be upregulated at low temperatures. Recombinase-based in vivo expression technology (IVET) was adapted to the detection of the transient activation of B. cereus promoters during growth at 10 degrees C. Four independent screenings of a promoter library from type strain ATCC 14579 were performed, and 17 clones were isolated. They corresponded to 17 promoter regions that displayed reproducibly elevated expression at 10 degrees C relative to expression at 30 degrees C. This analysis revealed several genes that may be important for B. cereus to grow successfully under the restrictive conditions of cold habitats. Among them, a locus corresponding to open reading frames BC5402 to BC5398, harboring a lipase-encoding gene and a putative transcriptional regulator, was identified three times. While a mutation in the putative regulator-encoding gene did not cause any particular phenotype, a mutant deficient in the lipase-encoding gene showed reduced growth abilities at low temperatures compared with the parental strain. The mutant did not change its fatty acid profiles in the same way as the wild type when grown at 12 degrees C instead of 37 degrees C. This study demonstrates the feasibility of a promoter trap strategy for identifying cold-induced genes. It outlines a first picture of the different processes involved in B. cereus cold acclimation.
Collapse
|
30
|
Hecker M, Reder A, Fuchs S, Pagels M, Engelmann S. Physiological proteomics and stress/starvation responses in Bacillus subtilis and Staphylococcus aureus. Res Microbiol 2009; 160:245-58. [PMID: 19403106 DOI: 10.1016/j.resmic.2009.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
Abstract
Gel-based proteomics is a useful approach for visualizing the responses of bacteria to stress and starvation stimuli. In order to face stress/starvation, bacteria have developed very complicated gene expression networks. A proteomic view of stress/starvation responses, however, is only a starting point which should promote follow-up studies aimed at the comprehensive description of single regulons, their signal transduction pathways on the one hand, and their adaptive functions on the other, and finally their integration into complex gene expression networks. This "road map of physiological proteomics" will be demonstrated for the general stress regulon controlled by sigma(B) in Bacillus subtilis and the oxygen starvation response with Rex as a master regulator in Staphylococcus aureus.
Collapse
Affiliation(s)
- Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Jahnstrasse 15A, 17487 Greifswald, Germany.
| | | | | | | | | |
Collapse
|
31
|
Liu CH, Chiu CS, Ho PL, Wang SW. Improvement in the growth performance of white shrimp, Litopenaeus vannamei, by a protease-producing probiotic, Bacillus subtilis E20, from natto. J Appl Microbiol 2009; 107:1031-41. [PMID: 19320951 DOI: 10.1111/j.1365-2672.2009.04284.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIMS To isolate and identify a benefic bacterium, Bacillus subtilis E20, from natto (fermented soybeans), and incorporate it into shrimp feed to promote shrimp growth performance. METHODS AND RESULTS A protease-producing bacterium, E20, isolated from natto was identified as B. subtilis by an API 50 CHB kit and the 16S rDNA sequence. B. subtilis E20 was able to grow at a broad range of temperatures (10-50 degrees C), pH values (5-10), and NaCl levels (0-9%). The best culture conditions for B. subtilis E20 to produce the protease were 40 degrees C, a pH of 6-8 and 0% NaCl. No shrimp died after being injected with B. subtilis E20 [up to 10(9) colony-forming units (CFU) per shrimp]. Bacillus subtilis E20 was incorporated in diets at the levels of 0 (control), 10(6), 10(7), and 10(8) CFU kg(-1) for shrimp grow-out culture, and results showed that after feeding on B. subtilis E20-containing diets (10(8) CFU kg(-1) of diet), shrimp had excellent growth performance and production compared to the control because protease activities in the digestive tract were improved by B. subtilis E20. CONCLUSIONS Bacillus subtilis E20 isolated from natto is a great protease producer and is able to improve shrimp growth performance through increasing the digestibility of food. SIGNIFICANCE AND IMPACT OF THE STUDY Results suggest that B. subtilis E20 is a potential candidate for use as a probiotic to improve shrimp growth performance, and consequently reduce feed costs.
Collapse
Affiliation(s)
- C-H Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | | | | | | |
Collapse
|
32
|
Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Appl Environ Microbiol 2009; 75:1621-7. [PMID: 19151183 DOI: 10.1128/aem.02154-08] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-positive bacterium Listeria monocytogenes is a food-borne pathogen of both public health and food safety significance. It possesses three small, highly homologous protein members of the cold shock protein (Csp) family. We used gene expression analysis and a set of mutants with single, double, and triple deletions of the csp genes to evaluate the roles of CspA, CspB, and CspD in the cold and osmotic (NaCl) stress adaptation responses of L. monocytogenes. All three Csps are dispensable for growth at optimal temperature (37 degrees C). These proteins are, however, required for efficient cold and osmotic stress tolerance of this bacterium. The hierarchies of their functional importance differ, depending on the environmental stress conditions: CspA>CspD>CspB in response to cold stress versus CspD>CspA/CspB in response to NaCl salt osmotic stress. The fact that Csps are promoting L. monocytogenes adaptation against both cold and NaCl stress has significant implications in view of practical food microbial control measures. The combined or sequential exposure of L. monocytogenes cells to these two stresses in food environments might inadvertently induce cross-protection responses.
Collapse
|
33
|
Kau JH, Sun DS, Huang HH, Wong MS, Lin HC, Chang HH. Role of visible light-activated photocatalyst on the reduction of anthrax spore-induced mortality in mice. PLoS One 2009; 4:e4167. [PMID: 19132100 PMCID: PMC2613519 DOI: 10.1371/journal.pone.0004167] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 12/07/2008] [Indexed: 11/28/2022] Open
Abstract
Background Photocatalysis of titanium dioxide (TiO2) substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO2 substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis. Methodology/Principal Findings Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components. Conclusion/Significance Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host.
Collapse
Affiliation(s)
- Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Der-Shan Sun
- Institute of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Science, Tzu-Chi University, Hualien, Taiwan
| | - Hsin-Hsien Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Show Wong
- Department of Materials Science and Engineering, National Dong-Hwa University, Hualien, Taiwan, Republic of China
| | - Hung-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Hou Chang
- Institute of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Science, Tzu-Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
34
|
Sikorski J, Nevo E. Patterns of thermal adaptation of Bacillus simplex to the microclimatically contrasting slopes of 'Evolution Canyons' I and II, Israel. Environ Microbiol 2007; 9:716-26. [PMID: 17298371 DOI: 10.1111/j.1462-2920.2006.01193.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Identification of selective forces that drive evolution and speciation of bacteria in natural habitats is a central issue in bacterial ecology and evolution. Exploring the adaptive evolution of Bacillus simplex at 'Evolution Canyons' I and II, Israel, we report here on the impact of high heat stress on the speciation progress of individual evolutionary lineages. These canyons represent similar ecological replicates, separated by 40 km, in which the orientation of the sun yields a strong sun-exposed and hot 'African' south-facing slope (SFS) versus a rather cooler and mesic-lush 'European' north-facing slope (NFS) within a distance of only 50-100 m at the bottom and 400 m at the top. Among 131 strains studied, in Luria-Bertani broth, 'African' strains grow better than 'European' strains at a stressful high temperature (43.25 degrees C). The results suggest that adaptation to the hotter and more stressful SFS is continuously ongoing. The patterns of heat adaptation override the phylogenetic history of individual lineages. A positive correlation of growth rates at 43.25 degrees C and 20 degrees C, more markedly among 'African' strains, reflects probably the broader temperature range on the SFS. Summarizing, the hot temperature stress on the 'African' slope is a major environmental force driving the twin evolutionary processes of adaptation and speciation of B. simplex at 'Evolution Canyon'. Finally, we discuss the data in light of current controversies on species concepts.
Collapse
Affiliation(s)
- Johannes Sikorski
- Carl von Ossietzky University Oldenburg, Faculty V, Institute of Biology and Environmental Sciences, Genetics Section, Oldenburg, Germany.
| | | |
Collapse
|
35
|
Shin JH, Price CW. The SsrA-SmpB ribosome rescue system is important for growth of Bacillus subtilis at low and high temperatures. J Bacteriol 2007; 189:3729-37. [PMID: 17369301 PMCID: PMC1913333 DOI: 10.1128/jb.00062-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis has multiple stress response systems whose integrated action promotes growth and survival under unfavorable conditions. Here we address the function and transcriptional organization of a five-gene cluster containing ssrA, previously known to be important for growth at high temperature because of the role of its tmRNA product in rescuing stalled ribosomes. Reverse transcription-PCR experiments detected a single message for the secG-yvaK-rnr-smpB-ssrA cluster, suggesting that it constitutes an operon. However, rapid amplification of cDNA ends-PCR and lacZ fusion experiments indicated that operon transcription is complex, with at least five promoters controlling different segments of the cluster. One sigma(A)-like promoter preceded secG (P(1)), and internal sigma(A)-like promoters were found in both the rnr-smpB (P(2)) and smpB-ssrA intervals (P(3) and P(HS)). Another internal promoter lay in the secG-yvaK intercistronic region, and this activity (P(B)) was dependent on the general stress factor sigma(B). Null mutations in the four genes downstream from P(B) were tested for their effects on growth. Loss of yvaK (carboxylesterase E) or rnr (RNase R) caused no obvious phenotype. By contrast, smpB was required for growth at high temperature (52 degrees C), as anticipated if its product (a small ribosomal binding protein) is essential for tmRNA (ssrA) function. Notably, smpB and ssrA were also required for growth at low temperature (16 degrees C), a phenotype not previously associated with tmRNA activity. These results extend the known high-temperature role of ssrA and indicate that the ribosome rescue system is important at both extremes of the B. subtilis temperature range.
Collapse
Affiliation(s)
- Ji-Hyun Shin
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
36
|
Margesin R, Neuner G, Storey KB. Cold-loving microbes, plants, and animals--fundamental and applied aspects. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2006; 94:77-99. [PMID: 17039344 DOI: 10.1007/s00114-006-0162-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 08/11/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
Microorganisms, plants, and animals have successfully colonized cold environments, which represent the majority of the biosphere on Earth. They have evolved special mechanisms to overcome the life-endangering influence of low temperature and to survive freezing. Cold adaptation includes a complex range of structural and functional adaptations at the level of all cellular constituents, such as membranes, proteins, metabolic activity, and mechanisms to avoid the destructive effect of intracellular ice formation. These strategies offer multiple biotechnological applications of cold-adapted organisms and/or their products in various fields. In this review, we describe the mechanisms of microorganisms, plants, and animals to cope with the cold and the resulting biotechnological perspectives.
Collapse
Affiliation(s)
- R Margesin
- Institute of Microbiology, Leopold Franzens University, Technikerstrasse 25, 6020, Innsbruck, Austria.
| | | | | |
Collapse
|
37
|
Crapoulet N, Barbry P, Raoult D, Renesto P. Global transcriptome analysis of Tropheryma whipplei in response to temperature stresses. J Bacteriol 2006; 188:5228-39. [PMID: 16816195 PMCID: PMC1539978 DOI: 10.1128/jb.00507-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tropheryma whipplei, the agent responsible for Whipple disease, is a poorly known pathogen suspected to have an environmental origin. The availability of the sequence of the 0.92-Mb genome of this organism made a global gene expression analysis in response to thermal stresses feasible, which resulted in unique transcription profiles. A few genes were differentially transcribed after 15 min of exposure at 43 degrees C. The effects observed included up-regulation of the dnaK regulon, which is composed of six genes and is likely to be under control of two HspR-associated inverted repeats (HAIR motifs) found in the 5' region. Putative virulence factors, like the RibC and IspDF proteins, were also overexpressed. While it was not affected much by heat shock, the T. whipplei transcriptome was strongly modified following cold shock at 4 degrees C. For the 149 genes that were differentially transcribed, eight regulons were identified, and one of them was composed of five genes exhibiting similarity with genes encoding ABC transporters. Up-regulation of these genes suggested that there was an increase in nutrient uptake when the bacterium was exposed to cold stress. As observed for other bacterial species, the major classes of differentially transcribed genes encode membrane proteins and enzymes involved in fatty acid biosynthesis, indicating that membrane modifications are critical. Paradoxically, the heat shock proteins GroEL2 and ClpP1 were up-regulated. Altogether, the data show that despite the lack of classical regulation pathways, T. whipplei exhibits an adaptive response to thermal stresses which is consistent with its specific environmental origin and could allow survival under cold conditions.
Collapse
Affiliation(s)
- Nicolas Crapoulet
- Unité des Rickettsies, CNRS UMR6020, IFR48, Faculté de Médecine, 27, Boulevard Jean Moulin, 13385 Marseille, France
| | | | | | | |
Collapse
|
38
|
Al-Fageeh M, Smales C. Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J 2006; 397:247-59. [PMID: 16792527 PMCID: PMC1513281 DOI: 10.1042/bj20060166] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although the cold-shock response has now been studied in a number of different organisms for several decades, it is only in the last few years that we have begun to understand the molecular mechanisms that govern adaptation to cold stress. Notably, all organisms from prokaryotes to plants and higher eukaryotes respond to cold shock in a comparatively similar manner. The general response of cells to cold stress is the elite and rapid overexpression of a small group of proteins, the so-called CSPs (cold-shock proteins). The most well characterized CSP is CspA, the major CSP expressed in Escherichia coli upon temperature downshift. More recently, a number of reports have shown that exposing yeast or mammalian cells to sub-physiological temperatures (<30 or <37 degrees C respectively) invokes a co-ordinated cellular response involving modulation of transcription, translation, metabolism, the cell cycle and the cell cytoskeleton. In the present review, we summarize the regulation and role of cold-shock genes and proteins in the adaptive response upon decreased temperature with particular reference to yeast and in vitro cultured mammalian cells. Finally, we present an integrated model for the co-ordinated responses required to maintain the viability and integrity of mammalian cells upon mild hypothermic cold shock.
Collapse
Affiliation(s)
- Mohamed B. Al-Fageeh
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, U.K
| | - C. Mark Smales
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
39
|
Budde I, Steil L, Scharf C, Völker U, Bremer E. Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiology (Reading) 2006; 152:831-853. [PMID: 16514163 DOI: 10.1099/mic.0.28530-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The soil bacterium Bacillus subtilis frequently encounters a reduction in temperature in its natural habitats. Here, a combined transcriptomic and proteomic approach has been used to analyse the adaptational responses of B. subtilis to low temperature. Propagation of B. subtilis in minimal medium at 15 °C triggered the induction of 279 genes and the repression of 301 genes in comparison to cells grown at 37 °C. The analysis thus revealed profound adjustments in the overall gene expression profile in chill-adapted cells. Important transcriptional changes in low-temperature-grown cells comprise the induction of the SigB-controlled general stress regulon, the induction of parts of the early sporulation regulons (SigF, SigE and SigG) and the induction of a regulatory circuit (RapA/PhrA and Opp) that is involved in the fine-tuning of the phosphorylation status of the Spo0A response regulator. The analysis of chill-stress-repressed genes revealed reductions in major catabolic (glycolysis, oxidative phosphorylation, ATP synthesis) and anabolic routes (biosynthesis of purines, pyrimidines, haem and fatty acids) that likely reflect the slower growth rates at low temperature. Low-temperature repression of part of the SigW regulon and of many genes with predicted functions in chemotaxis and motility was also noted. The proteome analysis of chill-adapted cells indicates a major contribution of post-transcriptional regulation phenomena in adaptation to low temperature. Comparative analysis of the previously reported transcriptional responses of cold-shocked B. subtilis cells with this data revealed that cold shock and growth in the cold constitute physiologically distinct phases of the adaptation of B. subtilis to low temperature.
Collapse
Affiliation(s)
- Ina Budde
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| | - Leif Steil
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Christian Scharf
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
| | - Uwe Völker
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| | - Erhard Bremer
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| |
Collapse
|
40
|
Ozcan N, Krämer R, Morbach S. Chill activation of compatible solute transporters in Corynebacterium glutamicum at the level of transport activity. J Bacteriol 2005; 187:4752-9. [PMID: 15995189 PMCID: PMC1169528 DOI: 10.1128/jb.187.14.4752-4759.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-positive soil bacterium Corynebacterium glutamicum harbors four osmoregulated secondary uptake systems for compatible solutes, BetP, EctP, LcoP, and ProP. When reconstituted in proteoliposomes, BetP was shown to sense hyperosmotic conditions via the increase in luminal K(+) and to respond by instant activation. To study further putative ways of stimulus perception and signal transduction, we have investigated the responses of EctP, LcoP, and BetP, all belonging to the betaine-carnitine-choline transporter family, to chill stress at the level of activity. When fully activated by hyperosmotic stress, they showed the expected increase of activity at increasing temperature. In the absence of osmotic stress, EctP was not activated by chill and LcoP to only a very low extent, whereas BetP was significantly stimulated at low temperature. BetP was maximally activated at 10 degrees C, reaching the same transport rate as that observed under hyperosmotic conditions at this temperature. A role of cytoplasmic K(+) in chill-dependent activation of BetP was ruled out, since (i) the cytoplasmic K(+) concentration did not change significantly at lower temperatures and (ii) a mutant BetP lacking the C-terminal 25 amino acids, which was previously shown to have lost the ability to be activated by luminal K(+), was fully competent in chill sensing. When heterologously expressed in Escherichia coli, BetP did not respond to chill stress. This may indicate that the membrane in which BetP is inserted plays an important role in chill activation and thus in signal transduction by BetP, different from the previously established K(+)-mediated process.
Collapse
Affiliation(s)
- Nuran Ozcan
- Institute of Biochemistry, University of Cologne, Köln, Germany
| | | | | |
Collapse
|
41
|
Zhu K, Bayles DO, Xiong A, Jayaswal RK, Wilkinson BJ. Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain alpha-keto acid dehydrogenase. MICROBIOLOGY-SGM 2005; 151:615-623. [PMID: 15699210 DOI: 10.1099/mic.0.27634-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Branched-chain fatty acids (BCFAs) typically constitute more than 90 % of the fatty acids of Listeria monocytogenes. The authors have previously described two Tn917-induced, cold-sensitive, BCFA-deficient (<40 %) L. monocytogenes mutants (cld-1 and cld-2) with lowered membrane fluidity. Sequence analyses revealed that Tn917 was inserted into different genes of the branched-chain alpha-keto acid dehydrogenase cluster (bkd) in these two mutants. The cold-sensitivity and BCFA deficiency of cld-1, in which Tn917 was inserted into bkdB, were complemented in trans by cloned bkdB. The growth and corresponding BCFA content of the mutants at 37 degrees C were stimulated by fatty acid precursors bypassing Bkd, 2-methylbutyrate (precursor for odd-numbered anteiso-fatty acids), isobutyrate (precursor for even-numbered iso-fatty acids) and isovalerate (precursor for odd-numbered iso-fatty acids). In contrast, the corresponding Bkd substrates, alpha-ketomethylvalerate, alpha-ketoisovalerate and alpha-ketoisocaproate, exhibited much poorer activity. At 26 degrees C, 2-methylbutyrate and isovalerate stimulated the growth of the mutants, and at 10 degrees C, only 2-methylbutyrate stimulated growth. Pyruvate depressed the BCFA content of cld-2 from 33 % to 27 %, which may be close to the minimum BCFA requirement for L. monocytogenes. The transcription of bkd was enhanced by Bkd substrates, but not by low temperature. When provided with the BCFA precursors, cld-2 was able to increase its anteiso-C15 : 0 fatty acid content at 10 degrees C compared to 37 degrees C, which is the characteristic response of L. monocytogenes to low temperature. This implies that Bkd is not the major cold-regulation point of BCFA synthesis.
Collapse
Affiliation(s)
- Kun Zhu
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Darrell O Bayles
- Microbial Food Safety Research Unit, Eastern Regional Research Center (ERRC), Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Anming Xiong
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - R K Jayaswal
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Brian J Wilkinson
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| |
Collapse
|
42
|
Höper D, Völker U, Hecker M. Comprehensive characterization of the contribution of individual SigB-dependent general stress genes to stress resistance of Bacillus subtilis. J Bacteriol 2005; 187:2810-26. [PMID: 15805528 PMCID: PMC1070366 DOI: 10.1128/jb.187.8.2810-2826.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 12/30/2004] [Indexed: 11/20/2022] Open
Abstract
The sigma(B)-dependent general stress regulon of Bacillus subtilis comprises more than 150 members. Induction of this regulon by imposition of environmental or metabolic stress confers multiple, nonspecific, and preemptive stress resistance to nongrowing, nonsporulated cells of B. subtilis. In this study we performed a regulon-wide phenotypic screening analysis to determine the stress sensitivity profiles of 94 mutants defective in candidate members of the general stress regulon that were previously identified in our transcriptional profiling study of the general stress response of B. subtilis. The phenotypic screening analysis included analysis of adaptation to a growth-inhibiting concentration of ethanol (10%, vol/vol) or NaCl (10%, wt/vol), severe heat shock (54 degrees C), and low temperature (survival at 4 degrees C and growth at 12.5 degrees C). Surprisingly, 85% of the mutants tested displayed increased sensitivity at an alpha confidence level of < or =0.01 to at least one of the four stresses tested, and 62% still exhibited increased sensitivity at an alpha of < or =0.001. In essence, we were able to assign 63 genes (28 genes with an alpha of < or =0.001) to survival after ethanol shock, 37 genes (28 genes with an alpha of < or =0.001) to protection from NaCl shock, 34 genes (24 genes with an alpha of < or =0.001) to survival at 4 degrees C, and 10 genes (3 genes with an alpha of < or =0.001) to management of severe heat shock. Interestingly, there was a substantial overlap between the genes necessary for survival during ethanol shock and the genes necessary for survival at 4 degrees C, and there was also an overlap between genes required for survival during ethanol shock and genes required for survival during NaCl shock. Our data provide evidence for the importance of the sigma(B) regulon at low temperatures, not only for growth but also for survival. Moreover, the data imply that a secondary oxidative stress seems to be a common component of the severe stresses tested.
Collapse
Affiliation(s)
- Dirk Höper
- Institute for Microbiology, Ernst Moritz Arndt University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17487 Greifswald, Germany
| | | | | |
Collapse
|
43
|
Jørgensen CM, Hammer K, Jensen PR, Martinussen J. Expression of the pyrG gene determines the pool sizes of CTP and dCTP in Lactococcus lactis. ACTA ACUST UNITED AC 2004; 271:2438-45. [PMID: 15182359 DOI: 10.1111/j.1432-1033.2004.04168.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The pyrG gene from Lactococcus lactis encodes CTP synthase (EC 6.4.3.2), an enzyme converting UTP to CTP. A series of strains were constructed with different levels of pyrG expression by insertion of synthetic constitutive promoters with different strengths in front of pyrG. These strains expressed pyrG levels in a range from 3 to 665% relative to the wild-type expression level. Decreasing the level of CTP synthase to 43% had no effect on the growth rate, showing that the capacity of CTP synthase in the cell is in excess in a wild-type strain. We then studied how pyrG expression affected the intracellular pool sizes of nucleotides and the correlation between pyrG expression and nucleotide pool sizes was quantified using metabolic control analysis in terms of inherent control coefficients. At the wild-type expression level, CTP synthase had full control of the CTP concentration with a concentration control coefficient close to one and a negative concentration control coefficient of -0.28 for the UTP concentration. Additionally, a concentration control coefficient of 0.49 was calculated for the dCTP concentration. Implications for the homeostasis of nucleotide pools are discussed.
Collapse
Affiliation(s)
- Casper M Jørgensen
- Bacterial Physiology and Genetics, BioCentrum-DTU, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
44
|
Neuhaus K, Anastasov N, Kaberdin V, Francis KP, Miller VL, Scherer S. The AGUAAA motif in cspA1/A2 mRNA is important for adaptation of Yersinia enterocolitica to grow at low temperature. Mol Microbiol 2004; 50:1629-45. [PMID: 14651644 DOI: 10.1046/j.1365-2958.2003.03795.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acclimatization of the psychrotolerant Yersinia enterocolitica after a cold shock from 30 degrees C to 10 degrees C causes transcription of the major cold shock protein (CSP) bicistronic gene cspA1/A2 to increase by up to 300-fold. Northern blot analysis of cspA1/A2 using four probes that hybridize specifically to different regions of CSP mRNA revealed the appearance of a number of cspA1/A2 transcripts that are smaller than the original transcript and transiently visible at the end of the acclimation period. Primer extension and RNA protection experiments demonstrated that these smaller mRNAs have 5' ends located in the same core sequence (5'-AGUAAA-3') at five different places within the mRNA, indicating preferential cleavage of the CSP mRNA transcripts. A similar result was obtained for cspB of Escherichia coli, containing two such core sequences. Furthermore, this motif is present in the major CSP genes of a variety of Gram-negative and Gram-positive bacteria. We have therefore termed this sequence cold shock cut box (CSC-box). After inserting a CSC-box into a plasmid-bound lacZ gene in Y. enterocolitica, the mRNA of this construct was cleaved within the CSC-box, and a change in this CSC-box from AGUAAA to AGUCCC dramatically reduced cleavage of the mutated lacZ gene. Mutating all CSC-boxes in Y. enterocolitica of a plasmid bound cspA1/A2 dramatically increases the lag time after a cold shock before re-growth occurs. Based on these results, we suggest that the role of the CSC-box is related to downregulation of cspA mRNA after acclimation to low temperature.
Collapse
Affiliation(s)
- Klaus Neuhaus
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
45
|
Méndez MB, Orsaria LM, Philippe V, Pedrido ME, Grau RR. Novel roles of the master transcription factors Spo0A and sigmaB for survival and sporulation of Bacillus subtilis at low growth temperature. J Bacteriol 2004; 186:989-1000. [PMID: 14761993 PMCID: PMC344201 DOI: 10.1128/jb.186.4.989-1000.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spore development and stress resistance in Bacillus subtilis are governed by the master transcription factors Spo0A and sigma(B), respectively. Here we show that the coding genes for both regulatory proteins are dramatically induced, during logarithmic growth, after a temperature downshift from 37 to 20 degrees C. The loss of sigma(B) reduces the stationary-phase viability of cold-adapted cells 10- to 50-fold. Furthermore, we show that sigma(B) activity is required at a late stage of development for efficient sporulation at a low temperature. On the other hand, Spo0A loss dramatically reduces the stationary-phase viability of cold-adapted cells 10,000-fold. We show that the requirement of Spo0A for cellular survival during the cold is independent of the activity of the key transition state regulator AbrB and of the simple loss of sporulation ability. Furthermore, Spo0A, and not proficiency in sporulation, is required for the development of complete stress resistance of cold-adapted cells to heat shock (54 degrees C, 1 h), since a loss of Spo0A, but not a loss of the essential sporulation transcription factor sigma(F), reduced the cellular survival in response to heat by more than 1,000-fold. The overall results argue for new and important roles for Spo0A in the development of full stress resistance by nonsporulating cells and for sigma(B) in sporulation proficiency at a low temperature.
Collapse
Affiliation(s)
- Marcelo B Méndez
- Department of Microbiology, Rosario University School of Biochemistry and Pharmacy, and Institute of Molecular and Cellular Biology of Rosario, IBR-CONICET, Rosario, Argentina
| | | | | | | | | |
Collapse
|
46
|
Brigulla M, Hoffmann T, Krisp A, Völker A, Bremer E, Völker U. Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J Bacteriol 2003; 185:4305-14. [PMID: 12867438 PMCID: PMC165770 DOI: 10.1128/jb.185.15.4305-4314.2003] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of environmental and metabolic cues trigger the transient activation of the alternative transcription factor SigB of Bacillus subtilis, which subsequently leads to the induction of more than 150 general stress genes. This general stress regulon provides nongrowing and nonsporulated cells with a multiple, nonspecific, and preemptive stress resistance. By a proteome approach we have detected the expression of the SigB regulon during continuous growth at low temperature (15 degrees C). Using a combination of Western blot analysis and SigB-dependent reporter gene fusions, we provide evidence for high-level and persistent induction of the sigB operon and the SigB regulon, respectively, in cells continuously exposed to low temperatures. In contrast to all SigB-activating stimuli described thus far, induction by low temperatures does not depend on the positive regulatory protein RsbV or its regulatory phosphatases RsbU and RsbP, indicating the presence of an entirely new pathway for the activation of SigB by chill stress in B. subtilis. The physiological importance of the induction of the general stress response for the adaptation of B. subtilis to low temperatures is emphasized by the observation that growth of a sigB mutant is drastically impaired at 15 degrees C. Inclusion of the compatible solute glycine betaine in the growth medium not only improved the growth of the wild-type strain but rescued the growth defect of the sigB mutant, indicating that the induction of the general stress regulon and the accumulation of glycine betaine are independent means by which B. subtilis cells cope with chill stress.
Collapse
Affiliation(s)
- Matthias Brigulla
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Derzelle S, Hallet B, Ferain T, Delcour J, Hols P. Improved adaptation to cold-shock, stationary-phase, and freezing stresses in Lactobacillus plantarum overproducing cold-shock proteins. Appl Environ Microbiol 2003; 69:4285-90. [PMID: 12839816 PMCID: PMC165198 DOI: 10.1128/aem.69.7.4285-4290.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the effect of overproducing each of the three cold shock proteins (CspL, CspP, and CspC) in the mesophilic lactic acid bacterium Lactobacillus plantarum NC8. CspL overproduction transiently alleviated the reduction in growth rate triggered by exposing exponentially growing cells to cold shock (8 degrees C), suggesting that CspL is involved in cold adaptation. The strain overproducing CspC resumed growth more rapidly when stationary-phase cultures were diluted into fresh medium, indicating a role in the adaptation and recovery of nutritionally deprived cells. Overproduction of CspP led to an enhanced capacity to survive freezing.
Collapse
Affiliation(s)
- Sylviane Derzelle
- Institut des Sciences de la Vie/Unité de Génétique, Université catholique de Louvain, 5 Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
48
|
Abstract
As a measure for molecular motion, temperature is one of the most important environmental factors for life as it directly influences structural and hence functional properties of cellular components. After a sudden increase in ambient temperature, which is termed heat shock, bacteria respond by expressing a specific set of genes whose protein products are designed to mainly cope with heat-induced alterations of protein conformation. This heat shock response comprises the expression of protein chaperones and proteases, and is under central control of an alternative sigma factor (sigma 32) which acts as a master regulator that specifically directs RNA polymerase to transcribe from the heat shock promotors. In a similar manner, bacteria express a well-defined set of proteins after a rapid decrease in temperature, which is termed cold shock. This protein set, however, is different from that expressed under heat shock conditions and predominantly comprises proteins such as helicases, nucleases, and ribosome-associated components that directly or indirectly interact with the biological information molecules DNA and RNA. Interestingly, in contrast to the heat shock response, to date no cold-specific sigma factor has been identified. Rather, it appears that the cold shock response is organized as a complex stimulon in which post-transcriptional events play an important role. In this review, we present a summary of research results that have been acquired in recent years by examinations of bacterial cold shock responses. Important processes such as cold signal perception, membrane adaptation, and the modification of the translation apparatus are discussed together with many other cold-relevant aspects of bacterial physiology and first attempts are made to dissect the cold shock stimulon into less complex regulatory subunits. Special emphasis is placed on findings concerning the nucleic acid-binding cold shock proteins which play a fundamental role not only during cold shock adaptation but also under optimal growth conditions.
Collapse
|